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The Sharpe ratio is the prominent risk-adjusted performance measure used by practitioners.
Statistical testing of this ratio using its asymptotic distribution has lagged behind its use. In this
paper, highly accurate likelihood analysis is applied for inference on the Sharpe ratio. Both the one-
and two-sample problems are considered. The methodology has O(n−3/2) distributional accuracy
and can be implemented using any parametric return distribution structure. Simulations are
provided to demonstrate the method’s superior accuracy over existing methods used for testing in
the literature.

1. Introduction

Themeasurement of fund performance is an integral part of investment analysis. Investments
are often ranked and evaluated on the basis of their risk-adjusted returns. Several risk-
adjusted performance measures are available to money managers of which the Sharpe ratio
is the most popular. Introduced by William Sharpe in 1966 [1], this ratio provides a measure
of a fund’s excess returns relative to its volatility. Expressed in its usual form, the Sharpe ratio
for an asset with an expected return given by μ and standard deviation given by σ is given
by the following:

SR =
μ − Rf

σ
, (1.1)
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where Rf is the risk-free rate of return. From this expression, it is clear to see how this ratio
provides a measure of a fund’s excess return per unit of risk.

The Sharpe ratio has been extensively studied in the literature. The main criticism
leveled against this measure concerns its reliance on only the first two moments of the
returns distribution. If investment returns are normally distributed then the Sharpe ratio
can be justified. On the other hand, if returns are asymmetric then it can be argued that
the measure may not accurately describe the fund’s performance as moments reflecting
skewness and kurtosis are not captured by the ratio. To address this issue, several
measures exist in the literature which integrate higher moments into the performance
measure. The Omega measure is one such measure that uses all the available information
in the returns distribution. Keating and Shadwick [2] provide an introduction to this
measure. While various methods are available, they are also more complex and often
very difficult to implement in practice. To gauge the trade-off between the attractiveness
of such measures and their cost, Eling and Schuhmacher [3] compared the Sharpe ratio
with 12 other approaches to performance measurement. Eling and Schuhmacher [3]
focussed on the returns of 2,763 hedge funds. Hedge funds are known to have return
distributions which differ significantly from the normal distribution and, as such, provide
a rich and relevant environment for such a comparison. Their study concluded that the
Sharpe ratio produced rankings that were largely identical to those obtained from the
12 other performance measures. In other words, the choice of performance measure did
not matter much in terms of ranking funds. From a practical perspective, this imparts
credibility to the use of the Sharpe ratio for ranking funds with highly nonnormal
returns.

Our focus in this paper is on the statistical properties of the Sharpe ratio. While
this ratio may be the most widely known and used measure of risk-adjusted performance
for an investment fund, fund managers rarely (if ever) indicate any measure of associated
statistical significance of their rankings. This point was made in Opdyke [4]. We use
a likelihood-based statistical method to obtain highly accurate p values and confidence
intervals for evaluating the significance of the Sharpe ratio. While the methodology we
use is applicable under any parametric distributional assumption, for expositional clarity
we demonstrate the use of the method under the assumption of normal returns. We
investigate inference for both the one-sample problem as well as the two-sample problem.
We compare our method to currently existing methods in the literature. Simulations
indicate the superior performance of the method compared to existing methods in the
literature.

The paper is organized as follows. Section 2 provides an overview of the asymptotic
distribution of the Sharpe ratio under various assumptions. Section 3 lays out the framework
for the likelihood-based approach we will use for testing. Section 4 applies this methodology
for inference on the Sharpe ratio. Examples and simulations for this one-sample case are then
presented in Section 5. The two-sample problem is given in Section 6, with example and
simulations presented in Section 7. Section 8 concludes.

2. Distribution of the Sharpe Ratio

Jobson and Korkie [5] and Lo [6] derived the asymptotic distribution of the Sharpe ratio
assuming identically and independently normally distributed returns. Consider a fund with
a return at time t given by Rt, t = 1, . . . , T . Further assume that the returns are identically and
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independently distributed (IID) asN(μ, σ2). If we let the vector θ = (μ, σ2)′, then as given in
Lo [6] we have the following asymptotically normal distribution for ̂θ:

√
T
(

̂θ − θ
)

−→N(0, V ), (2.1)

where

V ≡
(

σ2 0
0 2σ4

)

, (2.2)

and ̂θ = (μ̂, σ̂2)′ is the maximum likelihood estimator (MLE) with μ̂ and σ̂2 given by the
following formulas

μ̂ =
1
T

T
∑

t=1

Rt,

σ̂2 =
1
T

T
∑

t=1

(

Rt − μ̂
)2
.

