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Process capability indices (PCIs) aim to quantify the capability of a process of quality characteristic
(X) tomeet some specifications that are related to ameasurable characteristic of its produced items.
One such quality characteristic is life time of items. The specifications are determined through the
lower specification limit (L), the upper specification limit (U), and the target value (T). Maiti et
al. (2010) have proposed a generalized process capability index that is the ratio of proportion of
specification conformance to proportion of desired conformance. Bayesian estimation of the index
has been considered under squared error loss function. Normal, exponential (nonnormal), and
Poisson (discrete) processes have been taken into account. Bayes estimates of the index have been
compared with the frequentist counterparts. Data sets have been analyzed.

1. Introduction

The purpose of process capability index (PCI) is to provide a numerical measure on whether
a production process is capable of producing items within the specification limits or not. It
becomes very popular in assessing the capability of manufacturing process in practice during
the past decade. More andmore efforts have been devoted to studies and applications of each
PCIs. For example, the Cp and Cpk indices have been used in Japan and in the US automotive
industry. For more information on PCIs, see Hsiang and Taguchi [1], Choi and Owen [2],
Pearn et al. [3], Pearn and Kotz [4], Pearn and Chen [5], Mukherjee [6], Yeh and Bhattacharya
[7], Borges and Ho [8], Perakis and Xekalaki [9, 10], and Maiti et al. [11].

The usual practice is to estimate these PCIs from data and then judge the capability of
the process by these estimates. Most studies on PCIs are based on the traditional frequentist
point of view. The main objective of this note is to provide both point and interval estimators
of the PCIs given by Maiti et al. [11] from the Bayesian point of view. We believe this effort
is well justified since the Bayesian estimation has become one of popular approaches in
estimation. In addition, the Bayesian approach has one great advantage over the traditional
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frequentist approach: the posterior distribution is sometimes very easy to derive, and credible
intervals, which are the Bayesian analogue of the classical confidence interval, can be easily
obtained either by theoretical derivation orMonte Carlo methods. Lower credible limits (lcls)
are constructed. Upper credible limits can also be obtained in a similar manner. However,
only the case of lcls is considered as these are of greater interest (due to the fact that large
values of PCIs are desirable).

The paper is organized as follows. We give a brief review on the PCIs, Cp, Cpk,
Cpm, and Cpy in Section 2. In Sections 3, 4, and 5, we derive the Bayes estimators for Cpy

(with process median being the process center) with respect to some chosen priors under
the assumption of normal, exponential (nonnormal), and Poisson (discrete) distribution,
respectively. Simulation results have been reported and discussed in Section 6. In Section 7,
data sets have been analyzed to demonstrate the application of the proposed Bayesian
procedure. Section 8 concludes.

2. Review of Some Process Capability Indices

The most popular PCIs are Cp, Cpk, and Cpm. The Cp index is defined as

Cp =
U − L

6σ
, (2.1)

where L andU are the lower and upper specification limits, respectively, and σ is the process
standard deviation. Note that Cp does not depend on the process mean. The Cpk is then
introduced to reflect the impact of μ on the process capability indices. TheCpk index is defined
as

Cpk = min
[
μ − L

3σ
,
U − μ

3σ

]
. (2.2)

The Cpm index was introduced by Chan et al. [12]. This index takes into account the influence
of the departure of the process mean μ from the process target T . The Cpm index is defined as

Cpm =
U − L

6
√
σ2 +

(
μ − T

)2 . (2.3)

Maiti et al. [11] suggested a more generalized measure which is directly or indirectly
associated with all the previously defined capability indices. The measure is as follows:

Cpy =
p

p0
, (2.4)

where p is the process yield that is, p = F(U) − F(L), F(t) = P(X ≤ t) is the cumulative
distribution function of X, and p0 is the desirable yield that is, p0 = F(UDL) − F(LDL),
LDL and UDL be the lower and upper desirable limit, respectively. When the process is off
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centered, then F(L) +F(U)/= 1 but the proportion of desired conformance is achieved. In that
case, the index is as follows:

