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Novel computational methods for finding transcription factor binding motifs have long been
sought due to tedious work of experimentally identifying them. However, the current prevailing
methods yield a large number of false positive predictions due to the short, variable nature of
transcriptional factor binding sites (TFBSs). We proposed here a method that combines sequence
overrepresentation and cross-species sequence conservation to detect TFBSs in upstream regions
of a given set of coregulated genes. We applied the method to 35 S. cerevisiae transcriptional factors
with known DNA binding motifs (with the support of orthologous sequences from genomes
of S. mikatae, S. bayanus, and S. paradoxus), and the proposed method outperformed the single-
genome-based motif finding methodsMEME and AlignACE as well as the multiple-genome-based
methods PHYME and Footprinter for the majority of these transcriptional factors. Compared with
the prevailing motif finding software, our method has some advantages in finding transcriptional
factor binding motifs for potential coregulated genes if the gene upstream sequences of multiple
closely related species are available. Although we used yeast genomes to assess our method in this
study, it might also be applied to other organisms if suitable related species are available and the
upstream sequences of coregulated genes can be obtained for the multiple closely related species.

1. Introduction

To understand the mechanisms that regulate the gene expression in eukaryotes is a major
challenge in modern molecular biology. Gene regulation is accomplished by a number of
regulatory proteins called transcriptional factors (TFs), which bind to specific DNAmotifs in
the promoter region of the target gene. TFs and their binding motifs interact with each other
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and help cells to respond to diverse stimuli. Identifying TFBSs in the upstream region of
coregulated genes (genes regulated by a common TF) is crucial for inferring gene regulatory
networks, since these motifs might be the building blocks of the regulatory network
structures [1]. Most DNA binding motifs contain 6–25 bps and have a range of variability.
Regulatory systems can take advantage of the variability in the binding sites to better
control transcription [2]. Classical computational motif finding methods can be classified
into two major categories: (1) enumerative methods, which explore all possible motifs up
to a certain length; (2) local search algorithms using statistic approaches such as EM [3–6]
and Gibbs sampling [7–9]. Under the second category,MEME [10–12] and AlignACE [13, 14]
are two computer programs used frequently in finding motifs in a group of related DNA
sequences. Recently, comparative genomics approaches such as phylogenetic footprinting
have been developed for identifying TFBSs based on the premise that selective pressure
causes functional elements to evolve at a slower rate than that of nonfunctional sequences
[15]. Phylogenetic footprinting is mostly applied to finding well-conserved regions in a set
of orthologous sequences from multiple species [15–18]. Although substantial progresses
have been made in developing computational methods for predicting transcription factor
binding motifs, currently available motif finding tools still yield many false positives due to
relatively short length and high variability of DNA binding motifs. These motif finding tools
with standard parameter settings usually report one putative TFBS out of 500 to 5000 bps,
whereas only 0.1% of the predictions is likely to be functional [19]. Recently, gene expression
profile analysis using microarray data and statistical clustering has resulted in numerous sets
of potential co-regulated genes. Furthermore, the complete sequencing of more and more
eukaryotic genomes makes it easier to obtain the upstream sequences of these co-regulated
genes. Hence the development of a novel method with improved specificity in predicting
transcription factor binding motifs for co-regulated genes becomes necessary and feasible.

We proposed here amethod of finding TF bindingmotifs by considering both sequence
overrepresentation in promoter regions and their conservation across closely related species.
DNA binding motifs are believed to appear more frequently in the upstream regions of
the genes being regulated, and these motifs are usually conserved across multiple closely
related species. We use the degree of sequence conservation among multiple species as an
additional constraint to reduce the false positive predictions. For a given set of co-regulated
genes from a certain organism, we collect orthologous sequences from multiple closely
related species and align them using multiple alignment programs such as ClustalW [20]. The
statistically overrepresented sequences will be firstly selected as initial motif candidates, and
then we evaluate their conservation in the alignments of orthologous upstream sequences of
coexpressed genes. A statistic procedure based on the above principles was designed to scan
for potential motifs, and a Perl script was written to conduct the procedure. To evaluate the
proposed method, we collected 35 yeast TFs with known DNA binding motifs, and for genes
co-regulated by each of these TFs, we searched the upstream regions for potential binding
motifs. We compared our method with single-genome-based motif finding methods such as
MEME and AlignACE, as well as with the multiple-genome based methods such as PHYME
and Footprinter; the results suggested that the rank of the known binding motifs among the
predictions of our method are generally higher than that using other methods.

