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In many clinical trials, it is important to balance treatment allocation over covariates. Although a
great many papers have been published on balancing over discrete covariates, the procedures for
continuous covariates have been less well studied. Traditionally, a continuous covariate usually
needs to be transformed to a discrete one by splitting its range into several categories. Such practice
may lead to loss of information and is susceptible to misspecification of covariate distribution. The
more recent papers seek to define an imbalance measure that preserves the nature of continuous
covariates and set the allocation rule in order to minimize that measure. We propose a new
design, which defines the imbalance measure by the maximum assignment difference when all
possible divisions of the covariate range are considered. This measure depends only on ranks of
the covariate values and is therefore free of covariate distribution. In addition, we developed an
efficient algorithm to implement the new procedure. By simulation studies we show that the new
procedure is able to keep good balance properties in comparison with other popular designs.

1. Introduction

Balanced allocation among treatment groups is often desirable in many clinical trials. A
well-balanced design enhances the trials by increasing the credibility of the trial, precision
of subgroup or interim analysis, and robustness to model misspecification [1]. Moreover,
ignorance of balance at the design stage may lead to loss of statistical efficiency, especially
in small trials [2]. In the existence of covariates (or prognostic factors), well-balanced
allocation does not only mean similar group sizes but also similar distributions of covariate
values across treatment groups [3–6]. With discrete covariates, a great many papers have
been published, which include stratified permuted block designs, marginal procedures (or
minimization) [7, 8], and hierarchical models [9–11]. Y. Hu and F. Hu [12] are among the few
who explored the theoretical properties of such procedures.
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With respect to balancing over continuous covariates, a traditional way is to discretize
a continuous covariate by splitting its range into several small intervals, each of which defines
a distinct category [4, 13]. However, such methods have several potential problems. First,
there is no standard way of defining such intervals: usually the boundaries are set by experts’
opinion from a nonstatistical perspective, or they are heavily dependent on the model
assumption of the covariate distribution. Weir and Lees [13] studied the randomization
procedure in an acute stroke clinical trial in which 12 covariates were involved. The five
continuous covariates were discretized before the traditional minimization was applied.
Based on the historical information of the covariate distribution, the covariates age and mean
arterial pressure were discretized by their quintiles; plasma glucose level was first discretized
into two groups by the critical value 8mmol/L and the one with larger values was further
split by quartiles; the remaining two covariates, time of delay from stroke onset and Glasgow
coma scale, were categorized whose critical values were set by clinical experience. Therefore,
we see that discretization methods are rather covariate-specific and may depend on the
distribution of the covariates. Second, there is a dilemma as to the selection of the number
of categories (denoted by m). While a small m may lead to loss of information, a large m can
result in a severe overall imbalance, as is in the case of stratified designs when the number of
strata is large [7].

An alternative that saves the step of discretization is to define a certain “imbalance
measure” for continuous covariates among different treatment groups and then allocate the
treatments sequentially to minimize that specific measure [5, 6, 14–16]. With two treatment
groups A and B, many authors defined imbalance measures as the mean difference of
covariate values between the two groups: some of the measures may further be adjusted
for standard deviations within the two groups [5, 14], others normalized the mean difference
by calculating the two-sample t-statistic and the corresponding P value [15], that is, a larger
P value indicates more balanced allocation. An alternative to the above mean comparison
methods is model-based approach [17–20], which relates different allocation to different
design matrices in a linear model, which in turn influence the maximum likelihood estimator
of the treatment effect α̂n; it then sequentially favors an assignment that would lead to a
smaller var(α̂n). This approach only implies balance under a homogeneous linear model.

The methods discussed above, however, usually depend on the assumption of normal
distributions of the covariates. Among the methods that apply to more general distributions,
Stigsby and Taves [16] considered the difference of rank sums as their imbalance measure; Su
[6] used a weighted average of the difference in overall patient numbers and the difference
in quartiles of the continuous covariates. Rosenberger and Sverdlov [21] found the empirical
distributions of the covariates in the two groups and calculated their Kolmogorov-Smirnov
distance to measure the imbalance for a series of randomization procedures.

In this paper, we propose a newminimization procedure which carefully examines the
assignment differences over all intervals and set their maximumvalue as the actual imbalance
measure. The new procedure utilizes only the rank information of the covariates and is
therefore robust against various distributions. Moreover, we developed an efficient algorithm
whose computation is even less intensive than discretization. By simulation studies, we show
that our new procedure leads to well-balanced allocation in terms of overall patient numbers
and covariate distributions. For simplicity, we first consider only one continuous covariate
and then extend the idea to more general cases.

In Section 2, by giving a motivating example, we analyze the downside of simple
discretization and then highlight the idea underlying the new procedure. In Section 3, details
of the procedure are described, and the key part of the algorithm is explained. Simulation
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Figure 1: Two allocation sequences for the same covariate values.

studies are carried out in Section 4, comparing our procedure with discretization methods
as well as some other designs. In Section 5, we conclude the paper by discussing possible
extension of the current procedure.