Cpyk = min
(
Cpyu, Cpyl

)
, (2.5)

where

Cpyu =
F(U) − F

(
μe

)
(1/2) − α2

,

Cpyl =
F
(
μe

) − F(L)
(1/2) − α1

,

(2.6)

with μe being the median of the distribution and the process center is to be located such that
F(μe) = (F(L)+F(U))/2 that is, F(L)+F(U) = 1, α1 = P(X < LDL), and α2 = P(X > UDL). It
generally happens that process target T is such that F(T) = (F(L)+F(U))/2; if F(T)/= (F(L)+
F(U))/2, the situation may be described as “generalized asymmetric tolerances” have been
described by the term “asymmetric tolerances” when T /= (L+U)/2. Under this circumstance,
the index is defined as follows:

CpTk = min
[
F(U) − F(T)
(1/2) − α2

,
F(T) − F(L)
(1/2) − α1

]
. (2.7)

3. Bayes Estimate of Cpy for Normal Process

Let x1, x2, x3, . . ., xn be n observations from normal distribution with parameter μ and σ2.
Then, the joint distribution of x1, x2, x3, . . ., xn is

L
(
x | μ, σ) =

1

(2π)n/2(σ2)n/2
e−(1/2σ

2)
∑

(xi−μ)2 . (3.1)

Regarding selection of the the prior distributions, it is advisable to choose conjugate prior,
since in this situation, even if prior parameters are unknown in practice, these may be
estimated approximately from the likelihood functions as discussed in subsequent sections.
When there is no information about the parameter(s) of the distribution, noninformative
prior choice is good one.

3.1. Conjugate Prior Distributions

Here we assume that the prior distribution of (μ, σ2) is of the following form

g
(
μ, σ2

)
= g1

(
μ | σ2

)
g2

(
σ2

)
, (3.2)
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where the μ given σ2 follows normal distribution with mean μ0 and variance σ2 and σ2

follows an inverted gamma distribution of the form:

f
(
σ2

)
=

βα

Γ(α)
· σ−2(α+1)e−(β/σ

2); σ2 > 0, α, β > 0. (3.3)

Hence the posterior distribution of (μ, σ2) is given by

g
(
μ, σ2 | x

)
=

L
(
x/μ, σ2)g(μ, σ2)∫∞

0

∫∞
−∞ L

(
x/μ, σ2

)
g
(
μ, σ2

)
dμdσ2

= 2

√
(n + 1)

σ
√
(2π)

· e−((n+1)/2σ2)(μ−(x0/(n+1)))
2 W

((n+1)/2)+α
1

Γ(((n + 1)/2) + α)
· σ−2((n/2)+α+1) e−(β/σ

2),

(3.4)

where x0 = nx + μ0 and W1 =
∑

x2
i + 2β + μ2

0 − (x2
0/(n + 1)).

If the process quality characteristic follows normal distribution with mean μ and
variance σ2, then the generalized process capability index is given by

Cpy =
p

p0
=

Φ
((
U − μ

)
/σ

) −Φ
((
L − μ

)
/σ

)
p0

. (3.5)

Then, the Bayes estimate of Cpy under squared error loss is given by

Ĉpy = E
(
Cpy | x)

=
1
p0

∫∞

0

∫∞

−∞

{
Φ
(
U − μ

σ

)
−Φ

(
L − μ

σ

)}
g
(
μ, σ2 | x

)
dμdσ2.

(3.6)

Now,

E
(
C2

py | x
)
=

1
p20

∫∞

0

∫∞

−∞

{
Φ
(
U − μ

σ

)
−Φ

(
L − μ

σ

)}2

g
(
μ, σ2 | x

)
dμdσ2 (3.7)

and hence

Var
(
Cpy | x) = E

(
C2

py | x
)
− E2(Cpy | x). (3.8)

