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Under cohort sampling designs, additional covariate data are collected on cases of a specific type
and a randomly selected subset of noncases, primarily for the purpose of studying associations
with a time-to-event response of interest. With such data available, an interest may arise to reuse
them for studying associations between the additional covariate data and a secondary non-time-
to-event response variable, usually collected for the whole study cohort at the outset of the study.
Following earlier literature, we refer to such a situation as secondary analysis. We outline a general
conditional likelihood approach for secondary analysis under cohort sampling designs and discuss
the specific situations of case-cohort and nested case-control designs. We also review alternative
methods based on full likelihood and inverse probability weighting. We compare the alternative
methods for secondary analysis in two simulated settings and apply them in a real-data example.

1. Introduction

Cohort sampling designs are two-phase epidemiological study designs where information
on time-to-event outcomes of interest over a followup period and some basic covariate data
are collected on the whole first-phase study group, referred to as a cohort, and in the second
phase, more expensive or difficult-to-obtain additional covariate data are collected only on
a subset of the study cohort. This usually comprises the cases, that is, individuals with a
disease event of interest during the followup, and a randomly selected subset of noncases.
Examples are the case-cohort [1–3] and nested case-control [4, 5] designs. Primarily, such
designs are applied for the purpose of studying associations between the time-to-event
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outcomes and the covariates collected in the second phase. However, with such data having
been collected, an interest frequently arises to reuse it for studying associations between the
second-phase covariates and the other available covariate data. For instance, the covariates
collected in the second phase could be genotypes, while the other covariates may be various
phenotype measurements carried out at the outset of the followup period for the whole
cohort. The interest would then be to explain a phenotypic response with the genetic covari-
ates. Following Jiang et al. [6] and Lin and Zeng [7], we refer to such a situation as secondary
analysis. Here, we concentrate specifically on non-time-to-event secondary outcomes. Ana-
lysis of secondary time-to-event outcomes under the nested case-control design has been
considered previously by Saarela et al. [8] and Salim et al. [9].

As our motivating example, we consider here a single cohort which was used in a
larger meta-analysis of association between the European lactase persistence genotype and
bodymass index (BMI) [10], the latter being a secondary outcome in the cohort study in ques-
tion. The cohort consists of 5073 men aged 55–77 years from southern and western Finland,
who originally formed the placebo group of the ATBC cancer prevention study [11]. Whole
blood samples of the participants were taken between 1992 and 1993, which is here con-
sidered as the baseline of the cohort, with followup for cardiovascular disease events and
all-cause mortality available until the end of year 1999. There is no loss to followup, so the
only censoring present is of type I due to end of the followup period. This cohort is a part of
MORGAM project, an international pooling of cardiovascular cohorts [12]. Genotype data
(including the lactase persistence SNP rs4988235) under this project have been collected
under a case-cohort design described in detail by [13] and herein in Section 4.3.1. Given such
data, our aim is to estimate the association between the lactase persistence genotype and BMI
making use of genotype data collected on both the random subcohort and cases of all-cause
mortality.

Secondary analysis of case-control data has been studied previously, using profile like-
lihood [14], inverse selection probability weighting methods [15–17], or retrospective likeli-
hood [6, 7]. However, to the best of our knowledge, a systematic discussion on secondary
analysis under cohort sampling designs has been lacking, which we will aim to rectify here
by discussing alternative approaches for such an analysis under a generic two-phase study
design. We will briefly review the full likelihood approach which utilizes all observed data
(Section 2), as well as pseudolikelihoods based on inverse selection probability weighting
(Section 3). For these approaches, we propose a conditional likelihood-based alternative
(Section 4), restricted to the fully observed second-phase study group. Conditional likelihood
inference under cohort sampling designs has been studied previously for the analysis of the
primary time-to-event outcome by Langholz and Goldstein [18] and Saarela and Kulathinal
[19]; here, we extend these methods to the secondary analysis setting. The main interest is
in continuous secondary outcomes, though the approach would also be valid for categorical
responses. As special cases of the general setting, we consider case-cohort and nested case-
control designs. As extensions to the basic setting, we consider treatment of missing second-
phase covariate data and adjustment for left truncation in the case of incident time-to-event
outcomes (Section 5). In Section 6, we present two simulation studies, first comparing the
efficiencies of the alternative approaches and then demonstrating the potential adverse effects
of small sampling fraction in full likelihood inference. We also carry out the analysis in
the real-data example using all three alternative methods. As the model for the continuous
secondary response variable, in addition to the customary normal distribution, we consider
more flexible model specifications, thus aiming to incorporate residual-based model fit
diagnostics into the model itself. While other generalizations for the normal distribution have
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been proposed, we adopt here the four-parameter normal-polynomial quantile mixture [20],
which includes the normal distribution as a special case.