2. Motivation

We will first focus on two treatments, A and B and only one continuous covariate Z. For
simplicity, assume Z takes value over interval [0, 1]; any other type of Z can be transformed
to [0, 1] by a linear function if Z is bounded, or a nonlinear function such as ex/(ex + 1)
otherwise.

To see the difficulty in defining “balance” for a continuous covariate, we use an
example as shown in Figure 1. The first 8 patients have been randomized. The 9th has
just arrived, who is tentatively assigned to treatment A (a) and B (b). The figure shows
the assignment as well as the covariate values of the patients. First, we point out that
discretization could cause complications since different ways of splittingmay lead to different
assignments. For example, if the covariate range [0, 1] in Figure 1 is split into m intervals of
equal lengths, then the choices ofm = 1,m = 2, andm = 4 result in different preferences of the
assignment: ifm = 1, that is, only overall patient numbers are considered, then the 9th patient
could be assigned to treatment A or treatment B, since in either way the absolute difference
is 1; ifm = 2, then treatmentAwould be favored, producing balanced patient numbers in the
second category, that is, over the interval [0.5, 1.0] where the 9th patient belongs; if m = 4,
then treatment B would be preferred instead, since it produces allocation of 2 : 1 in the third
category, that is, over the interval [0.5, 0.75), rather than 3 : 0 when treatment A is assigned.
Second, we emphasize that balance in the mean values does not necessarily lead to balance
in distributions. Taking the upper panel in Figure 1, for instance, the assignment of treatment
A would not cause a significant mean difference in the two treatment groups. However, in
terms of covariate distribution, a severe imbalance would exist, since the 5 patients (7th, 6th,
9th, 4th, and 8th) in groupA have covariate values at the center of the range and the 4 patients
(2nd, 3rd, 5th, and 1st) in group B at the two ends.

In light of the above discussion, we propose a new imbalance measure, which
is defined as the maximum (absolute) assignment difference when all possible ways of
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discretization are considered. By doing so, we want to make sure that the assignment dif-
ference over any interval does not become too extreme. Thus, if the 9th patient is tentatively
assigned to A, we need to examine the differences of patient numbers in the two groups in
all neighborhoods of Z9 and use the maximum of them as the resulting degree of imbalance.
The corresponding imbalance caused by the assignment of B can be calculated in the same
manner. Then with a probability greater than 1/2, the 9th patient should be assigned to a
treatment that would cause a smaller maximum difference.

3. Procedure

Consider a sequential trial with two treatments A and B (control and test). For the first n
patients that have arrived, let Tn = (T1, . . . , Tn) be the allocation sequence with Ti = A if the
ith patient is assigned to treatment A and Ti = B otherwise. Suppose we need to balance
treatment allocation over one single continuous covariate Z with cumulative distribution
function F, whose rangeU is an interval on the real line. The two endpoints ofU can be finite
or infinite. Let Zn = (Z1, . . . , Zn), where Zi is the covariate value of the ith patient. Suppose
Z1, . . ., Zn are independent. Define

Δ(I,Zn,Tn) = NA(I,Zn,Tn) −NB(I,Zn,Tn) (3.1)

as the difference of patient numbers in treatment groups A and B over the interval I ⊂ U,
given the covariate information Zn and allocation sequence Tn. Suppose the first n patients
have been randomized and the (n + 1)th patient has just arrived, that is, Zn+1 = (Z1, . . . , Zn+1)
and Tn = (T1, . . . , Tn) are known and Tn+1 is to be determined. Define

D
(k)
n+1 = sup

I

{|Δ(I,Zn+1,Tn+1)| : Zn+1 ∈ I ⊂ U, Tn+1 = k}, (3.2)

where k = A or B. Thus, D(k)
n+1 is the potential maximum absolute difference it would cause

if the new patient was assigned to treatment k. Note that the interval I in (3.2) needs to
contain the new covariate value Zn+1, because the difference over any other interval will not
be affected by the the arrival of Zn+1 and is therefore not of our interest. Note also that D(k)

n+1
is a function of (Zn+1,Tn, k).