2. Results

We used 35 well-studied yeast transcription factors (see Table 1) to evaluate the proposed
method. The criteria for selecting the TFs are (1) their true DNA binding motifs are known;
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(2) the orthologous genes are available in all the four yeast species, and the upstream
sequences of these genes are also available. For each TF, we built two sets of genes, namely, the
positive set (PS) and the negative set (NS). The PS consisted of all the genes that are known to
be co-regulated by the TF (see Table 1), whereas theNS consisted of randomly selected genes
from the S. cerevisiae genome. TheNSwas used to introduce the background information and
serve as a control in our motif finding process. For each gene in both PS andNS,we extracted
its promoter region sequences from the genomes of four yeast species, namely, S. cerevisiae, S.
mikatae, S. bayanus, and S. paradoxus. We took S. cerevisiae as the principal species in our study.

The method was implemented using a PERL script to find potential binding motifs in
the upstream sequences of the genes co-regulated by a given TF (see Table 1 for the 35 TFs
considered in this study). We found the known binding motifs for 25 out of the 35 TFs. In
Table 2, we listed the known DNA binding motif and the motif found using our method for
each TF.

We compared our method with the single-genome-based motif finding methods
MEME and AlignACE, as well as with the multiple-genome-based methods PHYME and
Footprinter for the majority of these transcription factors. We used the upstream sequences
of S. cerevisiae genes in the PS of each TF as the input of MEME and AlignACE. All the
parameters were set to default when we used AlignACE to find motifs. To apply MEME to
the motif finding, we set the minimum length of the potential motif to 6, and we set the
number of motifs expected to be found to the same as the number of motifs predicted by
our method. The results are listed in Tables 3 and 4, respectively. Since our method takes into
account the conservation of candidate motif sequences among multiple species, the number
of predicted motifs found for each TF is in general less than that found by AlignACE (Table 3)
or MEME (Table 4). Tables 3 and 4 showed that our method is more efficient in finding the
true motifs than AlignACE or MEME, in the sense that it returned less predicted motifs, and
the ranks of the known motifs are also generally higher than those in the output of AlignACE
or MEME. For example, there were 11 potential motifs found by AlignACE for STE12, and
the known motif of STE12 ranked second in the output; however, using our method only one
motif was found, and it was the known motif. The results for other TFs showed the same
tendency. AlignACE andMEME could only find the known binding motifs for 14 and 12TFs,
respectively, out of the 25 TFs whose known binding motifs were found using our method.
Our method could not find the known binding motifs for 10 TFs among the 35 (Table 5)with
any of the three parameter threshold settings. Out of these 10 TFs, usingAlignACE andMEME
we can find known binding motifs for 5 and 3TFs, respectively.

Unlike single-genome-based motif finding methods such as AlignACE and MEME,
our method uses the sequence information from multigenomes, so it is more reasonable
to compare it with PHYME and Footprinter, which are two popular multiple-genome-based
methods. For a given TF, we found that Footprinter usually yields overwhelming number
of predictions, and this makes it difficult to do a comparison. To apply PHYME to the motif
finding, we set themotif length limit to 17, which is themaximum length of all known binding
motifs of the 35 TFs. For each regulon, the number of motifs predicted was set to 10 and the
motifs were searched on both strands. The results were listed in Table 6. Using PHYME we
found known motifs for 23 TFs, among them there were 6 TFs whose known binding motifs
were not found using our method. From Table 6, we can see that our method and PHYME
nearly have the same power in motif finding; however, the ranks of the known motifs found
using our method are generally higher than those found by PHYME. Table 7 gives a list of the
TFs whose known binding motifs could be found using our method but could not be found
byMEME, AlignACE, and PHYME. Our method could not find the known binding motifs for
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Table 1: Transcription factors and the genes being regulated.

TF
Number of
co-regulated

genes
Genes regulated by the TF

Ste12 9 YBR083, YCL055W, YFL027C, YJL170C, YLR452C, YML047C, YMR232W,
YNL279W, YPL156C

Gal4 10 GAL2, GAL3, GAL1/10, GAL7, MTH1, FUR4, PCL10, GAL80, PGM2, GCY1

MET31 8 YEL015W, YEL016C, STR3, MET16, NUT2, SSN8, YJL060W, YEL072W

Mbp1 18
YEL018W, MMS21, YCK2, MCD1, MCM2, RPS9A, MOT1, OPY2, CLB5,
YER071C, VTC1, YJL045W, MSH6, YNR009W, HXT10, YER087C-A, TOF1,
YNL274C

Leu3 10 YDR279W, LEU1, OAC1, YOR271C, YDL228C, YHR209W, YHR207C, BAT1,
ILV2, RRP6

Cbf1 16
YAL026C, YBR089C-A, YBR225W, YDR438W, YIL074C, YIL126W, YIL127C,
YJL167W, YJL168C, YJL209W, YJR010W, YKL191W, YKL192C, YNL094W,
YNL095C, YNL282W