(2.3)

Lo’s result is straightforward to prove. For large samples, by the central limit theorem, we
have

(

̂θ − θ
)′[

var
(

̂θ
)]−1(

̂θ − θ
)

−→ χ2
k, (2.4)

where k = dim(θ) and

var
(

̂θ
)

=
(

var
(

μ̂
)

cov
(

μ̂, σ̂2)

cov
(

μ̂, σ̂2) var
(

σ̂2)

)

. (2.5)

See for instance, Cox and Hinkley [7] for this result. Given μ = (1, 0)θ and σ2 = (0, 1)θ, we
have

(

μ̂ − μ)
√

var
(

μ̂
)

−→N(0, 1),

(

σ̂2 − σ2)

√

var(σ̂2)
−→N(0, 1). (2.6)

Given the Sharpe ratio is a function of θ, the Delta method can be used to derive its
asymptotic distribution. Let SR = g(θ) be a continuous function with Jacobian denoted by
∂g(θ)/∂θ and let the Sharpe ratio estimate be given by ̂SR = g(̂θ). Applying a first-order
Taylor expansion on g(̂θ) around the true parameter value θ, we have

g
(

̂θ
) .= g(θ) +

[

∂g(θ)
∂θ

]′
(

̂θ − θ
)

. (2.7)
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Rearranging terms and multiplying by
√
T yields

√
T
(

g
(

̂θ
)

− g(θ)
) .=

[

∂g(θ)
∂θ

]′√
T
(

̂θ − θ
)

. (2.8)

Using the above result and applying the Delta method, we have the asymptotic distribution
of g(̂θ):

√
T
(

g
(

̂θ
)

− g(θ)
) .=

[

∂g(θ)
∂θ

]′√
T
(

̂θ − θ
)

−→N

(

0,
[

∂g(θ)
∂θ

]′
V
∂g(θ)
∂θ

)

. (2.9)

Note that the Jacobian term is readily computed as follows:

∂g(θ)
∂θ

=

⎛

⎜

⎜

⎜

⎝

∂g(θ)
∂μ

∂g(θ)
∂σ2

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1
σ

−
(

μ − Rf

)

2σ3

⎞

⎟

⎟

⎠

. (2.10)

Combining terms yields the variance of the asymptotic distribution:

[

∂g(θ)
∂θ

]′
V
∂g(θ)
∂θ

= 1 +

(

μ − Rf

)2

2σ2
= 1 +

1
2
SR2. (2.11)

By the central limit theorem, the distribution of the Sharpe ratio assuming identically and
independently distributed normal returns is therefore

√
T
(

̂SR − SR
)

√

1 + (1/2)̂SR
2
−→N(0, 1). (2.12)

From this distribution, 100(1−α)% confidence intervals for the Sharpe ratio can be constructed
in the usual fashion:

̂SR ± zα/2

√

√

√

√

(

1 + (1/2)̂SR
2)

T
,

(2.13)

where zα/2 is the 100 × (1 − α/2)th percentile of the standard normal distribution.
The above derivation only holds under the IID normal assumption. Under the IID

assumption but without assuming normally distributed returns, Mertens [8] derived the
following asymptotic distribution of the Sharpe ratio:

√
T
(

̂SR − SR
)

√

1 + (1/2)̂SR
2 − ̂SR · γ̂3 + ̂SR

2 · ((γ̂4 − 3
)

/4
)

−→N(0, 1), (2.14)
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where γ3 and γ4 are defined as follows:

γ3 =
E
(

Rt − μ
)3

σ3
, γ4 =

E
(

Rt − μ
)4

σ4
with σ2 = 1 +

1
2
SR2. (2.15)

Christie [9] derived the asymptotic distribution of the Sharpe ratio under the more
relaxed assumption of stationarity and ergodicity. Opdyke [4] interestingly showed that the
derivation provided by Christie [9] under the non-IID returns condition was in fact identical
to the one provided by Mertens [8]. For a complete discussion and proof see Opdyke [4].
For our purposes, we will use asymptotic distributions (2.12) and (2.14) to compare to our
proposed likelihood-based approach. In the next section below we review the likelihood-
based approach to inference and in the following section we apply the methodology to the
Sharpe ratio.

3. Likelihood-Based Approach to Inference

In this section we review standard first-order likelihood methods and then turn our attention
to higher-order methods. For this section, the underlying model under consideration is as
follows: Y = (Y1, . . . , Yn) is a vector of IID random variables with density given by f(·; θ),
where θ is a k-dimensional vector of parameters. Statistical inference concerns drawing
conclusions about θ or a function of θ, namely, ψ = ψ(θ), given an observed sample
y = (y1, . . . , yn) and in this paper we assume that the interest parameter is ψ(θ). We further
assume that this interest parameter is scalar. Let λ = λ(θ) be a (k − 1)-dimensional nuisance
parameter vector. The log-likelihood function of θ is

l(θ) = l
(

θ;y
)

= log

(

n
∏

i=1

f
(

yi; θ
)

)

. (3.1)

Likelihood analysis typically involves the maximum likelihood estimator (MLE) ̂θ =
(ψ̂, ̂λ′)

′
= arg maxθl(θ;y) and the constrained maximum likelihood estimator ˜θ = (ψ, ̂λ′)

′
=

arg maxλl(θ;y), where the maximum is taken for fixed values of ψ. The constrained MLE
can be solved by maximizing l(θ) subject to ψ(θ) = ψ. This is often done using the Lagrange
multiplier method where the Lagrangean is given by the following:

H(θ, α) = l
(

θ;y
)

+ α
[

ψ(θ) − ψ]. (3.2)

The Lagrange multiplier is given by α̂. The tilted log-likelihood is defined as follows:

˜l(θ) = l(θ) + α̂
[

ψ(θ) − ψ]. (3.3)
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Using the above information, standard first-order departuremeasures can be obtained.
These measures include the Wald departure (the standardized maximum likelihood estima-
tor) and the signed square root log-likelihood ratio statistic:

q ≡ q(ψ) = (ψ̂ − ψ)[var(ψ̂)]−1/2, (3.4)