2. Notation, Assumptions, and Full Likelihood

To cover our motivating example and also the general case, we introduce first some notation.
Let the set C ≡ {1, . . . ,N} represent the individuals in the cohort. Primary outcome in the
study is a time-to-event outcome characterized by random variables (Ti, Ei), i ∈ C, where Ti
corresponds to event time and Ei to the event type of individual i, with Ei = 0 indicating a
censoring event and Ei = 1 a death due to any cause. Extension to incident nonfatal outcomes
and multiple outcome types is considered separately in Section 5.2. A secondary outcome of
interest Yi, here BMI, is observed on all study participants at the outset of the study. In
addition, there may be other covariates Xi, available on all i ∈ C, relevant to be included in
the analysis. In the present example, these comprise only the age at the start of the followup.
Additional covariate data (here the lactase persistence genotype) Zi are collected only on
the second-phase study group O ≡ {i : Ri = 1} ⊆ C, specified by the inclusion indicators
Ri ∈ {0, 1}, analogously to the survey response/nonresponse setting of Rubin [21]. We will
henceforth use vector notations of the type ZO ≡ {Zi : i ∈ O} to represent data obtained
on different subsets of individuals. We will not make a distinction between random variables
and their realized values in the notationwhen this is clear from the context. The observed data
as a whole are then represented as (RC, TC, EC, XC, YC, ZO). We are interested in the model
P(Yi | Xi, Zi, β) for the secondary outcome, more precisely, the parameter describing the asso-
ciation between Yi and Zi, which in our case correspond to BMI and the genotypic covariate.

We assume that the first-phase sampling mechanism has been unconfounded in the
sense of Rubin [21, page 36], so that wemay ignore the first-phase sampling mechanism in all
subsequent analyses. This means that the cohort recruitment (possibly through survey samp-
ling) and possible nonresponse depend only on the Xi-covariates; then if all subsequent
analyses are conditional on Xi, the selection mechanism may be ignored. In contrast, the
second phase sampling may be outcome dependent; the second-phase sampling mechanism
is specified by the joint probability distribution for the set of indicator variables RC. This
is assumed to be unconfounded with ZC, that is, RC ⊥ (ZC, θ) | TC, EC, XC, YC. What fol-
lows could be further generalized by assuming the sampling mechanism to be ignorable so
that RC ⊥ (ZC\O, θ) | TC, EC, XC, YC, ZO, but since most common cohort sampling mecha-
nisms go under the former assumption, and it will simplify the exposition, we will pro-
ceed with that. In addition, we assume the random vectors (Ti, Ei, Yi, Xi, Zi) either to be
(infinitely) exchangeable over unit indices i (cf. [21, page 40]), or equivalently, conditionally
independent given the collection of all relevant parameters θ. It should be noted that
the exchangeability assumption needs not to be extended to the inclusion indicators Ri.
Now, following, for example, Saarela et al. [8], we can write a full (observed data) likelihood
expression

P(RC, TC, EC, YC, ZO | XC, θ)

(α,β,γ)∝
∏

i∈O
P(Ti, Ei | Xi, Y i, Zi, α)P

(
Yi | Xi, Zi, β

)
P
(
Zi | Xi, γ

)

×
∏

i∈C\O

∫

zi

P(Ti, Ei | Xi, Y i, zi, α)P
(
Yi | Xi, zi, β

)
P
(
dzi | Xi, γ

)
.