It is to be noted that the Bayes estimate of Cpy and the variance depend on the
parameters of the prior distribution of μ and σ2. These parameters could be estimated by
means of an empirical Bayes procedure, see Lindley [13] and Awad and Gharraf [14]. Given
the random samples (X1, X2, . . . , Xn), the likelihood function of μ given σ2 is normal density

withmean (X) and the likelihood function of σ2 is inverted gammawith β =
∑n

i=1 (Xi −X)
2
/2

and α = (n− 3)/2. Hence it is proposed to estimate the prior parameters μ0, and β and α from
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the samples by X, and
∑n

i=1 (Xi −X)
2
/2 and (n − 3)/2, respectively. The variances of these

estimators are σ2/n, (n − 1)σ4/2 and 0, respectively. The expressions of x0 and W1 will be

(n + 1)X and 2
∑n

i=1 (Xi −X)
2
, respectively.

3.2. Noninformative Prior Distributions

Here we assume that the prior distribution of (μ, σ2) is noninformative of the form

g
(
μ, σ2

)
∝ 1

σ2
. (3.9)

Hence the posterior distribution of (μ, σ2) is of the form

g
(
μ, σ2 | x

)
=

1

σ
√
(2π)

e−(1/2σ
2)(μ−x)22

(∑
(xi − x)2/2

)n/2

Γ(n/2)
σ−2((n+1)/2)e−(

∑
(xi−x)2)/2σ2

. (3.10)

Estimates are to be found out in the same way as in Section 3.1.

4. Bayes Estimate of CPy for Exponential Process

Let x1, x2, x3, . . .,xn be n observations from exponential distribution with parameter λ. Then,
the joint distribution of x1, x2, x3, . . .,xn is

L(x | λ) = λne−λ
∑

xi . (4.1)

4.1. Conjugate Prior Distributions

Here we assume that the prior distribution of λ is gamma with parameter (m,a) that is, the
distribution of λ is given as

g(λ) =
am

Γ(m)
e−aλλm−1, λ > 0. (4.2)

Hence the posterior distribution of λ is given as

g(λ | x) = L(x/λ)g(λ)∫∞
0 L(x/λ)g(λ)dλ

=
(
∑

xi + a)m+n

Γ(m + n)
λm+n−1e−λ(a+

∑
xi), λ > 0.

(4.3)
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As a process whose distribution can be regarded to be the exponential distribution, the
generalized process capability index is given by

Cpy =
p

p0
=

{
e−λL − e−λU

}
p0

. (4.4)

Then, the Bayes estimate of Cpy under squared error loss is given by

Ĉpy = E
(
Cpy | x)

=
1
p0

∫∞

0

{
e−λL − e−λU

}
g(λ | x)dλ

=
1
p0

[(
a +

∑
xi

L + a +
∑

xi

)m+n

−
(

a +
∑

xi

U + a +
∑

xi

)m+n]
.

(4.5)

Now,

Var
(
Cpy | x) = E

(
C2

py | x
)
− E2(Cpy | x). (4.6)

Again,

E
(
C2

py | x
)
=
(

1
p0

)2 ∫∞

0

{
e−2λL + e−2λU − 2e−λ(L+U)

}
g(λ | x)dλ

=
(

1
p0

)2[( a +
∑

xi

2L + a +
∑

xi

)m+n

+
(

a +
∑

xi

2U + a +
∑

xi

)m+n

−2
(

a +
∑

xi

L +U + a +
∑

xi

)m+n]
.

(4.7)

Thus,

Var
(
Cpy | x) =

(
1
p0

)2[{(
a +

∑
xi

2L + a +
∑

xi

)m+n

+
(

a +
∑

xi

2U + a +
∑

xi

)m+n

−2
(

a +
∑

xi

L +U + a +
∑

xi

)m+n}

−
{(

a +
∑

xi

L + a +
∑

xi

)m+n

−
(

a +
∑

xi

U + a +
∑

xi

)m+n}2]
.