R ≡ R(ψ) = sgn
(

ψ̂ − ψ)
{

2
[

l
(

̂θ;y
)

− l
(

˜θ;y
)]}1/2

. (3.5)

Note that var(ψ̂) can be estimated by using the Delta method

v̂ar
(

ψ̂
) ≈ ψ ′

θ

(

̂θ
)[

var
(

̂θ
)]

ψθ
(

̂θ
)

, (3.6)

where the variance of ̂θ, var(̂θ), can be estimated by using either the Fisher expected infor-
mation matrix

E

[

−∂
2l(θ)
∂θ∂θ′

]

, (3.7)

or the observed information matrix evaluated at the MLE

jθθ′
(

̂θ
)

= −∂
2l(θ)
∂θ∂θ′

∣

∣

∣

∣

∣

θ=̂θ

. (3.8)

The latter is preferred however because of the simplicity in calculation. The p value function
for these methods are p(ψ) = Φ(q) and p(ψ) = Φ(R), whereΦ represents the standard normal
cumulative distribution function. These p value functions have order of convergenceO(n−1/2)
and are correspondingly referred to as first-order methods (note that (3.5) is invariant to
reparameterization whereas (3.4) is not. However, in practice, (3.4) is preferred because of
its simplicity of use. Doganaksoy and Schmee [10] illustrate that (3.5) has better coverage
than (3.4) in the cases they examined). A 100(1−α)% confidence interval is then given by the
following:

{

min
[

p−1
(α

2

)

, p−1
(

1 − α

2

)]

,max
[

p−1
(α

2

)

, p−1
(

1 − α

2

)]}

. (3.9)

Approximations aimed at improving the accuracy of the first-ordermethods have been
worked on during the past three decades. Higher-order asymptotic approximations for the
distribution of an estimate can be constructed using expansion methods of which Edgeworth
expansions and saddlepoint approximations are most common. Edgeworth approximations
tend to produce good approximations near the center of a distribution, with relatively poorer
tail approximations, while saddlepoint approximations produce remarkably accurate tail
approximations. Given we are interested in tail probabilities, our focus will thus be on
approximation methods that use the saddlepoint method. We will not review the saddlepoint
approximation literature here but the interested reader is directed to Daniels [11, 12] and
Barndorff-Nielsen and Cox [13].
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For a canonical exponential family model with canonical parameter vector θ = (ψ, λ′)′

and density

f
(

y; θ
)

= exp
{

ψu
(

y
)

+ λ′v
(

y
) − c(θ) + d(y)}, (3.10)

where (U(Y ), V (Y )) is a minimal sufficient statistic for θ, the saddlepoint-based approxima-
tion for the density of ̂θ is given as follows:

f
(

̂θ; θ
) .= c

∣

∣

∣jθθ′
(

̂θ
)∣

∣

∣

1/2
exp

[

l
(

θ;y
) − l

(

̂θ;y
)]

, (3.11)

where c is a normalizing constant. This extremely important approximation to the density
of the maximum likelihood estimator is referred to as Barndorff-Nielsen’s p∗ formula and
can be found in Barndorff-Nielsen [14] (this approximation is valid for more general models
but requires the existence of an ancillary statistic). Thus the marginal density for ψ̂ can be
obtained. In general however, the closed form of the marginal density is not available.

Fraser et al. [15] showed that the result by Lugannani and Rice [16] can be applied to
approximate the p value function and it takes the form:

p
(

ψ
) .= Φ(R) + φ(R)

(

1
R

− 1
Q

)

. (3.12)

The statistic Q is given by the following:

Q ≡ Q(ψ) = (ψ̂ − ψ)
∣

∣

∣jθθ′
(

̂θ
)∣

∣

∣

1/2∣
∣

∣jλλ′
(

˜θ
)∣

∣

∣

−1/2
, (3.13)

where jθθ′(̂θ) is the observed information matrix and jλλ′(˜θ) is the observed nuisance infor-
mation matrix defined as follows:

jθθ′
(

̂θ
)

= −∂
2l
(

θ;y
)

∂θ∂θ′

∣

∣

∣

∣

∣

θ=̂θ

, (3.14)

jλλ′
(

˜θ
)

= −∂
2l
(

θ;y
)

∂λ∂λ′

∣

∣

∣

∣

∣

θ=˜θ

. (3.15)

The term |jθθ′(̂θ)||jλλ′(˜θ)|
−1

can be viewed as an estimate of the variance of ψ̂, where the eli-
mination of the nuisance parameter λ has been taken into consideration. Note that Q is a
standardized maximum likelihood departure in the canonical parameter scale. The statistic
R is the log-likelihood ratio given by (3.5). An alternate approximation to (3.12) is given by
Barndorff-Nielsen [17]:

p
(

ψ
) .= Φ

(

R − 1
R
log

(

R

Q

))

.= Φ(R∗). (3.16)
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These approximations are asymptotically equivalent (see [18]) and have order of conver-
gence O(n−3/2). They are correspondingly referred to as third-order methods. Hence 100(1 −
α)% confidence interval for ψ can be obtained from (3.9).