(2.1)
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In the secondary analysis situation, only the parameters β are of interest, while α and γ
remain present as nuisance parameters. There are potential drawbacks related to the above
likelihood expression; it requires integration over the unobserved covariate data in the set
C\O (which may be large compared toO), as well as modeling of the population distribution
of Zi. If possible, we would like to avoid this due to the required estimation of the nuisance
parameters γ and the risk of model misspecification. Furthermore, observed data likelihoods
may become sensitive to misspecification of the model for the response variable; the missing
data can act similarly to extra parameters, and the actual model parameters may lose their
intended interpretation. This is a real problem especially in cohort sampling designs with a
rare event of interest, since the proportion of uncollected covariate data in the study cohort
may then be very high. We demonstrate such a situation with simplified simulation example
in Section 6.2.

3. Methods Based on Inverse Probability Weighting

Valid estimates for the parameters of the secondary outcome model could alternatively be
obtained by using inverses of the first-order inclusion probabilities P(Ri = 1 | TC, EC, XC, YC)
(assumed here to be known) as weights (e.g., [22, 23]). The weighted log-likelihood function,
approximating the corresponding complete data log-likelihood, to be used for the secondary
analysis is

∑

i∈O

logP
(
Yi | Xi, Zi, β

)

P(Ri = 1 | TC, EC, XC, YC)
=
∑

i∈C

1{Ri=1} logP
(
Yi | Xi, Zi, β

)

P(Ri = 1 | TC, EC, XC, YC)
. (3.1)

In a typical cohort sampling design, all cases would receive unit weights, while noncases
selected to the set O would receive weights greater than one, inverse to their probability to
be included in the set of controls/subcohort. While this kind of weighting results in unbiased
estimation of the parameters of interest, it will potentially result in reduced efficiency com-
pared to the full and conditional likelihood approaches, since in (3.1) cases receive smaller
weights compared to noncases irrespective of whether the case status is actually associated
to the secondary outcome or the covariate of interest, and thus the information in these
observations may not be fully utilized. We will demonstrate this in a simulation study in
Section 6.1. Theoretical justification for estimating function (3.1), as well as variance esti-
mation is discussed in Appendix A. A variation of the above Horvitz-Thompson [24] type of
weighting would be poststratification-based estimation (e.g., [15, 25]), with the stratification
carried out over the relevant first-phase variables.

4. Conditional Likelihood Inference under Cohort Sampling Designs

4.1. Definition

A very general definition for conditional likelihood is given by Cox and Hinkley [26, pages
16-17] and Cox [27, page 269] as follows. Let U be a random vector corresponding to all
observed data, and let this be partitioned into relevant subsetsU = (V,W), the transformation
not depending on unknown parameters θ. The conditional likelihood given the realization
V = v is then the conditional probability distribution P(W ∈ dw | V = v, θ)with respect to θ.



Journal of Probability and Statistics 5

Few generally accepted rules for choosing the partitioning can be found from the literature,
one of these being conditioning on an ancillary statistic or something close to that in order to
eliminate nuisance parameters (e.g., [28, 29]). In contrast, although working under the same
general definition, here we condition on a sampling mechanism, in order to restrict the ana-
lysis into a subgroup for which a useful likelihood expression can be written. Generally such
a conditioning may lose information on θ, but will nevertheless produce valid estimates. The
rules we set out for choosing the partitioning to construct a conditional likelihood under the
two-phase study setting are as follows.

(1) Condition on the sampling mechanism, that is, the set of inclusion indicators RC,
which produced the second-phase study group O onto which the analysis is to be
restricted. Do not condition on any further information on the sampling mecha-
nism, such as inclusion in the subcohort or the set of controls, since this can easily
lead to overconditioning which will lose a lot of information. In our notation, such
additional information on the samplingmechanism is implicitly included inW and,
given the assumptions stated in Section 2, will cancel out of the resulting likelihood
expression.