(4.8)

If we put L = 0 that is, if only upper specification limit is given, then

Cpy =
1 − e−λU

p0
(4.9)
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with posterior distribution

g
(
Cpy | x) =

(
∑

xi + a)m+n

Γ(m + n)U
(
1 − p0 · Cpy

)
(
− ln

(
1 − p0 · Cpy

)
U

)m+n−1
e(ln(1−p0·Cpy)(

∑
xi+a)/U)p0

=
(
∑

xi + a)m+n

Γ(m + n)L · Cpy

((
1 − p0 · Cpy

)(∑
xi + a

))1/U
(
− ln

(
1 − p0 · Cpy

)
U

)m+n−1
,

0 < Cpy <
1
p0

,

(4.10)

and the Bayes estimate is given by

Ĉpy =
1
p0

[
1 −

(
a +

∑
xi

U + a +
∑

xi

)m+n]
. (4.11)

Similarly, ifU = ∞ that is, if only lower specification is given, then

Cpy =
e−λL

p0
(4.12)

with posterior distribution

g
(
Cpy | x) =

(
∑

xi + a)m+n

Γ(m + n)L · p0 · Cpy

(
− ln

(
p0 · Cpy

)
L

)m+n−1
e(ln(p0·Cpy)(

∑
xi+a)/L)p0

=
(
∑

xi + a)m+n

Γ(m + n)L · Cpy

(
p0 · Cpy

(∑
xi + a

))1/L
(
− ln

(
p0 · Cpy

)
L

)m+n−1
, 0 < Cpy <

1
p0

,

(4.13)

and the Bayes estimate is given by

Ĉpy =
1
p0

(
a +

∑
xi

U + a +
∑

xi

)m+n

. (4.14)

The Bayes estimate of Cpy and the variance depend on the parameters of the prior
distribution of λ. Given the random samples (X1, X2, . . . , Xn), the likelihood function of
λ is gamma density with parameters (n + 1,

∑
Xi). Hence it is proposed to estimate the



8 Journal of Probability and Statistics

prior parameters m and a from the samples by n + 1 and
∑

Xi with variances 0 and n/λ2,
respectively. Hence

Ĉpy =
1
p0

[(
2
∑

xi

L + 2
∑

xi

)2n+1

−
(

2
∑

xi

U + 2
∑

xi

)2n+1
]
,

Var
(
Cpy | x) =

(
1
p0

)2
[{( ∑

xi

L +
∑

xi

)2n+1

+
( ∑

xi

U +
∑

xi

)2n+1

− 2
(

2
∑

xi

L +U + 2
∑

xi

)2n+1
}

−
{(

2
∑

xi

L + 2
∑

xi

)2n+1

−
(

2
∑

xi

U + 2
∑

xi

)2n+1
}2

⎤
⎦.

(4.15)

4.2. Noninformative Prior Distributions

In this subsection, we obtain the Bayes estimator of Cpy under the assumption that the
parameter λ is random variable having noninformative prior g(λ) ∝ 1/λ.

Hence, the Bayes estimator with respect to squared error loss function will be

Ĉpy =
1
p0

[( ∑
xi

L +
∑

xi

)n

−
( ∑

xi

U +
∑

xi

)n]
,

Var
(
Cpy | x) =

(
1
p0

)2[{( ∑
xi

2L +
∑

xi

)n

+
( ∑

xi

2U +
∑

xi

)n

− 2
( ∑

xi

L +U +
∑

xi

)n}

−
{( ∑

xi

L +
∑

xi

)n

−
( ∑

xi

U +
∑

xi

)n}2
]
.

(4.16)

When only upper (lower) specification is to be given, then we will get the expressions
substituting L = 0 (U = ∞).

5. Bayes Estimate of Cpy for Poisson Process

Let x1, x2, x3, . . ., xn be n observations from Poisson distribution with parameter λ. Then, the
joint distribution of x1, x2, x3, . . ., xn is

L(x | λ) =
∏ e−λλxi

xi!

=
e−nλλ

∑
xi∏

xi!
.

(5.1)
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5.1. Conjugate Prior Distributions

Let the prior distribution of λ is assumed to be gamma with parameter (m,a). Then the
distribution of λ is given as

g(λ) =
am

Γ(m)
e−aλλm−1, λ > 0. (5.2)

Now, the posterior distribution of λ is given as

g(λ | x) = (n + a)(
∑

xi+m)

Γ(
∑

xi +m)
e−(n+a)λλ(m+

∑
xi−1), λ > 0. (5.3)

Now, the process yield is

p = e−λ
U∑
t=L

λt

t!
. (5.4)

Then,

Ĉpy = E
(
Cpy | x) =

1
p0

[
U∑
t=L

1
t!