Consider now a general full rank exponential family model with parameter vector θ
and density given by the following:

f
(

y; θ
)

= exp
{

ϕ′(θ)t
(

y
) − c(θ) + h(t(y))}, (3.17)

where ϕ(θ) is the canonical parameter and t(y) is the canonical variable. In order to use
either the Lugannani and Rice approximation given in (3.12) or the Barndorff-Nielsen
approximation given in (3.16) for inference on our interest parameter ψ(θ), we need to
calculate bothR andQ in ϕ(θ) scale. Note thatR calculated in the original θ scale is equivalent
toR calculated in ϕ(θ) scale. Moreover, Fraser and Reid [19] derive aQ in the ϕ(θ) scale. Their
methodology involves replacing the parameter of interest ψ by a linear function of the ϕ(θ)
coordinates (for a detailed discussion and derivation see Fraser and Reid [19]). This newly
calibrated parameter is given by the following:

χ(θ) = ψθ′
(

˜θ
)

ϕ−1
θ′

(

˜θ
)

ϕ(θ). (3.18)

Then |χ(̂θ) − χ(˜θ)| measures the departure of |ψ̂ − ψ| in the ϕ(θ) scale. The function Q is then
constructed as follows:

Q = sgn
(

ψ
(

̂θ
)

− ψ
)∣

∣

∣χ
(

̂θ
)

− χ
(

˜θ
)∣

∣

∣

[

v̂ar
(

χ(̂θ) − χ(˜θ)
)]−1/2

. (3.19)

Fraser and Reid [19] show that

v̂ar
(

χ
(

̂θ
)

− χ
(

˜θ
))

≈
ψ ′
θ′

(

˜θ
)

j̃−1θθ′
(

˜θ
)

ψθ′
(

˜θ
)∣

∣

∣j̃θθ′
(

˜θ
)∣

∣

∣

∣

∣

∣ϕθ′
(

˜θ
)∣

∣

∣

−2

∣

∣

∣jθθ′
(

̂θ
)∣

∣

∣

∣

∣

∣ϕθ′
(

̂θ
)∣

∣

∣

−2 , (3.20)

where jθθ′(̂θ) is defined in (3.14) and j̃θθ′(˜θ) is defined as follows:

j̃θθ′
(

˜θ
)

= −∂
2
˜l(θ)

∂θ∂θ′

∣

∣

∣

∣

∣

θ=˜θ

, (3.21)

where ˜l(θ) is the tilted log-likelihood function defined in (3.3). The functionQ in (3.19) along
with R is used in the Lugannani and Rice approximation in (3.12) or the Barndorff-Nielsen
expression in (3.16) which implicitly yields a new R∗.

In the next section we apply the above methodology and use Barndorff-Nielsen’s
approximation to obtain highly accurate p values to test particular hypothesized values of
the Sharpe ratio. We further note that for all our examples and simulations in this paper, the
Lugannani and Rice expression given in (3.12) was also used but we do not report results
from this method as they are virtually identical to those produced by the Barndorff-Nielsen
expression.
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4. Methodology for the Sharpe Ratio

We emphasize that while the third-order methodology discussed in the previous section
is applicable under any parametric distributional assumptions, for expositional clarity we
demonstrate the use of the method under the assumption of IID normal returns (see Fraser
et al. [20] for the general model setup). Consider a fund with return at time t given by Rt,
(t = 1, . . . , T). And let Rf be the mean return for the risk-free asset. We assume that R1, . . . RT

IIDN(μ, σ2). The interest parameter is the Sharpe Ratio:

SR =
μ − Rf

σ
= ψ, (4.1)

and θ = (μ, σ2)′. The log-likelihood and related first and second derivatives, denoted by l·(θ)
and l··(θ), respectively, are given as follows:

l(θ) = l
(

μ, σ2
)

= −T
2
logσ2 − 1

2σ2
Σ
(

Rt − μ
)2
,

lμ(θ) =
1
σ2

Σ
(

Rt − μ
)

,

lσ2(θ) = − T

2σ2
+

1
2σ4

Σ
(

Rt − μ
)2
,

lμμ(θ) = − T

σ2
,

lμσ2(θ) = − 1
σ4

Σ
(

Rt − μ
)

,

lσ2σ2(θ) =
T

2σ4
− 1
σ6

Σ
(

Rt − μ
)2
.

(4.2)

To obtain the maximum likelihood estimators, the first order conditions

lμ(θ) = 0,

lσ2(θ) = 0
(4.3)

are solved, and we have

μ̂ = R,

σ̂2 =
Σ
(

Rt − R
)2

T
.

(4.4)

The estimated Sharpe ratio is then

̂SR =
μ̂ − Rf

σ̂
. (4.5)
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The observed information matrix is given as jθθ′(θ) = −lθθ′(θ) which can be expressed as
follows:

jθθ′(θ) =

[−lμμ(θ) −lμσ2(θ)

−lσ2μ(θ) −lσ2σ2(θ)

]

=

⎡

⎢

⎢

⎣

T

σ2

1
σ4

Σ
(

Rt − μ
)

1
σ4

Σ
(

Rt − μ
) − T

2σ4
+

1
σ6

Σ
(

Rt − μ
)2

⎤

⎥

⎥

⎦

. (4.6)

The observed information matrix is then evaluated at the MLE:

jθθ′
(

̂θ
)

=

⎛

⎜

⎝

T

σ̂2
0

0
T

2σ̂2

⎞

⎟

⎠ (4.7)

with determinant equal to

∣

∣

∣jθθ′
(

̂θ
)∣

∣

∣ =
(

T

σ̂2

)(

T

2σ̂4

)

=
T2

2σ̂6
. (4.8)

To solve for the constrained MLE, the Lagrange multiplier method from (3.2) is used

H(θ, α) = l(θ) + α
[

μ − Rf

σ
− ψ

]

, (4.9)

with first derivatives equal to

Hμ(θ, α) = lμ(θ) +
α

σ
,

Hσ2(θ, α) = lσ2(θ) − α
(

μ − Rf

)

2σ3
,

Hα(θ, α) =
μ − Rf

σ
− ψ.