Then, assign the (n + 1)th patient to treatment A with the following probability:

P(Tn+1 = A | Zn+1,Tn) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p, if D(A)
n+1 < D

(B)
n+1,

q, if D(A)
n+1 > D

(B)
n+1,

0.5, otherwise,

(3.3)

where 0 < q < p < 1 and p + q = 1.
We will show how the 9th patient is randomized according to our new procedure. The

critical part lies in the calculation of D(A)
9 and D

(B)
9 . For the former, that is, the 9th patient is

temporarily assigned to treatment A (see the upper panel in Figure 1), then the maximum
absolute difference is 5, attained over intervals which exclusively contain Z7, Z6, Z9, Z4, and
Z8, that is, 5 patients over these intervals are assigned toA and 0 is to B, soD

(A)
9 = 5. Similarly,
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D
(B)
9 = 3. Therefore, since D

(A)
9 > D

(B)
9 , with probability p > 1/2 the 9th patient will be as-

signed to treatment B.
We would like to point out that in order to calculate the imbalance D

(k)
n+1, which is

defined as a supremum, it is sufficient to examine intervals whose endpoints belong to the
set {Z1, . . . , Zn+1}. Hence the total number of such intervals has the order O(n2). Moreover,
the difference of patient numbers over any of these intervals is only related to the ranks
of {Z1, . . . , Zn+1}, whose joint distribution places an equal probability 1/[(n + 1)!] on any
permutation of [1, 2, . . . , (n+1)]. To support the above argument, we can reexamine the upper
panel in Figure 1: for any interval I = [a, b], where Z2 < a ≤ Z7 and Z5 ≤ b ≤ Z1, the
difference of patient numbers over I is exactly the same as that over interval [Z7, Z5], which
is +3 = 5 − 2; furthermore, so long as the relative positions of {Z1, . . . , Zn+1} remain the same,
this difference of +3 does not change. Nor does D(k)

n+1. Therefore, we come to the conclusion
that the new procedure is free of the underlying distribution F.

In fact, the computation time of D(k)
n+1 can be reduced by examining an even smaller

number of intervals, that is, (n + 2) instead of O(n2). Before demonstrating this, we need
a few more notations and definitions. Since our new procedure is distribution-free, simply
assume that the covariate Z is from uniform [0, 1]. Suppose Zn+1 and Tn have been observed.
Δ(I,Zn,Tn) in (3.1), defined as difference of patient numbers in groupsA and B over interval
I, will simply be written as ΔnI. For the ease of representation, let ZL = 0 and ZR = 1. Define
two sets SL and SR as

SL = {Δn[Zi, Zn+1) : Zi ≤ Zn+1, i = L, 1, . . . , n},
SR =

{

Δn

(

Zn+1, Zj

]

: Zn+1 ≤ Zj, j = R, 1, . . . , n
}

.
(3.4)

That is, Zi is any point from the set {0, Z1, . . . , Zn}, that is, to the left of or equal to Zn+1,
and [Zi, Zn+1) is a left-closed and right-open interval. For instance, in Figure 1, n = 8 and
SL = {0, Z2, Z7, Z6} from left to right. The interpretation of Zj and (Zn+1, Zj] is similar.

Proposition 3.1. Let CL1 = minSL, CL2 = maxSL, CR1 = minSR, and CR2 = maxSR. Then,

D
(A)
n+1 = max{|CL1 + CR1 + 1|, |CL1 + CR2 + 1|, |CL2 + CR1 + 1|, |CL2 + CR2 + 1|},

D
(B)
n+1 = max{|CL1 + CR1 − 1|, |CL1 + CR2 − 1|, |CL2 + CR1 − 1|, |CL2 + CR2 − 1|}.

(3.5)

The proof of Proposition 3.1 is given in the Appendix. Proposition 3.1, together with
the definitions of SL and SR, suggests the following.

(1) The calculation of D(A)
n+1 and D

(B)
n+1 only requires the examination of (n + 2) intervals,

instead of O(n2).

(2) For two consecutive intervals [Zi, Zn+1) and [Zi′ , Zn+1) in SL, where Zi < Zi′ , i /=L
and i′ /=L, we have Δn[Zi, Zn+1) = Δn[Zi′ , Zn+1) ± 1, depending on the assignment
A or B for the patient at Zi (the same argument applies to intervals in SR).

The above two observations form the basis of the algorithm, which was developed for the
new procedure in the simulation studies (Section 4). We found that the computation time of
the new procedure was even less than discretization methods.
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4. Simulation Studies

Suppose N = 60 patients enrolled. As mentioned in Section 1, for continuous covariates, it is
desirable to keep similarity between treatment groups in two aspects: the group sizes and the
distributions of the covariates. Therefore, the new procedure was first compared with several
other procedures in terms of the following two criteria: (1) the mean absolute difference
E|NA(N) − NB(N)| of all patient numbers in the two groups, shown as EDall; (2) the mean
Kolmogorov-Smirnov distance (K-S) between the empirical distributions of covariate Z in
groups A and B, shown as EDks, which basically measures the similarity between two
distributions. In addition, we used a new criterion: (3) the “maximum imbalance” defined
by us as:

sup
I

{|Δ(I,ZN,TN)| : I ⊂ [0, 1]}, (4.1)

shown as EDmax, which is the maximum absolute difference over all possible intervals after
all patients have been assigned to a treatment. We will show that criterion (3) acts as a
compromise between criterion (1) and criterion (2).