Ace2 1 YLR286C

Gcn4 6 YBL103C, YDL170W, YKL015W, YLR451W, YML099C, YNL103W

Abf1 15
YAL038W, YBR248C, YCR012W, YFL038C, YFR031C, YGL234W, YGR059W,
YHR174W, YIL160C, YJL166W, YKL112W, YLR203C, YLR204W, YOR116C,
YPR110C

Hap1 4 YEL039C, YJR048W, YML054C, YOR065W

Ino4 6 YDR050C, YER026C, YGR157W, YHR123W, YMR084W, YNR016C

Mcb 6 YDL102W, YDL164C, YJL194W, YMR199W, YNL102W, YOR074C

Mse 1 YGR059W

Nbf 1 YJL153C

Pdr3 2 YBL005W, YGR281W

Pho4 2 YDR481C, YGR233C

Put3 1 YHR037W

Rap1 8 YFL014W, YFR031C, YGL123W, YKL062W, YLR399C, YNL216W, YOL082W,
YPR102C

Swi5 2 YDL227C, YNL327W

Uasino 1 YJL153C

Uasrad 2 YCR066W, YGL058W

Adr1 2 YDR256C, YMR303C

Mig1 7 YBR019C, YBR020W, YDR009W, YDR146C, YIL162W, YKL109W, YPL248C

T4c 2 YJL106W, YJL153C

Uasphr 14 YBR114W, YDL200C, YDR217C, YEL037C, YER095W, YER142C, YGL058W,
YIL066C, YJL026W, YJR035W, YJR052W, YML032C, YNL250W, YPL022W

Ap-1 1 YGR209C

Bas2 2 YCL030C, YGL234W

Csre 2 YER065C, YNL117W

Mac1 11 YDR058C, YDR075W, YER145C, YER146W, YGR136W, YJR049C, YJR050W,
YNL250W, YNL251C, YPR110C, YPR111W

Gcr1 2 YAL038W, YGR215W

Mcm1 17
YAL040C, YBR160W, YBR202W, YDR146C, YDR403W, YER111C, YFL026W,
YGL008C, YGR108W, YJL159W, YJL194W, YKL178C, YKL209C, YKR066C,
YNL277W, YPR113W, YPR119W
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Table 1: Continued.

TF
Number of
co-regulated

genes
Genes regulated by the TF

Reb1 12 YCR012W, YDL164C, YDR007W, YDR050C, YDR146C, YER086W, YFL039C,
YGL026C, YNL216W, YOL004W, YOL006C, YPL231W

Rox1 2 YDR044W, YPR065W

Scb 2 YDL227C, YMR199W

Sff 3 YDR146C, YGR108W, YPR119W-

10 TFs out of the 35 (Table 5). For these 10 TFs,AlignACE andMEME can find known binding
motifs for 5 and 3 TFs, respectively. With PHYME, we can find known binding motifs for 6
TFs out of these 10 (Table 6).

3. Discussion

Transcription factors and their DNA binding sites are two of the most important functional
elements in eukaryotic genomes. A thorough study of the interactions of the two is important
for mapping the regulatory pathways and understanding the potential function of the genes
regulated by the TFs [21]. In the past decade, clustering of gene expression profiles obtained
from large-scale DNA microarray experiments has been successfully used in identifying
coexpressed genes [22, 23], and we believed that these coexpressed genes may share common
regulators that bind to their upstream regions. Finding the TF binding motifs of these
potentially co-regulated genes becomes critical for understanding the interaction of the genes
and their regulators [24–27]. So far the binding specificities have been well characterized
only for a small number of TFs [19, 21]. TFBSs are usually quite short (around 6–25 bp) and
degenerate, which leads to the difficulties in finding them reliably using current motif finding
tools. Even though the ab initio motif finding tools have been used successfully in many
cases, their performances are far from satisfying. The major drawback of these tools is that
they produce many false positive predictions. Under default parameter settings, they yield
usually tens or hundreds of putative motifs, and it is difficult to judge which candidate motifs
out of them are functional [19]. Phylogenetic footprinting methods have been proposed
recently [15–18], by which the interspecies comparative sequence information is used for
helping to signal the presence of TF binding sites that might not have been predicted using
sequences from a single genome. For example, binding sites found in human sequences that
are also found in orthologous mouse or other mammalian sequences are far more likely
to be functional than those found only in human [28]. We refer to these short orthologous
sequences that are conserved over 6 bp or more as phylogenetic footprints.