(4.10)

Setting these first derivatives equal to zero, we have:

α̂ = −σ̃lμ
(

˜θ
)

, (4.11)

μ̃ = Rf + ψσ̃, (4.12)

lσ2

(

˜θ
)

+ σ̃lμ
(

˜θ
) μ̃ − Rf

2σ̃3
= 0. (4.13)

Working on (4.13)we have

− T

2σ̃2
+

1
2σ̃4

Σ
(

Rt − μ̃
)2 + σ̃

1
σ̃2

Σ
(

Rt − μ̃
) μ̃ − Rf

2σ̃3
= 0 (4.14)
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which further simplifies to

−Tσ̃2 − ψΣ(Rt − Rf

)

σ̃ + Σ
(

Rt − Rf

)2 = 0. (4.15)

If we let rt = Rt − Rf and r = Σrt/T , then we have

σ̃2 + ψrσ̃ − Σr2t
T

= 0 (4.16)

with

σ̃ =
−ψr +

√

(

ψr
)2 + 4

(

Σr2t /T
)

2
, since σ̃ > 0. (4.17)

The constrained MLE are therefore given by:

σ̃ =
−ψr +

√

(

ψr
)2 + 4

(

Σr2t /T
)

2
,

μ̃ = Rf + ψσ̃,

α̂ = T

(

ψ − r

σ̃

)

,

(4.18)

so that ˜θ = (μ̃, σ̃2)′. Using these constrained maximum likelihood estimators we are able to
obtain the titled log-likelihood as defined in (3.3), and the corresponding first and second
derivatives are:

˜l(θ) = l(θ) + α̂
(

μ − Rf

σ
− ψ

)

,

˜lμ(θ) = lμ(θ) +
α̂

σ
,

˜lσ2(θ) = lσ2(θ) − α̂
(

μ − Rf

2σ3

)

,

˜lμμ(θ) = lμμ(θ),

˜lμσ2(θ) = lμσ2(θ) − α̂

2σ3
,

˜lσ2σ2(θ) = lσ2σ2(θ) +
3
4
α̂
(

μ − Rf

)

σ5
.

(4.19)
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We can use these second derivatives to calculate j̃θθ′(˜θ) as

j̃θθ′
(

˜θ
)

=

⎛

⎜

⎝

−˜lμμ
(

˜θ
)

−˜lμσ2

(

˜θ
)

−˜lσ2μ

(

˜θ
)

−˜lσ2σ2

(

˜θ
)

⎞

⎟

⎠. (4.20)

For the normal model, the canonical parameter is given by:

ϕ(θ) =
(

μ

σ2
,
1
σ2

)′
. (4.21)

Two related matrices derived from the canonical parameter are given below

ϕθ(θ) =

⎛

⎜

⎜

⎜

⎝

1
σ2

− μ

σ4

0 − 1
σ4

⎞

⎟

⎟

⎟

⎠

, (4.22)

ϕ−1
θ (θ) =

(

σ2 −μσ2

0 −σ4

)

. (4.23)

With our parameter of interest

ψ(θ) =
μ − Rf

σ
(4.24)

we have

ψθ(θ) =
(

ψμ(θ), ψσ2(θ)
)

=
(

1
σ
,−μ − Rf

2σ3

)

. (4.25)

Quantities (4.21), (4.23), and (4.25) can be used to calculate (3.18). The quantity v̂ar(χ(̂θ) −
χ(˜θ)) can further be calculated. We now have all the ingredients to calculate R∗(ψ) given in
(3.16).

5. Examples and Simulations

In this section, we provide examples and simulations for inference on the Sharpe ratio. We
compute confidence intervals and p values using our proposed third-order method given
in (3.16). We label this method “proposed” in the tables below. We compare our results to
those obtained by using the existing methods, in particular, using both the Jobson and Korkie
[5] asymptotic distribution in (2.12) and the Mertens [8] distribution given in (2.14). These
methods are labeled as “Jobson and Korkie” and “Mertens,” respectively. Results from the
signed square root log-likelihood ratio statistic in (3.5) are additionally provided and labeled
“likelihood ratio.”
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Table 1: Monthly return prices.

Month Fund Market Cash
1 1.155809268 1.021191715 1.071489631
2 1.165211551 1.022641807 1.07422193
3 1.183344526 1.060673856 1.077202896
4 1.184016118 1.05100051 1.080281901
5 1.186030893 1.059513614 1.083405716
6 1.163196776 1.041851522 1.08684553
7 1.190732035 1.081254347 1.090341549
8 1.19677636 1.081621973 1.093957849
9 1.216252518 1.110263323 1.097941679
10 1.222296843 1.113272137 1.102068109
11 1.224311618 1.127132375 1.106210049
12 1.234385376 1.141573195 1.110450484

Table 2: 95% Confidence Intervals for the sharpe Ratio.