(2) Other observed variables may be placed into V orW at will, depending on the para-
meters of interest. For instance, if the parameters γ are not of interest, we may con-
dition on ZO by placing it in V . If the parameters γ need to be estimated, ZO may
be placed in W .

(3) We must have P(W ∈ dw | V = v, θ)P(V ∈ dv | θ) = P(U ∈ du | θ), that is, all the
relevant observed variables must either be modeled or conditioned upon.

Applying these conditioning rules will reproduce the conditional likelihood expressions ob-
tained previously in special cases of the current framework by Langholz and Goldstein [18]
and Saarela and Kulathinal [19]. The proposed conditional likelihood framework also in-
cludes the familiar retrospective likelihood, often suggested for analysis under case-control
designs (e.g., [30, 31, page 156]), as a special case (see Appendix B). Whereas Langholz and
Goldstein [18] considered only the special case of logistic likelihoods, here we aim to first
derive the likelihood expressions in the general case before substituting in any specific
models.

4.2. Conditional Likelihood Expression: The General Case

Following the stated rules, and making the same general assumptions as in Section 2, we pro-
ceed by partitioning the observed data into relevant subsets W ≡ (TO, EO, YO) and V ≡ (RC,
TC\O, EC\O, YC\O, XC, ZO) and, using a shorthand notation of Qi ≡ (Ti, Ei, Yi) for all outcome
variables, work with a conditional likelihood

P
(
QO | RC, QC\O, XC, ZO, θ

)
=

P(RC | QC, XC, ZO, θ)P(QC, ZO | XC, θ)
P
(
RC | QC\O, XC, ZO, θ

)
P
(
QC\O, ZO | XC, θ

)

θ∝ P(QC, ZO | XC, θ)
P
(
RC | QC\O, XC, ZO, θ

)
P
(
QC\O, ZO | XC, θ

) ,
(4.1)

where the proportionality follows from the assumption on unconfounded second-phase
sampling mechanism. In Appendix C, we show that such a conditional likelihood indeed
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has the properties of a likelihood, that is, a score function with zero mean and variance
equal to the Fisher information. Asymptotic normality of the maximum likelihood estimators
based on the conditional likelihood follows obviously from these results in the special case
of Bernoulli sampling (Section 4.3.1), although in the general case, this may require further
assumptions on the sampling mechanism, such as asymptotic independence of the inclusion
indicators Ri.

The ratio of the numerator and the second term in the denominator can be further
written as

P(QC, ZO | XC, θ)
P
(
QC\O, ZO | XC, θ

) =

∏
i∈OP(Qi,Zi | Xi, θ)

∏
i∈C\O

∫
zi
P(Qi,Zi ∈ dzi | Xi, θ)

∏
i∈O

∫
qi
P
(
Qi ∈ dqi, Zi | Xi, θ

)∏
i∈C\O

∫
zi
P(Qi,Zi ∈ dzi | Xi, θ)

=
∏

i∈O
P(Qi | Xi, Zi, θ).

(4.2)

Here, the product forms follow from the exchangeability assumption for the random vectors
(Qi,Xi, Zi). Thus, we have obtained

P
(
QO | RC, QC\O, XC, ZO, θ

)
=

∏
i∈OP(Qi | Xi, Zi, θ)

P
(
RC | QC\O, XC, ZO, θ

) , (4.3)

where the numerator factors into the parametric models P(Qi | Xi, Zi, θ) = P(Ti, Ei | Xi, Yi,
Zi, α)P(Yi | Xi, Zi, β). The denominator is the conditional likelihood correction term (some-
times called ascertainment correction, e.g., Ma et al. [32]). Its specific form depends on the
second-phase sampling mechanism, and in the general case, it does not reduce into a product
form. It depends on themodel parameters, since it is not conditioned on all of (TC, EC, YC, XC).
Generally, the challenge in conditional likelihood correction terms is in representing them in
terms of parameters estimable from the data. Here, the term can be written as