Since the procedures we compared are all distribution-free, the independent covariate
values Z1, . . . , ZN were simply generated from Unif(0,1). All procedures use the strategy of
minimization, but each has a different imbalance measure. More specifically, under a certain
imbalance measure D, we calculate D(A) or D(B), defined as the imbalance that would occur
if the new patient was assigned to treatment A or B. Depending on whether D(A) − D(B) is
positive, negative, or zero, the allocation probability toward the treatment A is q, p, or 1/2,
where 0 < q < p < 1 and p + q = 1. In the simulation, we used p = 2/3 and p = 1, with the
latter corresponding to deterministic allocation unless there is a tie.

The following procedures were studied.

(1) Efron’s design (EFRON) [22]. Let NA and NB be the patient numbers in the two
groups. Define the imbalance measure D as |NA −NB|. This method solely focuses
on the balance of patient numbers.

(2) Kolmogorov-Smirnov measure (K-S). Let ̂Fk be the empirical distribution function
of the covariate values in group k, k = A, B. Define imbalance measure D as the
Kolmogorov-Smirnov distance between ̂FA and ̂FB. This method solely focuses on
the balance of distributions.

The above two methods are rarely used as a way of balancing over a continuous
covariate, since each of them is designed to meet only one criterion. In our
simulations, they served as two controls to evaluate other procedures.

(3) Discretization (DSCRT). In practice, in order to discretize a continuous covariate
Z with cumulative distribution function F, the range is often split by the quantiles
of F at probabilities 1/m, 2/m, . . . , (m − 1)/m. This is equivalent to splitting [0, 1]
intom intervals of equal length 1/m for Z ∼ unif[0, 1].

In our simulations, we tried m = 2, 4, 8. Within each category Efron’s design was
applied.

(4) The new procedure (MAX-IMB).
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Table 1: Comparison of EDall, EDks, and EDmax for p = 2/3.

EDall (s.e.) EDks (s.e.) EDmax (s.e.)
EFRON 1.28 (.023) .212 (.0009) 9.03 (.031)
K-S 6.65 (.072) .137 (.0005) 10.22 (.058)
DSCRT

m = 2 2.17 (.029) .178 (.0007) 8.52 (.030)
m = 4 2.94 (.036) .161 (.0006) 8.18 (.030)
m = 8 3.76 (.042) .159 (.0007) 8.40 (.034)

MAX-IMB 2.36 (.029) .159 (.0006) 7.38 (.025)
RANK-SUM 3.25 (.037) .205 (.0009) 9.82 (.039)
WGT-AVE

c0 = 2 1.67 (.028) .183 (.0008) 8.48 (.030)
c0 = 4 2.40 (.036) .172 (.0008) 8.47 (.031)
c0 = 6 3.06 (.041) .167 (.0007) 8.62 (.034)

(5) Stigsby and Taves’ rank sum (RANK-SUM) [16]. Let (R1, . . . , RN) be the ranks of
(Z1, . . . , ZN). Suppose patients i1, . . . , iN1 are in group A and patients j1, . . . , jN2 are
in group B. The imbalance measure D is defined by |∑N1

k=1 Rik −
∑N2

k=1 Rjk |.
(6) Su’s weighted average (WGT-AVE) [6]. Let Qk

1 , Q
k
2 , Q

k
3 be the quartiles of the

covariate values in group k, k = A, B. The “qualitative” imbalance measure DL

is defined by

w0I{|NA −NB| > c0} +w1I

{

max
i=1,2,3

∣

∣QA
i −QB

i

∣

∣

max
{

QA
i ,Q

B
i

} > c1

}

, (4.2)

where w0 and w1 are two weights placed on the two items, c0 and c1 are two upper limits,
and I is the indicator function; the “quantitative” imbalance measure DT is defined by

w0|NA −NB|
c0

+
w1

[

maxi=1,2,3
(∣

∣QA
i −QB

i

∣

∣/max
{

QA
i ,Q

B
i

})]

c1
. (4.3)

Therefore, let D(k)
L be the the qualitative imbalance resulted from the tentative assignment of

treatment k to the new patient, k = A,B. If D(A)
L − D

(B)
L is positive (negative), the allocation

probability toward the treatment A will be q(p); if D(A)
L −D

(B)
L = 0, use measure DT to deter-

mine the probability p, q, or 1/2.
w0, w1, c0, and c1 can be changed freely from a subjective point of view. In the

simulations, we fixed w0 = w1 = 1 and c1 = 10%, but tried c0 = 2, 4, 6.
The results for p = 2/3 and p = 1 under 5000 repetitions are shown in Tables 1 and 2.
We first focus on Table 1 (p = 2/3). The 1st and 2nd columns suggest that the “best”

EDall and the “best” EDks that can be achieved are 1.28 by EFRON and 0.137 by K-S,
respectively, at the expense of large imbalance under the other criterion. For DSCRT when
m increases from 2 to 4 and 8, EDall increases from 2.17 to 2.94 and 3.76, whereas EDks

decreases from 0.178 to 0.161 and 0.159. Therefore, we see that there is a trade-off between
the balance of group sizes and the balance of covariate distributions. Similar trend can be
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Table 2: Comparison of EDall, EDks, and EDmax for p = 1.