Our method proposed here considers both overrepresentation and cross-species
conservation of potential binding motifs. We used binomial test to determine the statistically
overrepresented candidate sequences, and the average relative entropy of the aligned
sequence block was used to measure the cross-species conservation of these candidates. The
relative entropy is a popular measure of the degree of conservation at a site in a DNA or
protein sequence alignment [29]. In our method, the input data are the upstream sequences
of two groups of genes, namely, the co-regulated genes of a TF (PS) and the control genes
(NS) selected randomly from the genome of the principal species under study, as well as the
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Table 2: Comparison between the known motifs and the motifs found using our method. Different
parameter threshold settings are used in our motif finding. (a) P-value in a magnitude of 10−6 (after
Bonferroni adjustment), AREp = 1.0, andZ-value = 2.0; (b) P-value = 0.01 (without Bonferroni adjustment),
AREp = 1.0, andZ-value = 2.0; (c) P-value = 0.01 (without Bonferroni adjustment), AREp = 0.8, andZ-value
= 2.0.

TF Genes
in PS Known motif Motif found P-value Z-

value AREp

Ste12(a) 9 TGAAACA TGAAACA 5.6e−12 3.68 1.00
Gal4(a) 10 CGGNNNNNNNNNNNCCG CGGNNNNNNNNNNNCCG 3.7e−12 2.43 1.22
Mbp1(a) 18 ACGCGTNA ACGCGT 3.0e − 7 3.37 1.35
Leu3(a) 10 CCGGNNCCGG CGGNNNCGG 7.0e−13 3.15 1.27
Cbf1(a) 16 RTCACRTG CACGTG 7.7e−13 2.98 1.19
MET31(a) 8 CTGTGGC TGTGGC 6.7e − 7 3.39 1.06
Abf1(b) 15 TCRNNNNNNACG TCANNNNNNACG 1.3e − 3 3.73 1.26
Ace2(b) 1 GCTGGT TGCTGGT 1.4e − 3 6.07 1.55
Gcn4(b) 6 TGANTN ATGACT 8.7e − 4 4.45 1.10
Hap1(b) 4 CGGNNNTANCGG TGCCGNNNNNNNCGG 2.3e − 4 6.09 1.64
Ino4(b) 6 CATGTGAAAT CATGTT 2.9e − 4 5.60 1.31
Mcb(b) 6 WCGCGW CGCNTCG 4.1e − 4 4.66 1.36
Mse(b) 1 CRCAAAW GACNCAA 8.3e − 3 4.05 1.19
Nbf(b) 1 ATGYGRAWW CATGTG 5.9e − 3 5.85 1.36
Pdr3(b) 2 TCCGYGGA TCCNNGGA 4.3e − 4 2.88 1.03
Pho4(b) 2 CACGTK GCGCGT 1.8e − 3 3.55 1.20
Put3(b) 1 CGGNNNNNNNNNNCCG TCGNNNNNNNNNNNCG 2.6e − 4 4.65 1.51
Rap1(b) 8 RMACCCA GTCNNNNNCCCAT 8.8e − 3 3.16 1.01
Swi5(b) 2 KGCTGR TGCTGG 6.5e − 4 4.45 1.19
Uasino(b) 1 ATCTGAAWW CATGTG 5.9e − 3 5.83 1.36
Uasrad(b) 2 WTTTCCCGS TCCNGCT 1.1e − 3 4.42 1.24
Adr1(c) 2 TCTCC CTCCNNNNNTCC 1.6e − 3 2.18 0.88
Mig1(c) 7 CCCCRNNWWWWW ACCCCA 7.2e − 3 2.18 0.82
Uasphr(c) 14 CTTCCT TCTNNNNNNNNNNTCCT 2.2e − 3 2.38 0.93
T4c(c) 2 TTTTCTYCG TTTTCNNNNNTCC 1.2e − 3 2.69 0.96

orthologous sequences from other species, which are closely related to the principal species.
Usually the co-regulated genes are collected through wet lab experiments or predicted
through gene expression profile analysis using microarray data. The upstream sequences of
genes in PS and NS could be extracted from the genome of the principal species, and the
corresponding upstream sequences from other species could be obtained by doing BLAST
[30] or by downloading from the publicly available databases.

Three parameters are considered in our method: (1) P value, which is used to
evaluate the overrepresentation of a candidate sequence, (2) average relative entropy
AREP of SOP, which gives the degree of conservation of a candidate motif, (3) Z-value,
which is used to assess the statistical significance of the conservation. In order to have
a balanced consideration of the sensitivity and the specificity and to cope with different
situations, we applied three different parameter threshold settings to scan for candidate
motifs, and they are (a) P-value in a magnitude of 10−6 (after Bonferroni correction),
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Table 3: Comparison to AlignACE. For each TF, we listed the rank of the known motif in the predictions.
Three different parameter threshold settings, namely, (a), (b), and (c), are used in our method as given in
Table 2.