Method 95% CI for SR (Fund) 95% CI for SR (Market)
Jobson and Korkie (−0.2238, 0.9441) (−0.1009, 1.0992)
Mertens (−0.2838, 1.0042) (−0.0644, 1.0626)
Likelihood Ratio (−0.2087, 0.9624) (−0.0800, 1.1261)
Proposed (−0.2319, 0.9383) (−0.1122, 1.0924)

5.1. Examples

The dataset for our examples consists of monthly return prices for three time series. The first
series represents return prices for a large-cap mutual fund (Fund), the second for a market
index (Market), and the third for 90-day Treasury bills (Cash). This data spans a period
of one year. The data is listed in Table 1 and originates from the Matlab Financial Toolbox
User’s Guide (data in the User’s Guide is provided for a 5-year period. We focus on the most
recent year of data. See Section 4: Investment Performance Metrics of the manual for further
information).

Table 2 reports 95% confidence intervals for the Sharpe ratio separately for the large-
cap mutual fund and the market index for the four methods discussed previously. Monthly
returns are calculated from the return prices listed in Table 1 and are used to calculate the
Sharpe ratio. The mean of the 90-day Treasury returns is used as the risk-free rate. Table 2
shows that the confidence intervals obtained from the four methods produce rather different
results. Theoretically, the proposed method has third-order accuracy whereas the remaining
three methods do not. Although the confidence intervals produced by the Jobson and Korkie
[5] approximation have the best concordance with those produced by the proposed method,
the difference is still noticeable. This result will be borne out in the simulations as well.

The p value functions calculated from the methods discussed in this paper for the
Sharpe ratio for the large-cap mutual fund and the Sharpe ratio for the market index are
plotted in Figures 1 and 2, respectively. These significance functions can be used to obtain p
values for specific hypothesized values of the Sharpe ratio. As we are typically interested in
tail probabilities which tend to be small, it is important to estimate such probabilities with
precision. A few values with their corresponding p values are provided in Tables 3 and 4 for
themarket fund andmarket index, respectively. From these tables we can see that the p values
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Figure 1: p value function for Fund.
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Figure 2: p value function for Market.

vary across the methods. If for instance, interest is on testing whether SR = 1 for either fund,
then the corresponding p values for such a test are given in the last column of Tables 3 and 4.
Focussing on the market index and using a 5% level of significance, the Sharpe ratio may or
may not be statistically significant depending on the method chosen for the hypothesis test.
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Table 3: Fund: p values for SR.

Method SR
−0.25 0 0.25 0.50 0.75 1

Jobson and Korkie 0.9797 0.8867 0.6442 0.3194 0.0953 0.0159
Mertens 0.9684 0.8635 0.6313 0.3352 0.1177 0.0257
Likelihood ratio 0.9821 0.8962 0.6637 0.3393 0.1055 0.0185
Proposed 0.9784 0.8813 0.6344 0.3107 0.0917 0.0151

Table 4: Market: p values for SR.

Method SR
−0.25 0 0.25 0.50 0.75 1

Jobson and Korkie 0.9928 0.9485 0.7921 0.4989 0.2063 0.0509
Mertens 0.9954 0.9588 0.8070 0.4988 0.1914 0.0407
Likelihood ratio 0.9941 0.9553 0.8114 0.5277 0.2289 0.0603
Proposed 0.9921 0.9444 0.7813 0.4849 0.1976 0.0484

5.2. Simulations

Two simulation studies of size 10,000 were performed to compare the three existing methods
to the proposed third-order method. The first simulation was constructed to mimic the
mutual fund return data from the above example and the second to mimic the market
index returns: X ∼ N(0.007378393, 0.01137605), Y ∼ N(0.01211267, 0.01789324) and Rf =
0.003181247. 90%, 95%, and 99% confidence intervals for the Sharpe ratio were obtained for
each sample and the lower probability error, the upper probability error, and the central
coverage were recorded. Lower (upper) probability error refers to the proportion of times the
true parameter value falls below (above) the confidence interval. Central coverage is defined
as the proportion of times the true parameter values falls within the confidence intervals.
Tables 5 and 6 report the results from these simulations for the fund and market returns,
respectively. For reference, the nominal values and the corresponding standard errors have
been included for each the lower probability error, the upper probability error, and the central
coverage.

From these results tables it is clear that the third-order method outperforms the other
three methods based on the criteria we examined. It must be noted however, that the Jobson
and Korkie [5] method provides surprisingly good results. We note that other values for the
parameters of the simulation were chosen (but not reported) and the results were consistent
with the reported results. Standard errors for the simulations can easily be computed.
This information has been included in the tables and labeled “standard error.” From these
standard errors, it can be seen that the proposed method produces results that are uniformly
within three standard deviations of the nominal value. The other three methods produce less
satisfactory results.

6. The Two-Sample Case

Suppose one is interested in testing hypotheses concerning the Sharpe ratios of two funds
X and Y . For instance, one may be interested in testing the null hypothesis SRX ≥ SRY
or SRX = SRY against the alternative hypothesis SRX < SRY or SRX /= SRY , respectively.
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Table 5: Results for simulation study for fund for n = 12.