EDall (s.e.) EDks (s.e.) EDmax (s.e.)
EFRON 0.00 (.0000) .209 (.0010) 8.78 (.030)
K-S 13.14 (.1396) .096 (.0002) 15.08 (.120)
DSCRT

m = 2 0.49 (.0121) .171 (.0007) 8.03 (.027)
m = 4 0.93 (.0150) .140 (.0005) 6.93 (.021)
m = 8 1.45 (.0190) .119 (.0004) 6.16 (.018)

MAX-IMB 1.19 (.0170) .108 (.0003) 4.90 (.010)
RANK-SUM 2.82 (.0317) .196 (.0008) 9.24 (.035)
WGT-AVE

c0 = 2 0.52 (.0183) .136 (.0005) 6.82 (.023)
c0 = 4 1.59 (.0414) .132 (.0004) 7.16 (.034)
c0 = 6 2.56 (.0541) .132 (.0004) 7.63 (.044)

observed for WGT-AVE when c0 increases from 2 to 4 and 6. In terms of these two criteria,
the new procedure (MAX-IMB), with EDall 2.36 and EDks 0.159, has better performance than
DSCRT with m = 4 and m = 8 and WGT-AVE with c0 = 4 and c0 = 6; it also has lower EDall

and EDks than RANK-SUM.
In terms of EDmax (the 3rd column), MAX-IMB has the minimum value 7.38 since

it sequentially minimizes this criterion. On the contrary, DSCRT minimizes the imbalance
of patient numbers over the selected intervals, but ignores the imbalance over others. As a
result, on average, the maximum imbalance under DSCRT is higher than that under MAX-
IMB. In a sense, EDmax serves as a tool which detects any allocation imbalance that is ignored
by DSCRT. Since the new procedure examines both “global” imbalance, that is, over the
whole range, and “local” imbalance, that is, over any small interval, it can be regarded as
a compromise between achieving balance in overall group sizes and achieving balance in
covariate distributions.

Similar conclusion can be drawn for p = 1 (see Table 2), that is, the allocation is
deterministic except the case of a tie. From p = 2/3 to p = 1, the decrease in EDall is most
significant under DSCRT, from (2.17, 2.94, 3.76) to (0.49, 0.93, 1.45). This is because when p = 1
only covariate values are random, and so long as the numbers of patients over the selected
intervals are even (e.g., 34 over [0, 0.5] and 26 over (0.5, 1] with m = 2), DSCRT can always
achieve perfect overall balance. Moreover, even if the patient numbers are odd (e.g., 35 over
[0, 0.5] and 25 over (0.5, 1]), there are still chances that the allocation differences are +1 and
−1 or in the reversed way, again resulting perfect overall balance. Other procedures are more
complex and the decrease in EDall is less significant. As a result, when p = 1, MAX-IMB is
only uniformly better than DSCRT withm = 8, not m = 4.

We also compared the above procedures by other commonly used measures including
the mean absolute difference of sample means (EDmean) and the mean absolute difference
of sample standard deviations (EDstd) of the covariate values in the two treatment groups.
Furthermore, Lin and Su [23] introduced another criterion, the area between the empirical
cumulative distribution functions of the covariate values in the two treatment groups
(normalized by the difference of the maximum and the minimum values), denoted as
EDarea, and pointed out that this criterion has better performance than Kolmogorov-Smirnov
distance in capturing the difference in two distributions. We thus included this criterion
in the simulation. Since the measurements of mean, standard deviation, and area under
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Table 3: Z ∼ Unif[0, 1]. Comparison of EDarea, EDmean, and EDstd for p = 2/3.

EDmean × 102 (s.e.) EDstd × 102 (s.e.) EDarea × 102 (s.e.)
EFRON 5.96 (.063) 2.79 (.030) 8.30 (.051)
K-S 2.29 (.028) 1.77 (.020) 5.02 (.022)
DSCRT

m = 2 3.60 (.039) 2.72 (.029) 6.33 (.030)
m = 4 3.22 (.036) 1.92 (.021) 5.56 (.027)
m = 8 3.80 (.042) 1.86 (.020) 5.75 (.033)

MAX-IMB 3.75 (.041) 2.10 (.023) 6.04 (.032)
RANK-SUM 5.85 (.063) 2.76 (.029) 8.27 (.050)
WGT-AVE

c0 = 2 4.26 (.050) 2.42 (.026) 6.78 (.040)
c0 = 4 3.53 (.042) 2.34 (.025) 6.14 (.034)
c0 = 6 3.26 (.040) 2.25 (.025) 5.88 (.032)

Table 4: Z ∼ Norm[0, 1]. Comparison of EDarea, EDmean, and EDstd for p = 2/3.