∫∞

0
e−λλtg(λ | x)dλ

]

=
1
p0

[
U∑
t=L

1
t!

∫∞

0

(n + a)
∑

xi+m

Γ(
∑

xi +m)
e−(n+a+1)λλ

∑
xi+m+t−1dλ

]

=
1
p0

[
U∑
t=L

1
t!

(
n + a

n + a + 1

)∑
xi+m( 1

n + a + 1

)t Γ(
∑

xi +m + t)
Γ(

∑
xi +m)

]
.

(5.5)

Again,

E
(
C2

py | x
)
=

1
p20

[
U∑
t=L

(
1
t!

)2 ∫∞

0
e−2λλ2tg(λ | x)dλ + 2

∑∑ 1
t!

1
t′!

∫∞

0
e−2λλtλt

′!g(λ | x)dλ
]

=
1
p20

[
U∑
t=L

(
1
t!

)2 ∫∞

0

(n + 1)
∑

xi+m

Γ(
∑

xi +m)
e−(n+a+2)λλ

∑
xi+m+2t−1dλ

+2
∑∑ 1

t!
1
t′!

∫∞

0

(n + a)
∑

xi+m

Γ(
∑

xi +m)
e−(n+a+2)λλ

∑
xi+m+t+t′−1dλ

]

=
1
p20

[
U∑
t=L

(
1
t!

)2( n + a

n + a + 2

)∑
xi+m( 1

n + a + 2

)2t Γ(
∑

xi +m + 2t)
Γ(

∑
xi +m)

+2
∑∑ 1

t!
1
t′!

(
n + a

n + a + 2

)∑
xi+m( 1

n + a + 2

)t+t′ Γ(
∑

xi +m + t + t′)
Γ(

∑
xi +m)

]
.

(5.6)



10 Journal of Probability and Statistics

Table 1: Bayes Estimates of Cpy and their MSEs with L = 0, U = 10, samples generated from normal
distribution.

μ, σ, Cpy | n 25 50 100 150
5, 3 1.01033 1.018082 1.026673 1.0277564
1.004910 0.0201438 0.0187564 0.00856342 0.0067548
5, 4 0.960722 0.964536 0.956746 0.953425
0.8763338 0.0162069 0.0087685 0.0065743 0.0056734
6, 3 0.980259 0.995643 0.996753 0.999452
0.9844874 0.0154522 0.0098564 0.0078453 0.0056734
6, 4 0.966049 0.967543 0.965746 0.967854
0.8605973 0.0112564 0.0087564 0.0065643 0.0036754

Here, the Bayes estimate of Cpy and the variance depend on the parameters of the
prior distribution of λ. Given the random samples (X1, X2, . . . , Xn), the likelihood function of
λ is gamma density with parameters (

∑
Xi + 1, n). Hence it is proposed to estimate the prior

parametersm and a from the samples by
∑

Xi+1 and nwith variances nλ and 0, respectively.
Substituting these in the above expressions, we will have the empirical Bayes estimates.

5.2. Noninformative Prior Distributions

In this subsection, we obtain the Bayes estimator of Cpy under the assumption that the
parameter λ is random variable having noninformative prior g(λ) ∝ 1/λ.

Hence, the Bayes estimator with respect to squared error loss function will be

Ĉpy =
1
p0

[
U∑
t=L

1
t!

(
n

n + 1

)∑
xi
(

1
n + 1

)t Γ(
∑

xi + t)
Γ(

∑
xi)

]
,

E
(
C2

py | x
)
=

1
p20

[
U∑
t=L

(
1
t!

)2( n

n + 2

)∑
xi
(

1
n + 2

)2t Γ(
∑

xi + 2t)
Γ(

∑
xi)

+2
∑
t<

∑
t′

1
t!