TF
AlignACE Our method

The number of
motifs found

The rank of the
known motif

The number of
motifs found

The rank of the
known motif

Ste12(a) 11 2 1 1
Gal4(a) 9 2 1 1
Leu3(a) 22 3 1 1
Mbp1(a) 20 7 2 1
Cbf1(a) 29 1 4 2
Met31(a) 20 15 1 1
Abf1(b) 10 4 5 3
Ace2(b) 7 Not found 4 2
Gcn4(b) 11 4 39 6
Hap1(b) 6 Not found 23 1
Ino4(b) 13 Not found 22 4
Mcb(b) 18 2 11 1
Mse(b) 6 Not found 5 5
Nbf(b) 6 1 16 15
Pdr3(b) 12 Not found 10 2
Pho4(b) 8 Not found 9 1
Put3(b) 2 Not found 4 1
Rap1(b) 13 6 14 11
Swi5(b) 9 Not found 3 1
Uasino(b) 4 Not found 14 13
Uasrad(b) 4 Not found 20 3
Adr1(c) 4 2 14 2
Mig1(c) 30 2 32 30
Uasphr(c) 14 Not found 47 13
T4c(c) 9 1 28 6

AREP = 1.0, and Z-value = 2.0; (b) P-value = 0.01 (without Bonferroni correction), AREP =
1.0, and Z-value = 2.0; (c) P-value = 0.01 (without Bonferroni correction), AREP = 0.8, and
Z-value = 2.0. Theoretically, we can find most of the known motifs as long as we make the
criteria for overrepresentation and conservation loose enough, but the less strict criteria may
result in numerous putative motifs that are actually false positives. Considering the high cost
of verifying a predicted motif through lab experiment, we used firstly a strict criterion for
candidate motif screening, so parameter setting (a) was set as default in our method. Using
this strict parameter threshold setting we may miss some true TF binding motifs (see Tables 3
and 4), especially those without very high-level statistical significance of overrepresentation,
and the method may not be able to return any predictions. We loosen the criteria by using
setting (b) or setting (c) in actual motif finding process, if using the default threshold setting,
we can find no hit at all. Setting (b) has a moderate criterion for overrepresentation, so it
allows more candidate motif to pass the screening. With setting (c), we loosen the criterion



8 Journal of Probability and Statistics

Table 4: Comparison to MEME. MEME requests a predetermined number of predicted motifs as its input,
and we let it be the number of motifs predicted using our method. For each TF, we listed the rank of the
known motif in the predictions. Three different parameter threshold settings, namely, (a), (b), and (c), are
used in our method as given in Table 2.

TF
Meme Our Method

The number of
motifs found

The rank of the
known motif

The number of
motifs found

The rank of the
known motif

Ste12(a) 1 Not found 1 1
Gal4(a) 1 1 1 1
Leu3(a) 1 1 1 1
Mbp1(a) 2 1 2 1
Cbf1(a) 4 1 4 2
Met31(a) 1 Not found 1 1
Abf1(b) 5 Not found 5 3
Ace2(b) 4 Not found 4 2
Gcn4(b) 39 Not found 39 6
Hap1(b) 9 Not found 23 1
Ino4(b) 22 10 22 4
Mcb(b) 11 1 11 1
Mse(b) 5 Not found 5 5
Nbf(b) 16 3 16 15
Pdr3(b) 10 1 10 1
Pho4(b) 9 4 9 1
Put3(b) 4 Not found 4 1
Rap1(b) 14 Not found 14 11
Swi5(b) 3 Not found 3 1
Uasino(b) 14 Not found 14 13
Uasrad(b) 20 1 20 3
Adr1(c) 10 Not found 14 2
Mig1(c) 32 2 32 30
Uasphr(c) 47 Not found 47 13
T4c(c) 28 23 28 6

of the degree of conservation, since there do exist some known TF binding motifs with AREP

less than 1.0 (see Table 2).
The method proposed here is, nevertheless, not a replacement of the prevailing

motif tools such as MEME and AlignACE. The major limitation of our method is its
strong prerequisite. Multiple closely related species and the upstream sequences of each
co-regulated gene for all species under study are requested, and in many cases these
prerequisites may not be satisfied, so the method is, therefore, not generally applicable.
Another problem is how to choose the appropriate species to evaluate the cross-species
conservation. In principle, the species selected in the study should be close enough so that the
conservation of motif sequences could be detected in a multiple alignment, in the meanwhile
their evolutionary distances should not be too close, so that the signals could be distinguished
from the noises [31]. The number of species used in the method is also a factor that may need
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Table 5: The TFs whose known binding sites cannot be found using our method. The expected number of
motifs predicted by MEME was set at 10.