EDmean × 102 (s.e.) EDstd × 102 (s.e.) EDarea × 102 (s.e.)
EFRON 20.66 (.220) 14.79 (.158) 6.78 (.035)
K-S 9.47 (.112) 11.45 (.124) 4.61 (.018)
DSCRT

m = 2 14.08 (.152) 14.64 (.155) 5.62 (.024)
m = 4 12.32 (.133) 12.39 (.135) 5.00 (.020)
m = 8 13.44 (.149) 11.60 (.126) 5.00 (.023)

MAX-IMB 14.17 (.154) 12.61 (.137) 5.28 (.023)
RANK-SUM 20.24 (.218) 14.67 (.157) 6.77 (.035)
WGT-AVE

c0 = 2 15.46 (.176) 13.75 (.147) 5.80 (.029)
c0 = 4 13.21 (.152) 13.53 (.143) 5.39 (.025)
c0 = 6 12.59 (.147) 13.36 (.143) 5.22 (.023)

a distribution function depend on the underlying distribution of the covariate, we did
simulation studies under a uniform distribution Z ∼ Unif[0, 1] and under a normal
distribution Z ∼ N(0, 1) and show the results in Tables 3 and 4, respectively.

From Table 3 under the uniform distribution, it is seen that K-S has the best
performance, since its EDmean, EDstd, and EDarea (2.29, 1.77, and 5.02) are the lowest among
all procedures. This is expected, since K-S solely minimizes the distance between the two
distributions. Once the distributions are closest, so are the summary statistics of means and
standard deviations as well as the area between the distributions. However, K-S is likely to
produce severe imbalance of group sizes, as shown in Tables 1 and 2. EFRON has the worst
performance under the three criteria since it completely ignores the covariate distributions.

Among the three choices of m under DSCRT, roughly speaking m = 4 performs best:
its EDmean and EDarea (3.22 and 5.56) are the lowest and its EDstd (1.92) slightly higher than
that underm = 8. Moreover, under these three criteria, DSCRT withm = 4 is uniformly better
than MAX-IMB, RANK-SUM, and WGT-AVE. However, the good performance of DSCRT
withm = 4 is based on the correct identification of quartiles of the true covariate distribution,
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which may not be feasible before the collection of data. In contrast, other methods do not
require such information.

Comparing MAX-IMB, RANK-SUM, and WGT-AVE, RANK-SUM has the highest
values under the three criteria; MAX-IMB has comparable performance to WGT-AGE with
c0 = 4, with the former having slightly higher EDmean and the latter slightly higher EDstd and
EDarea. Similar conclusion can be reached for the normal distribution (see Table 4). The result
for p = 1 under the three criteria EDmean, EDstd, and EDarea resembles that for p = 2/3, the
only difference being that the best choice of m under DSCRT is m = 8 instead of m = 4. In
fact, we also did simulations under different sample sizes (N = 30 and 150) and the results
are quite consistent.

5. Discussion and Conclusions

In this paper, we propose a new minimization procedure that balances treatment allocation
over continuous covariates. For any new patient, it examines the imbalances in the
neighborhoods of his or her covariate value and bias the allocation probability towards the
treatment that would result in a smaller value of the maximum imbalance. The new method
only depends on the ranks of the covariates and is therefore distribution-free. Our simulation
studies have shown that it is able to maintain relatively good balance in terms of group sizes
and covariate distributions across treatment groups.

In addition, the new procedure does not require the specification of any critical values,
which is usually needed for discretization methods in order to define categories. For the latter
methods, if quantiles of the covariate distribution F are used for the critical values, then lack
of knowledge about F may lead to wrong guesses of the quantiles. The new procedure saves
this step by considering all possible divisions of the range. Nevertheless, only the assignment
differences over (n+2) intervals have to be examined to calculate the new imbalance measure,
and the corresponding algorithm is computationally efficient.