P
(
RC | QC\O, XC, ZO, θ

)
=
∫

qO
P(RC | QC, XC)P

(
QO ∈ dqO | QC\O, XC, ZO, θ

)
, (4.4)

where P(QO | QC\O, XC, ZO, θ) is given by (4.2), and we have

P
(
RC | QC\O, XC, ZO, θ

)
=
∫

yi:i∈O

∫

ti:i∈O

∑

ei:i∈O
P(RC | TC, EC, YC, XC)

×
∏

i∈O

[
P
(
Ti ∈ dti, Ei = ei | Xi, yi, Zi, α

)
P
(
Yi ∈ dyi | Xi, Zi, β

)]
.

(4.5)

Here, the first term inside the integral specifies the samplingmechanism and is assumed to be
known. The obtained likelihood expression utilizes all observed data on covariates Zi, and it
can be easily seen that if there is no association between (Ti, Ei) andZi and betweenZi andXi,
we lose no information relevant to learning about the association between Yi andZi, when the
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conditional likelihood (4.3) is used instead of the corresponding full likelihood (2.1). This was
also demonstrated in the simulation study of Saarela and Kulathinal [19]. On the other hand,
if the other observed data do give significant information on the unobserved covariate values
ZC\O, efficiency could potentially be improved by using the full likelihood which utilizes all
observed data, with the cost of having to specify a model for Zi. In Section 6.1, the efficiencies
of expressions (2.1) and (4.3) are compared in a simulated setting.

4.3. Special Cases: Case-Cohort and Nested Case-Control Designs

4.3.1. Case-Cohort/Bernoulli Sampling

Here, we are mainly interested in a variation of the “efficient case-cohort design” suggested
by Kim and De Gruttola [33, pages 155-156] as an alternative to sampling within strata. To
improve efficiency in sampling of the subcohort, here the distribution of some key covariates
(in the present notation either XC or both (XC, YC)) in the subcohort is approximately
matched to that of the cases by first fitting a logistic regression model, say, logit{P(Ei = 1 |
Xi, μ)} = μ′Xi, and then selecting the subcohort using Bernoulli sampling with the proba-
bilities πi ≡ 1/(1 + exp{−μ̂′Xi}), independently of the case status. We then have P(Ri | TC, EC,
YC, XC, μ̂) = P(Ri | Ti, Ei, Yi, Xi, μ̂), where in practice, wemake the approximation P(Ri | Ti, Ei,
Yi, Xi, μ̂) ≈ P(Ri | Ti, Ei, Yi, Xi, μ) and will subsequently suppress the sampling mechanism
parameters from the notation. The selection probabilities may also be rescaled to give a
desired expected subcohort size m as π∗

i ≡ mπi/
∑

i∈C πi ≈ mπi/(NP(Ei = 1)). More
generally, the subcohort selection probability πi may be any known function of (Ti, Ei, Yi, Xi),
that is, πi ≡ π(Ti, Ei, Yi, Xi), with the sampling design specified by P(RC | TC, EC, YC, XC) =∏

i∈CP(Ri | Ti, Ei, Yi, Xi) =
∏

i∈Cπ(Ti, Ei, Yi, Xi)
Ri(1 − π(Ti, Ei, Yi, Xi))

1−Ri . The special case of
Bernoulli sampling is of interest, because here the product of the first-order inclusion pro-
babilities specifies the joint distribution of the inclusion indicators (see, e.g., [34, pages 62-
63]), which considerably simplifies the analysis using conditional likelihood. In the case of
stratified without replacement sampling, the following could only be interpreted as a first-
order approximation when the sampling fractions are small. In the Bernoulli sampling case,
the conditional likelihood correction term reduces into the product form

P
(
RC | TC\O, EC\O, YC\O, XC, ZO, θ

)

=
∏

i∈C\O
P(Ri = 0 | Ti, Ei, Yi, Xi)

×
∫

yi:i∈O

∫

ti:i∈O

∑

ei:i∈O

∏

i∈O

[
P
(
Ri = 1 | ti, ei, yi, Xi

)

×P
(
Ti ∈ dti, Ei = ei | Xi, yi, Zi, α

)
P
(
Yi ∈ dyi | Xi, Zi, β

)]

(α,β)∝
∏

i∈O

∫

yi

∫

ti

∑

ei

[
P
(
Ri = 1 | ti, ei, yi, Xi

)

×P
(
Ti ∈ dti, Ei = ei | Xi, yi, Zi, α

)
P
(
Yi ∈ dyi | Xi, Zi, β

)]
.