1
t′!

(
n

n + 2

)∑
xi
(

1
n + 2

)t+t′ Γ(
∑

xi + t + t′)
Γ(

∑
xi)

]
.

(5.7)

When only upper (lower) specification is to be given, then we will get the expressions
substituting L = 0 (U = ∞).

6. Simulation and Discussion

In this section, we present some results based on the Monte Carlo Simulations to compare
the performance of frequentist (maximum likelihood and minimum variance unbiased
estimators) as well as the Bayesian method of estimation. All the computations were
performed using R-software and Mathematica, and these are available on request from the
corresponding author. The maximum likelihood estimator (MLE) and uniformly minimum
variance unbiased estimator (UMVUE) and their mean square errors (MSEs) were shown in
Maiti et al. [11]. We have performed the Bayes estimators and their MSEs in Tables 1–6. All
the results are based on 25, 000 replications.
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Table 2: Bayes Estimates of Cpy and their MSEs with L = 0, U = 8, samples generated from normal
distribution.

μ, σ, Cpy | n 25 50 100 150
5, 3 0.979133 0.978665 0.979896 0.9799876
0.8817271 0.0130996 0.0087564 0.00556342 0.0027548
5, 4 0.833937 0.834536 0.836746 0.843425
0.7419143 0.0225739 0.0097685 0.0075743 0.0047865
6, 3 0.860858 0.861465 0.862612 0.864012
0.805286 0.0036421 0.0015647 0.00096745 0.00068963
6, 4 0.759651 0.754632 0.759984 0.753241
0.6940614 0.010984 0.0088576 0.0050495 0.0028967
In each cell first row indicates the Bayes estimates of Cpy and second row indicates its MSE.

Table 3: Bayes Estimates of Cpy and their MSEs with L = 0, U = 10, samples generated from exponential
distribution.

λ,Cpy | n 25 50 100 150
0.2 0.9608913 0.9612706 0.9608863 0.960665
0.9607386 0.003193873 0.001708656 0.0008960904 0.0005968731
0.5 1.00270 1.102005 1.102827 1.103064
1.103625 0.0001013043 3.777950 × 10−5 1.656285 × 10−5 1.069774 × 10−5

0.7 1.108919 1.10954 1.109825 1.109927
1.11098 8.406398 × 10−6 2.39847 × 10−6 8.557008 × 10−7 4.58935 × 10−7

1 1.110879 1.110982 1.111026 1.111039
1.11061 2.113364 × 10−7 3.841548 × 10−8 8.476886 × 10−9 4.000626 × 10−9

We represented the average Cpy value and the MSE for normal process in Tables 1
and 2. We take the same set up of Maiti et al. [11] to make comparable with the Bayesian
approach. We take p0 = 0.90, for two choices of (L, U) as (0, 10) and (0, 8), and for sample
of sizes n = 25, 50, 100, 150. We generate observations from normal distributions with choices
of (μ, σ) = (5, 3), (5, 4), (6, 3), and (6, 4). First column of Tables 1 and 2 shows the values
of (μ, σ) and the corresponding Cpy. Remaining columns show average Ĉpy, and its MSE,
for the above-mentioned sample sizes. It is observed that in almost all the cases, MSEs of
Ĉpy in the Bayesian set up using the empirical Bayes procedure of the prior parameters
are larger than those obtained in the frequentist approach. Ĉpy overestimates the true Cpy

in general. Therefore, this empirical Bayes estimate is not so encouraging compared to
maximum likelihood estimator or minimum variance unbiased estimator.

We represented the average Cpy value and the MSE for exponential process in Tables
3 and 4. We simulate observations from the exponential distribution with rate λ. We take
λ = 0.2, 0.5, 0.7, and 1.0. From Tables 3 and 4, we find that for λ < 0.5, the empirical Bayes
estimate of Cpy gives better result than the ML estimate of Cpy in MSE sence, but for λ > 0.5, it
reverses. As soon as the mean quality characteristic gets larger (when λ < 0.5), the empirical
Bayes estimate becomes better in MSE sense and hence, it is recommended to use it. For
smaller mean quality characteristic, the use of UMVUE of Cpy is fair even though it is, to
some extent, computation intensive.