TF Known motif Using AlignACE

Rank of the
known

motif/total
predictions

UsingMEME

Rank of the
known

motif/total
predictions

Ap-1 TTANTAA Not found TTAGTAA 3/10
Bas2 TAATRA,TAANTAA Not found Not found
Csre YCGGAYRRAWGG Not found GTCCGGAC 8/10
Mac1 GAGCAAA GGAAGCAAA 17/33 Not found
Gcr1 CWTCC ATTGTTTTCC 5/5 Not found
Mcm1 CCNNNWWRGG TTACCNNNTAGGAAA 2/11 TTTCCTAATTAGGAAA 1/10
Reb1 YYACCCG TTACCCGCACGGC 3/8 Not found
Rox1 YYNATTGTTY Not found Not found
Scb CNCGAAA AAGCCACGAAAA 1/13 Not found
Sff GTMAACAA Not found Not found

to be considered. We recommended three or four, since using too many species may bring up
strong noise and reduce the detection power of the method.

After comparing with the motif finding software such as MEME, AlignACE, and
PHYME, we can reach the following conclusions: (1) Our method screens for candidate
motifs in terms of both overrepresentation and conservation, therefore, it gives relatively less
predicted motifs for a group of co-regulated genes (Tables 3 and 4), hence it is helpful for
reducing false positive predictions; (2) The rank of known motif in the output of our method
is in general higher (Tables 3 and 4), and this is of practical importance, since we usually focus
only on putative bindingmotifs with high ranks despite the large number of predictedmotifs;
(3) unlike the most common motif finding tools, our method requests no prior inputs such
as the length of the motifs or the number of predictions. Although we used yeast genomes
to assess our method, it could also be applied to other organisms if suitable related species
are available and the upstream sequences of co-regulated genes could be obtained for the
multiple species.

4. Materials and Methods

4.1. Materials

In this study, we considered gene promoter regions of four yeast species, namely, S. cerevisiae,
S. mikatae, S. bayanus, and S. paradoxus. All these four are members of the Saccharomyces sensu
stricto group. The last three are believed to be separated from S. cerevisiae by an estimated 5–20
million years of evolution and are found to have sufficient sequence similarity to S. cerevisiae
such that orthologous regions can be aligned reliably [32].

We obtained the information about gene regulation network of S. cerevisiae from
the database SCPD (The Promoter Database of Saccharomyces cerevisiae) [33], which
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Table 7: The TFs whose known binding motifs cannot be found byMEME/AlignACE/PHYME, but can be
found using our method. Three different parameter threshold settings, namely, (a), (b), and (c), are used
in our method as given in Table 2.

TF Genes in PS Our method Known motif
Ace2(b) 1 GCTGGT TGCTGGT
Hap1(b) 4 TGCCGNNNNNNNCGG CGGNNNTANCGG
Mse(b) 1 GNCACAA CRCAAAW
Put3(b) 1 TCGNNNNNNNNNNNCG CGGNNNNNNNNNNCCG
Swi5(b) 2 TGCTGG KGCTGR
Uasino(b) 1 CATGTG ATCTGAAWW
Uasphr(c) 14 TCTNNNNNNNNNNTCCT CTTCCT

contained TFs and genes co-regulated by them. The upstream region sequences of the
co-regulated genes of each TF for all the four yeast species were downloaded from
http://www.broad.mit.edu/.

The genes known to be co-regulated by specific TFs such as STE12 and GAL4 were
used to evaluate the method. We let PS (positive set) denote the collection of S. cerevisiae
genes co-regulated by a common TF, and we built an NS (negative set) by randomly selected
S. cerevisiae genes. For each gene in both PS and NS, we extracted the promoter region
sequences for all the four species and aligned them using multiple sequence alignment
program ClustalW.

4.2. Methods

The method proposed here requests promoter region sequences frommultiple closely related
ortholog species. Usually we are interested in motif finding for only one of the species,
namely, the principal species, whereas the sequences from other species are helpful for the
reduction of false positives. For a given TF, we need two sets of genes, namely, positive set
(PS) and negative set (NS). PS consists of the genes co-regulated by the TF, whereas NS
consists of genes randomly collected from the genome of the principal species.