Borrowing the idea of Pocock and Simon’s design [7], our method can easily be
generalized to two or more continuous covariates or a mix of discrete and continuous
covariates. Suppose that for a total of L covariates Z1, . . . , ZL, the first L1 is continuous and
the rest are discrete. When the (n + 1)th patient is enrolled, for any continuous covariate Zi,
i = 1, . . . , L1, we defineD(k)

n+1,i, k = A,B by (3.2), which is the themaximum imbalancemeasure
with respect to the ith covariate; for any discrete covariate Zj , j = L1 + 1, . . . , L, observe the
category the new patient belongs to, tentatively assign him to treatment k, and define D

(k)
n+1,j

as the absolute difference of patient numbers in the two treatment groups with respect to that
specific category. For example, if the jth covariate is gender and the new patient is a male,
then D

(k)
n+1,j is calculated among all males. Define

D
(k)
n+1,mix =

L1
∑

i=1

wiD
(k)
n+1,i +

L
∑

j=L1+1

wjD
(k)
n+1,j , (5.1)

where wi’s and wj ’s are the weights placed on the covariates and can be assigned by the
importance of the different covariates. Depending on whether D(A)

n+1,mix is greater than, less

than, or equal to D
(B)
n+1,mix, assign the (n + 1)th patient to treatment A with probability q, p or

1/2. From (5.1), it is seen that D(k)
n+1,mix is similar to Pocock and Simon’s weighted average of
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marginal imbalances. The only difference is that for those continuous covariates we redefine
the marginal imbalances by the new measure proposed in the current paper, so that the
negative effect caused by discretization can be mitigated. Since the marginal imbalances for
discrete covariates in D

(k)
n+1,mix remain the same as in Pocock and Simon’s, it is expected that

the good balance properties for discrete covariates in their design can be preserved when
D

(k)
n+1,mix is used in the minimization. We did simulations for the case of two continuous

covariates and the new procedure again showed improvement over other procedures.
In the case that an unequal allocation ratio such as rA : rB is desired, one can easily

generalize the proposed metric by redefining Δ(I,Zn,Tn) in (3.1) as

NA(I,Zn,Tn)
rA

− NB(I,Zn,Tn)
rB

. (5.2)

By doing so, it can be ensured that the allocation ratio over any interval is close to rA : rB.
In practice, one can also modify the maximum imbalance measure by adding weights to
different intervals. The weight of each interval can be assigned as a function of the number of
patients within the interval, so that the procedure remains distribution-free. But the algorithm
to implement such a procedure will be more complicated. We will leave these as future
research topics.

Appendix

Proof of Proposition 3.1

We will use the basic fact that for a sequence {a1, . . . , an} and a constant b,

max
i=1,...,n

|ai + b| = max
[∣

∣

∣

∣

max
i

ai + b

∣

∣

∣

∣

,

∣

∣

∣

∣

min
i

ai + b

∣

∣

∣

∣

]

. (A.1)

Following the notations and argument in Section 3,

D
(A)
n+1 = max

i=L,1,...,n,
j=R,1,...,n

{∣

∣Δ
([

Zi, Zj

]

,Zn+1,Tn+1
)∣

∣ : Zi ≤ Zn+1 ≤ Zj, Tn+1 = A
}

. (A.2)

But [Zi, Zj] = [Zi, Zn+1) ∪ {Zn+1} ∪ (Zn+1, Zj] and Δ({Zn+1},Zn+1,Tn+1) = 1 if Tn+1 = A. Thus,

D
(A)
n+1 = max

i=L,1,...,n
max

j=R,1,...,n

{∣

∣Δn[Zi, Zn+1) + 1 + Δn

(

Zn+1, Zj

]∣

∣ : Zi ≤ Zn+1 ≤ Zj

}

. (A.3)

Note that by definition of the notation ΔnI, Δn[Zi, Zn+1) =: Δ([Zi, Zn+1),Zn,Tn), which
further equals Δ([Zi, Zn+1),Zn+1,Tn+1) since the interval [Zi, Zn+1) does not contain Zn+1.
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Now for any fixed i, apply (A.1) to the constant Δn[Zi, Zn+1) + 1 and the sequence
Δn(Zn+1, Zj], j = R, 1, . . . , n, and we have

D
(A)
n+1 = max

i=L,1,...,n
{max[|CR2 + Δn[Zi, Zn+1) + 1|, |CR1 + Δn[Zi, Zn+1) + 1|] : Zi ≤ Zn+1}

= max
{

max
i=L,1,...,n

{|CR1 + 1 + Δn[Zi, Zn+1)| : Zi ≤ Zn+1},

max
i=L,1,...,n

{|CR2 + 1 + Δn[Zi, Zn+1)| : Zi ≤ Zn+1}
}

=: max{I, II}.

(A.4)

Applying (A.1) again to I with constant CR1 + 1 and sequence Δn[Zi, Zn+1), we have

I = max[|CL1 + (CR1 + 1)|, |CL2 + (CR1 + 1)|]. (A.5)

Similarly,

II = max[|CL1 + (CR2 + 1)|, |CL2 + (CR2 + 1)|]. (A.6)

Therefore,

D
(A)
n+1 = max{|CL1 + CR1 + 1|, |CL2 + CR1 + 1|, |CL1 + CR2 + 1|, |CL2 + CR2 + 1|}. (A.7)

The derivation of D(B)
n+1 is similar.