We simulate observations from Poisson distribution with mean m. We take m =
1, 4, 8, and 10. From Tables 5 and 6, we find that for m = 1 and 4, the UMVUE of Cpy gives
better result than the empirical Bayes estimate of Cpy in MSE sense, but for m = 8 and 10, it
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Table 4: Bayes Estimates of Cpy and their MSEs with L = 0, U = 8, samples generated from exponential
distribution.

λ,Cpy | n 25 50 100 150
0.2 0.8907383 0.8867816 0.8883253 0.8875391
0.8867816 0.004669863 0.002447009 0.001263855 0.0008378543
0.5 1.086258 1.088331 1.089627 1.089983
1.090760 0.0003279872 0.0001522034 6.9765 × 10−5 4.591931 × 10−5

0.7 1.104586 1.105791 1.107002 1.106608
1.107002 4.531069 × 10−5 1.691586 × 10−5 6.925086 × 10−5 4.192666 × 10−5

1 1.10095 1.110440 1.110596 1.110646
1.110738 2.400033 × 10−6 6.018572 × 10−7 1.812796 × 10−7 9.911838 × 10−8

In each, cell first row indicates the Bayes estimates of Cpy and second row indicates its MSE.

Table 5: Bayes estimates of Cpy and their MSEs with L = 0, U = 8, samples generated from exponential
distribution.

m,Cpy | n 25 50 100 150
1 1.111111 1.111111 1.111111 1.111111
1.111111 7.292996 × 10−14 5.136107 × 10−15 6.73274 × 10−16 2.730549 × 10−16

4 1.106690 1.107327 1.107646 1.107764
1.107956 1.190196 × 10−5 4.247376 × 10−6 1.758665 × 10−6 1.060935 × 10−6

8 0.8990717 0.9022682 0.9045761 0.9048294
0.9065398 0.003909427 0.001932993 0.0009643427 0.0006502683
10 0.6452548 0.6471974 0.647822 0.647822
0.647822 0.007262223 0.003748991 0.001915881 0.001280117

is opposite. Here also if mean quality is getting larger and larger, like exponential process,
the empirical Bayes estimate is estimated efficiently. So, it is advisable to use the empirical
Bayes estimate of Cpy when mean quality characteristic is large, but for smaller mean, use of
UMVUE of Cpy is a fair one.

It is expected that when there is prior information regarding parameters, the
performance of the Bayes estimates would be better than their traditional frequentist
counterpart. But here we choose empirical estimate of parameters following the approach of
Lindley [13] andAwad andGharraf [14]. Since it is an empirical approach, it may not perform
uniformly better than the frequentist approach that has been reflected in simulation study.
The performance is less encouraging in case of normally distributed quality characteristic
whereas it performs better when the underlying distribution is exponential with larger mean
and also performs better when the quality characteristic distribution is Poisson with a larger
mean.

7. Data Analysis

This section is devoted for demonstrating inferential aspect of Cpy, by analyzing some
data sets. We choose two data sets fit approximately exponential and Poisson distribution,
respectively.

(a) For demonstration purpose, we consider here the data that represent the number
of miles to first and succeeding major motor failures of 191 buses (cf. Davis [15]) operated
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Table 6: Bayes estimates of Cpy and their MSEs with L = 0, U = 8, samples generated from exponential
distribution.

m,Cpy | n 25 50 100 150
1 1.111106 1.111108 1.111109 1.111109
1.111111 1.083070 × 10−10 1.415413 × 10−11 3.215503 × 10−12 1.502195 × 10−16

4 1.082719 1.085116 1.086145 1.086548
1.087374 0.0002517306 0.0001037937 4.880645 × 10−5 3.151035 × 10−5

8 0.656013 0.6564953 0.6577742 0.658386
0.658386 0.007244622 0.003718803 0.001873888 0.001267805
10 0.3747645 0.3720029 0.3706492 0.3708838
0.3697996 0.006036498 0.003085871 0.001548111 0.001035829
In each, cell first row indicates the Bayes estimates of Cpy and second row indicates its MSE.

by a large city bus company. Failures were either abrupt, in which some part broke and the
motor would not run or, by definition, when the maximum power produced, as measured by
a dynamo meter, fell below a fixed percentage of the normal rated value. Failures of motor
accessories which could be easily replaced were not included in these data. The bus motor
failures are compared with exponential distribution, and observed chi-square index has been
calculated as 3.40 with P value 0.32.