4.3. Finding Overrepresented Sequences

We only consider the principal species for finding overrepresented sequences. We first search
the promoter regions of the genes in NS for each possible sequence pattern of length M (6 ≤
M ≤ 17) that satisfying the following constraints: the first three nucleotides in the left flank
and the last three nucleotides in the right flank are the core elements and fixed, between the
two core elements there might be M0 nucleotides (M0 = 0, 1, 2, . . . , 11) and each of them
could be any of the nucleotides A, C, T, and G. So within the L-bp upstream region of a gene,
there are L−M+ 1 possible locations that can be occupied by a sequence pattern of lengthM.
We call the fraction as the background probability of the given sequence pattern

p =
cn
c
, (4.1)
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where cn is the number of total occurrences of the pattern in the promoter regions of genes in
NS, and c is the total number of possible locations for anM-bp sequence in promoter regions
of the genes in NS. In the same way, we can obtain the number of the pattern occurrences
K and the total number (N) of possible M-bp locations in the promoter regions of the genes
in PS. Using binomial distribution, we can calculate the probability of the pattern occurring
more than K times as following [27, 34]:

P =
N∑

k=K

N!
(N − k)!k!

pk
(
1 − p

)N−k
, (4.2)

where p is the background probability. We choose the sequence patterns with P less than a
threshold p∗ (usually inmagnitude of 10−6 after Bonferroni adjustment) for further analysis. If
the overlap of two sequences is longer than 80% of one of the two, we eliminate the sequence
with larger P-value from the collection of overrepresented sequences. Both DNA strands
are considered when we calculate the number of occurrences for a given sequence in the
upstream region. If the sequence is a palindrome, we just use the count in one strand as the
total occurrence.

4.4. Bonferroni Adjustment

We used the Bonferroni adjustment to the multiple statistical tests for determining
overrepresented sequences, so that it was more “difficult” for any single test to be significant.
The adjustment was accomplished by setting the P-value threshold at the common significant
level (usually 0.05 or 0.01) divided by the number of tests being performed. In our case,
the p∗ was set as 0.05 divided by the number of all possible sequences in the form of
NNNnn . . . nnNNN, where NNN stands for three fixed nucleotides and nn . . . nn stands
for unfixed number (from 0 to 11) of nucleotides.

4.4.1. Relative Entropy and Conservation Criteria

Let α be the background nucleotide distribution and β the nucleotide distribution at a given
position in a multiple sequence alignment. For the two probability distributions α and β, the
relative entropy (also known as Kullback-Leibler “distance”) is defined by [29, 35]

H
(
β||α) =

4∑

i=1

βi log
βi
αi
. (4.3)

We can prove that relative entropy is always a nonnegative value, and it reflects the
extent of the deviation of actual nucleotide distribution from background distribution at a
given site in the alignment. The larger the value, the greater the deviation between the actual
distribution and the background distribution at that site [29].

Given an overrepresented sequence O, we search for its occurrences in the alignment
of upstream sequences from the four species for each gene in PS and NS, respectively. If we
find an occurrence in the alignment of a gene in PS, we extract the corresponding sequence
block from the alignment and put the four segments that form this block to a sequence set
SOP. Similarly, we also build a sequence set SON for genes in NS.
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Spar 16391
Smik 17300
Sbay 19697

Scer YMR232W

(a)

Scer YML047C
Spar 17501
Smik 16240
Sbay 17947

(b)

Spar 16391
Smik 17300
Sbay 19697

Scer YMR232W

(c)

Figure 1: DNA binding motif TGAAACA of transcription factor STE12. The known DNA binding motif
TGAAACA of transcription factor STE12 for S. cerevisiae genes YML047C (a), YLR452C (b), and YCL055W
(c) is conserved in the alignment of orthologous gene promoter regions of closely related yeast species,
namely, S. cerevisiae, S. mikatae, S. bayanus, and S. paradoxus.

We further align all the sequences in SOP and SON, respectively. These two alignments
are used to evaluate the degree of conservation of O across closely related species. We define
the average relative entropy (AREP ) of SOP as

AREP =
∑M

i=1 EPi

M
, (4.4)

where EPi is the relative entropy at the position i of the alignment of the sequences in SOP,
and M is the length of O. If O is not found in the alignment of upstream sequences for any
gene in NS, then we deposit O to the collectionof candidate motifs for further consideration.
Otherwise, we could also calculate the average relative entropy AREN for the sequences in
nonempty set SON. We define a Z-score as

Z =
AREP −AREN√

s2N/M
, (4.5)

where sN is the standard deviation of the relative entropies at different positions of the
multiple upstream sequence (across multiple species) alignments of genes in NS.

Bindingmotifs tend to be conserved in the orthologous species (see Figures 1, 2, and 3),
so we remove the sequences that are overrepresented but not conserved from our collection
of candidate sequences. We set the Z-score threshold as 2, such that the sequences with Z > 2
are kept as the candidate sequences for further consideration.
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Figure 2: Average relative entropy of the motifs. We choose the 100 sequences found in the upstream of
Ace2-regulated S. cerevisiae genes with the smallest overrepresentation P-values and compute their average
relative entropies in themultiple alignments of orthologous upstream sequences of the four related species.
The results were displayed with a scatter plot of P-value versus average relative entropy. The arrow points
to the known binding motif GCTGGT of Ace2 in S. cerevisiae. The average relative entropy of the known
binding motif is greater than that of most other sequences.