CI Method Lower error Upper error Central coverage
Jobson and Korkie 0.0586 0.0521 0.8893

Mertens 0.0778 0.0507 0.9715

90% Likelihood ratio 0.0712 0.0529 0.8759
Proposed 0.0512 0.0502 0.8986
Nominal 0.0500 0.0500 0.9000

Standard error 0.0022 0.0022 0.0030
Jobson and Korkie 0.0319 0.0267 0.9414

Mertens 0.0514 0.0278 0.9208

95% Likelihood ratio 0.0416 0.0285 0.9299
Proposed 0.0279 0.0251 0.9470
Nominal 0.0250 0.0250 0.9500

Standard error 0.0016 0.0016 0.0022
Jobson and Korkie 0.0059 0.0065 0.9876

Mertens 0.0208 0.0072 0.9720

99% Likelihood ratio 0.0098 0.0072 0.9830
Proposed 0.0048 0.0052 0.9900
Nominal 0.0050 0.0050 0.9900

Standard error 0.0007 0.0007 0.0010

Table 6: Results for simulation study for market for n = 12.

CI Method Lower error Upper error Central coverage
Jobson and Korkie 0.0622 0.0518 0.8860

Mertens 0.0930 0.0514 0.8556

90% Likelihood ratio 0.0821 0.0513 0.8666
Proposed 0.0528 0.0514 0.8958
Nominal 0.0500 0.0500 0.9000

Standard error 0.0022 0.0022 0.0030
Jobson and Korkie 0.0320 0.0290 0.9390

Mertens 0.0500 0.0284 0.9216

95% Likelihood ratio 0.0407 0.0303 0.9290
Proposed 0.0280 0.0275 0.9445
Nominal 0.0250 0.0250 0.9500

Standard error 0.0016 0.0016 0.0022
Jobson and Korkie 0.0053 0.0061 0.9886

Mertens 0.0245 0.0073 0.9682

99% Likelihood ratio 0.0100 0.0069 0.9831
Proposed 0.0046 0.0053 0.9901
Nominal 0.0050 0.0050 0.9900

Standard error 0.0007 0.0007 0.0010

In this section we apply the third-order methodology described in Section 3 to test the
difference between the Sharpe ratios of two funds. Consider two funds with returns given
by (x1, . . . , xn) and (y1, . . . , ym). Further assume for expositional clarity that these returns
are identically and independently distributed as N(μX, σ2

X) and N(μY , σ2
Y ), respectively.
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The mean return for the risk-free asset is given by Rf . Our interest is in testing the difference
in Sharpe ratios of the two funds. The interest parameter ψ is then defined as follows:

ψ =
μX − Rf

σX
− μY − Rf

σY
. (6.1)

The log-likelihood function for this problem is written as follows:

l(θ) = l
(

μX, σ
2
X, μY , σ

2
Y

)

= −n
2
logσ2

X − 1
2σ2

X

Σ
(

xi − μX
)2 − m

2
logσ2

Y − 1
2σ2

Y

Σ
(

yi − μY
)2
.
(6.2)

The corresponding first derivatives are

lμX =
1
σ2
X

Σ
(

xi − μX
)

,

lσ2
X
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2σ2
X
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1

2σ4
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,

lσ2
Y
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Σ
(
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.

(6.3)

These first derivatives are set equal to zero and simultaneously solved for the overall MLE:

μ̂X = x,

σ̂2
X =

Σ(xi − x)2
n

,

μ̂Y = y,

σ̂2
Y =

Σ
(

yj − y
)2

m
.

(6.4)
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The second derivatives are required to obtain the observed information matrix:
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(6.5)

Evaluating this observed information matrix at the MLE produces jθθ(̂θ)with corresponding
determinant denoted by |jθθ(̂θ)|.

To solve for the constrained MLE, the Lagrange multiplier method is used

H(θ) = l(θ) + α

⎡

⎢

⎣
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⎦
, (6.6)

with the following first derivatives:
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Setting these derivatives equal to zero and solving the resulting system produces the
constrained MLE. The constrained MLE can be obtained by solving the following iteratively:

σ̃2
X =

Σ
(

xi − μ̃X
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(
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,
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,
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,
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(6.8)

and Lagrangian

α̂ =
Σ
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)

σ̃Y
. (6.9)

So we have ˜θ = (μ̃X, σ̃2
X, μ̃Y , σ̃

2
Y )

′. We are now able to define the tilted log-likelihood:

˜l(θ) = l(θ) + α̂
[
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, (6.10)

with first derivatives:
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The second derivatives are needed to calculate j̃θθ(θ):
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The canonical parameter for this model is given by the following:
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The matrices associated with this vector can now be calculated:
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Given our parameter of interest

ψ(θ) =
μX − Rf
√
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, (6.15)
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Table 7: 95% Confidence intervals for Sharpe ratio difference.

Method 95% CI
MLE (−0.9857, 0.6953)
Likelihood ratio (−0.9862, 0.6948)
Proposed (−0.9739, 0.7057)
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Quantities ϕθ(θ), ϕ−1
θ (θ) and ψθ(θ) can be used to calculate the new parameter χ(θ) given

in (3.18). The additional ingredients necessary for the construction of the standardized maxi-
mum likelihood departureQ given in (3.19) are readily available from the above information.