Acknowledgments

This work was supported by Grants DMS-0907297 and DMS-0906661 from the National
Science Foundation (USA).

References

[1] D. McEntegart, “The pursuit of balance using stratified and dynamic randomization techniques: an
overview,” Drug Information Journal, vol. 37, pp. 293–308, 2003.

[2] J. Ciolino, W. Zhao, R. Martin, and Y. Palesch, “Quantifying the cost in power of ignoring continuous
covariate imbalances in clinical trial randomization,” Contemporary Clinical, vol. 32, no. 2, pp. 250–259,
2011.

[3] G. Kundt, “Comparative evaluation of balancing properties of stratified randomization procedures,”
Methods of Information in Medicine, vol. 48, pp. 129–134, 2009.

[4] A. Hagino, C. Hamada, I. Yoshimura, Y. Ohashi, J. Sakamoto, and H. Nakazato, “Statistical
comparison of random allocation methods in cancer clinical trials,” Controlled Clinical Trials, vol. 25,
no. 6, pp. 572–584, 2004.

[5] A. Endo, F. Nagatani, C. Hamada, and I. Yoshimura, “Minimization method for balancing continuous
prognostic variables between treatment and control groups using Kullback-Leibler divergence,”
Contemporary Clinical Trials, vol. 27, no. 5, pp. 420–431, 2006.



Journal of Probability and Statistics 13

[6] Z. Su, “Balancingmultiple baseline characteristics in randomized clinical trials,” Contemporary Clinical
Trials, vol. 32, no. 4, pp. 547–550, 2011.

[7] S. J. Pocock and R. Simon, “Sequential treatment assignment with balancing for prognostic factors in
the controlled clinical trial,” Biometrics, vol. 31, no. 1, pp. 103–115, 1975.

[8] L. J. Wei, “An application of an urnmodel to the design of sequential controlled clinical trials,” Journal
of the American Statistical Association, vol. 73, no. 363, pp. 559–563, 1978.

[9] M. Zelen, “The randomization and stratification of patients to clinical trials,” Journal of Chronic
Diseases, vol. 27, pp. 365–375, 1974.

[10] D. F. Signorini, O. Leung, R. J. Simes, E. Beller, V. J. Gebski, and T. Callaghan, “Dynamic balanced
randomization for clinical trials,” Statistics in Medicine, vol. 12, no. 24, pp. 2343–2350, 1993.

[11] S. Heritier, V. Gebski, and A. Pillai, “Dynamic balancing randomization in controlled clinical trials,”
Statistics in Medicine, vol. 24, no. 24, pp. 3729–3741, 2005.

[12] Y. Hu and F. Hu, “Asymptotic properties of covariate-adaptive randomization,” The Annals of
Statistics. In press.

[13] C. J. Weir and K. R. Lees, “Comparison of stratification and adaptive methods for treatment allocation
in an acute stroke clinical trial,” Statistics in Medicine, vol. 22, no. 5, pp. 705–726, 2003.

[14] F. K. Hoehler, “Balancing allocation of subjects in biomedical research: a minimization strategy based
on ranks,” Computers and Biomedical Research, vol. 20, no. 3, pp. 209–213, 1987.

[15] J. W. Frane, “A method of biased coin randomization, its implementation, and its validation,” Drug
Information Journal, vol. 32, no. 2, pp. 423–432, 1998.

[16] B. Stigsby and D. R. Taves, “Rank-Minimization for balanced assignment of subjects in clinical trials,”
Contemporary Clinical Trials, vol. 31, no. 2, pp. 147–150, 2010.

[17] C. B. Begg and B. Iglewicz, “A treatment allocation procedure for sequential clinical trials,” Biometrics,
vol. 36, no. 1, pp. 81–90, 1980.

[18] A. C. Atkinson, “Optimum biased coin designs for sequential clinical trials with prognostic factors,”
Biometrika, vol. 69, no. 1, pp. 61–67, 1982.

[19] R. L. Smith, “Properties of biased coin designs in sequential clinical trials,” The Annals of Statistics,
vol. 12, no. 3, pp. 1018–1034, 1984.

[20] R. L. Smith, “Sequential treatment allocation using biased coin designs,” Journal of the Royal Statistical
Society. Series B, vol. 46, no. 3, pp. 519–543, 1984.

[21] W. F. Rosenberger and O. Sverdlov, “Handling covariates in the design of clinical trials,” Statistical
Science, vol. 23, no. 3, pp. 404–419, 2008.

[22] B. Efron, “Forcing a sequential experiment to be balanced,” Biometrika, vol. 58, pp. 403–417, 1971.
[23] Y. Lin and Z. Su, “Balancing continuous and categorical baseline covariates in sequential clinical trials

using the area between empirical cumulative distribution functions,” Statistics in Medicine, vol. 31, no.
18, pp. 1961–1971, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