Here, we assume that the upper specification limit (U) and lower specification limit
(L) are 75 and 15, respectively. Sample size, n = 85, sample mean x = 35.17647058.

Then, we find out the MLE, MVUE and the Bayes estimate of the index as Ĉpy =
0.562372642, C̃py = 0.5623726, and Ĉb

py = 0.5661285, respectively. And 95% lower confidence
limit (lcl) of the Bayes estimate is 0.563874661.

Now, if we consider the case that only upper specification limit (UCL) has been
given, then the MLE and MVUE of the index are Ĉpyu = 0.927802988 and C̃pyu = 0.9280266,
respectively. And 95% lower confidence limit (lcl) for the index Cpyu is given as 0.872705746
(cf. Maiti and Saha [16]). Here, we also find out the Bayes estimate of the index as Ĉb

pyu =
1.042010 and the corresponding 95% lcl, given as 1.039383292

On the other hand, if we consider the case that only lower specification limit has
been given, then the MLE and MVUE of Cpyl are Ĉpyl = 0.687201232 and C̃pyl = 0.6899253,
respectively. And 95% lower confidence limit (lcl) for the index is given by 0.635114903. In
this case, the Bayes estimate and corresponding 95% lcl of the index are Ĉb

pyl
= 0.63523 and

0.629801423, respectively.
(b) Data on dates of repair calls on 15 hand electric drill motors are taken from Davis

[15]. Mean number of days between failures for each drill was used as a milepost and
frequency distribution compared with the theoretical Poisson distribution, and observed chi-
square index has been calculated as 38 with Pvalue 0.16. Here, we assume that the upper
specification limit (U) and lower specification limit (L) are 3 and 1, respectively. Here sample
size, n = 164 and sample mean x = 0.975609756. Then, the MLE, MVUE, and Bayes estimate
of Cpy are Ĉpy = 0.637377368, C̃py = 0.6389400, and Ĉb

py = 0.673041, respectively. And 95%
lower confidence limit (lcl) of the Bayes estimate is 0.659472.

Now, if we consider the case in which only upper specification limit (UCL) has been
given, then the MLE of the index is Ĉpyu = 1.034179963 and the MVUE of the index is C̃pyu =
1.034559263. 95% lower confidence limit (lcl) for the index Cpyu is given as 1.024565558.
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Here the Bayes estimate and corresponding 95% lcl are Ĉb
py = 1.091235 and 1.077885192,

respectively.
On the other hand, if we consider the case that only lower specification limit has been

given, then the MLE of the index Ĉpyl = 0.655829023 and the MVUE is C̃pyl = 0.657012316.
95% lower confidence limit (lcl) for the index is given as 0.448874947. In this case, we also
find out the Bayes estimate and 95% lcl of the corresponding index, which are given as Ĉb

pyu =
0.6929168 and 0.626240727, respectively.

8. Concluding Remark

In this paper, the Bayesian inference aspects of generalized PCI (cf. Maiti et al. [11]) have
been presented. The Bayes estimates of the generalized process capability index have been
studied for normal, exponential (nonnormal), and Poisson (discrete) processes. The empirical
Bayes estimation procedure has been discussed when parameters of the prior distribution are
unknown. The Bayes estimates have been compared with their most frequent counterpart,
and situations have been mentioned when the Bayes estimates are better through simulation
study. Because of its appealing features, examining its potential use in other types of processes
often arising in connection with applications would be of practical importance. Other loss
functions can be used to find out the estimates in similar fashion.
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