7. Example and Simulations

In this section we provide an example and a simulation study for the two-sample Sharpe ratio
case. We compare the third-order likelihood-based inference method to the classical methods
used for testing, namely, the maximum likelihood statistic and the likelihood ratio statistic.
These latter two statistics are analogous to expressions (3.4) and (3.5).

7.1. Example

For our example, we use the data presented in Table 1 to compare Sharpe ratios. We may
for instance, be interested in whether the mutual fund’s risk-adjusted return as captured by
the Sharpe ratio is significantly better than the market’s return. In Table 7 we present the
95% confidence interval for the difference between the Sharpe ratios for the mutual fund and
market index. We can see that while the intervals produced using the MLE and likelihood
ratio methods are similar, the interval obtained from the third-order method differs from
these methods. As this is an example, we cannot comment on which interval is more accurate,
but it is relevant to note the differences between the intervals which may be important in real
world settings. The p values for testing a null hypothesis of a zero difference between the
Sharpe ratios of the mutual fund and market index are given by: 0.3675, 0.3675, and 0.3777
for the MLE, likelihood ratio and proposed, respectively. As tail probabilities tend to be small
probabilities, it is important to approximate these as accurately as we can.

7.2. Simulations

In this section we provide a simulation study to assess the performance of the third-
order method relative the MLE and likelihood ratio. The size of each simulation is
10,000 and again the parameter values were chosen to mimic the example data: X ∼
N(0.007378393, 0.01137605), Y ∼ N(0.01211267, 0.01789324), and Rf = 0.003181247. Confi-
dence intervals for the difference between the Sharpe ratios for funds X and Y were obtained
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Table 8: Results for Simulation Study.

CI n,m Method Lower error Upper error Central coverage
MLE 0.0616 0.0704 0.8680

Likelihood ratio 0.0619 0.0712 0.8669
n = m = 12 Proposed 0.0484 0.0539 0.8977

Nominal 0.0500 0.0500 0.9000
Standard error 0.0022 0.0022 0.0030

MLE 0.0645 0.0624 0.8731
Likelihood ratio 0.0651 0.0628 0.8721

90% n = 12,m = 20 Proposed 0.0501 0.0498 0.9001
Nominal 0.0500 0.0500 0.9000

Standard error 0.0022 0.0022 0.0030

MLE 0.0550 0.0668 0.8782
Likelihood ratio 0.0550 0.0681 0.8769

n = 20,m = 12 Proposed 0.0508 0.0510 0.8982
Nominal 0.0500 0.0500 0.9000

Standard error 0.0022 0.0022 0.0030
MLE 0.0328 0.0381 0.9291

Likelihood ratio 0.0332 0.0393 0.9275
n = m = 12 Proposed 0.0235 0.0272 0.9493

Nominal 0.0250 0.0250 0.9500
Standard error 0.0016 0.0016 0.0022

MLE 0.0331 0.0340 0.9329
Likelihood ratio 0.0339 0.0345 0.9316

95% n = 12,m = 20 Proposed 0.0254 0.0263 0.9483
Nominal 0.0250 0.0250 0.9500

Standard error 0.0016 0.0016 0.0022

MLE 0.0283 0.0360 0.9357
Likelihood ratio 0.0284 0.0381 0.9335

n = 20,m = 12 Proposed 0.0250 0.0259 0.9491
Nominal 0.0250 0.0250 0.9500

Standard error 0.0016 0.0016 0.0022
MLE 0.0085 0.0093 0.9822

Likelihood ratio 0.0094 0.0099 0.9807
n = m = 12 Proposed 0.0043 0.0061 0.9896

Nominal 0.0050 0.0050 0.9900
Standard error 0.0007 0.0007 0.0010

MLE 0.0070 0.0083 0.9847
Likelihood ratio 0.0081 0.0085 0.9834

99% n = 12,m = 20 Proposed 0.0052 0.0046 0.9902
Nominal 0.0050 0.0050 0.9900

Standard error 0.0007 0.0007 0.0010

MLE 0.0066 0.0078 0.9856
Likelihood ratio 0.0066 0.0089 0.9845

n = 20,m = 12 Proposed 0.0053 0.0057 0.9890
Nominal 0.0050 0.0050 0.9900

Standard error 0.0007 0.0007 0.0010
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for various sample sizes of each fund. Table 8 records the results from this simulation. Lower
and upper probability errors are recorded as is central coverage. The nominal values and
standard errors of the simulation are also reported for reference. As in the one sample case,
these simulation results generally indicate that the propsed method outperforms the other
methods based on the criteria we examined.

8. Conclusion

A higher order likelihood method was applied for inference on the Sharpe ratio. The two-
sample problem for comparing Sharpe ratios was also considered. This statistical method is
known to be extremely accurate and has O(n−3/2) distributional accuracy. The methodology
was demonstrated and worked out explicitly for independently and identically normally
distributed returns. Simulations were provided to show the exceptional accuracy of the
method even for very small sample sizes. While our assumption of independently and
identically normally distributed returns may seem restrictive, we stress that the methodology
can be applied more generally for any parametric return distribution structure and our
choice of normality was made to clearly illustrate the methodology’s merits to the applied
practitioner. A natural next step would be to consider inference when returns are not
independently and identically distributed. For the two-sample problem, it would be fruitful
to compare the approach taken by Ledoit and Wolf [21] which involves the studentized
bootstrap with the proposed methodology.
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