4.5. Building a Profile for a Candidate Sequence

Each candidate sequence will be searched for in the alignment of upstream sequences (from
the multiple species) of each gene in PS. If an instance is found in any of the species, we
extract the corresponding alignment block for further consideration. We use eB to denote the
average of the relative entropies at M different positions of an alignment block of length M.
For each block, we set hP = μP + 2(σP/

√
M) as our cutoff value for block selection, where

μP and σP are the mean and the standard deviation of the relative entropies, respectively, at
different positions in the alignments of upstream sequences (from multiple species) of the
genes in PS. For a given candidate sequence, we use all the blocks with eB greater than hP

to build a profile to represent the candidate motif. For example, we search for a candidate
sequence GTTTCA in the alignments of upstream sequences of genes in PS. If we can find it
in any species in the alignments, we extract the corresponding alignment block, calculate eB,
and compare it with hP to decide whether we keep this block for profile building. Using all
the blocks selected, we calculate the base frequencies at each position and create thereafter
the profile to represent the initial candidate motif. Both strands are considered whenwe build
the profile.

4.6. Species-Specific PSSM Building

The profile obtained above represents the initial candidate motif derived from all the ortholog
species. Usually we are only interested in the motif finding for one species, which is named as
principal species in our analysis, and it is necessary to build a species-specific PSSM (Position
Specific Score Matrix) for the candidate motif [36]. For the genes in PS, which are from the
principal species, we search for the candidate motif in their upstream sequences in terms
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Figure 3: Z-value of the motifs. We choose the 100 sequences found in the upstream of Ace2-regulated S.
cerevisiae genes with the smallest overrepresentation P-values and compute their Z-values in the multiple
alignments of orthologous upstream sequences of the four related yeast species. The arrow points to the
known motif GCTGGT of Ace2 in S. cerevisiae. The Z-value of the known binding motif is greater than that
of the most other sequences.

of the initial motif profile, and all the significant hits found are used in building the final
species-specific PSSM. The profile search is performed as follows. For each M-bp segment of
upstream sequences of the genes in PS, we calculate a score

Sc =
M∏

i=1

qi, (4.6)

where qi is the probability of observing the ith nucleotide of the segment, which is defined
by the position-specific nucleotide distribution in the initial profile of the candidate motif.
To determine the significance criterion, we calculate Scs for all the possible M-bp segments
of the upstream sequences (for principal species only) of genes in NS and rank these scores
in the descending order. We use the 0.001-quantile of these ranked scores, denoted as Sc∗,
as the threshold value to determine whether a match is significant in the profile search. For
example, if there are 1000 genes in the NS and the length of each promoter region is L-bp,
then there are totally 1000∗(L−M+1) possible segments, so we have 1000∗(L−M+1) scores.
We sort the scores in the descending order and set the nth value as the cutoff score Sc∗ with
n = L−M+1. We calculate Sc for each possible segment in the upstream sequences (principal
species only) of the genes in PS. If Sc ≥ Sc∗, we deposit the segment into I, which is the set
of the incidences of the candidate motif.

4.7. Optimal Motif Length

Let k be the number of sequence segments in I. In order to determine the optimal length of the
potential motif, we extend 0 to 5 bp in both flanks of each M-bp segment in I according to its
mother sequence in the gene upstream region. So we have totally 36 possible combinations
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(left flank extended by ML = 0, 1, 2, 3, 4, or 5 bp; right flank extended by MR = 0, 1, 2, 3,
4, or 5 bp). For each possible combination (ML,MR), we put the newly added flanks into a
block with k rows andML +MR columns. We calculate the average relative entropies of all 36
blocks and choose the combination (ML∗ , MR∗) that delivers the maximum average relative
entropy eB∗ for further consideration. In themeanwhile, we randomly generate 1000 sequence
blocks, each with k rows and ML∗ + MR∗ columns, in terms of the background nucleotide
distribution α. We calculate the mean erand and the standard deviation srand of the average
relative entropies of these 1000 blocks. If eB∗ is greater than erand + 2srand, then we accept the
extension (ML∗ ,MR∗) and set the final motif length atM+ML∗+MR∗ ; otherwise, we still keep
the original motif lengthM. The extended sequences (ML∗ bp in left flank andMR∗ bp in right
flank) of the segments in I form a new sequence set Ie, which is the set of the incidences of the
extended motif. Using all the sequences in Ie, we build the PSSM for a general representation
of the final motif.

4.8. Implementation

We used a PERL script to implement the method. The script and the example of input data
are available upon request.

Abbreviations

TFBS: Transcription factor binding sites
TF: Transcription factor
bp: Base pair
EM: Expectation maximization.
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