(4.6)
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Let E ≡ {i : Ei = 1} denote the set of individuals who died during the followup, and let
d ≡ |E|. In the case-cohort design discussed in Kulathinal and Arjas [35], Kulathinal et al.
[13], and Saarela and Kulathinal [19], all cases are selected to the case-cohort set, so that
P(Ri = 1 | Ti, Ei = 1, Yi, Xi) = 1, i ∈ E, while to increase the efficiency of the design, the
subcohort is selectedwith probabilities which depend on the age bi at the start of the followup
(included in the Xi covariates) through a logistic model as discussed above, giving the
inclusion probability for non-cases as P(Ri = 1 | Ti, Ei = 0, Yi, Xi) = π(bi), i ∈ C \ E. Under
Bernoulli sampling, the realized sample size n ≡ |O| is random, with the expected sample size
in the present example given by E(n | EC, XC) = d +

∑
i∈C\E π(bi). In the case of a mortality

outcome and type I censoring at predetermined times ci, with the observed time given by
Ti ≡ min(T̃i, ci), where T̃i is the latent time of death, (4.6) further simplifies into (see also [19,
pages 12-13])

P
(
RC | TC\O, EC\O, YC\O, XC, ZO, θ

)

(α,β)∝
∏

i∈O

∫

yi

∫

ti∈[0,ci]

[
P
(
Ri = 1 | ti, Ei = 1, yi, Xi

)
P
(
dti, Ei = 1 | Xi, yi, Zi, α

)

+P
(
Ri = 1 | ti, Ei = 0, yi, Xi

)
P
(
dti, Ei = 0 | Xi, yi, Zi, α

)]

× P
(
dyi | Xi, Zi, β

)

=
∏

i∈O

∫

yi

[
P
(
0 ≤ Ti < ci, Ei = 1 | Xi, yi, Zi, α

)

+π(bi)P
(
Ti ∈ dci, Ei = 0 | Xi, yi, Zi, α

)]
P
(
dyi | Xi, Zi, β

)

=
∏

i∈O

∫

yi

[
P
(
0 ≤ T̃i < ci | Xi, yi, Zi, α

)

+π(bi)P
(
T̃i ≥ ci | Xi, yi, Zi, α

)]
P
(
dyi | Xi, Zi, β

)

=
∏

i∈O

∫

yi

[
1 − (1 − π(bi))P

(
T̃i ≥ ci | Xi, yi, Zi, α

)]
P
(
dyi | Xi, Zi, β

)
.

(4.7)

Hence, (4.6) could be represented in terms of the survival function. Suppose now that in
addition to the type I censoring due to the end of the followup period, there may be random
censoring during the followup; for instance, this may be the case if the outcome in the case-
cohort design (Ei = 1) is not all-cause mortality, but, say, mortality due to cardiovascular
diseases. Deaths due to other causes, denoted as Ei = 2, then appear as censoring. As
before, let T̃i denote the latent time of death, with Ei indicating the type of death or end of
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followup period. Similarly as above, we get

P
(
RC | TC\O, EC\O, YC\O, XC, ZO, θ

)

=
∏

i∈O

∫

yi

[
P
(
0 ≤ Ti < ci, Ei = 1 | Xi, yi, Zi, α

)

+ π(bi)P
(
0 ≤ Ti < ci, Ei = 2 | Xi, yi, Zi, α

)

+π(bi)P
(
Ti ∈ dci, Ei = 0 | Xi, yi, Zi, α

)]
P
(
dyi | Xi, Zi, β

)

=
∏

i∈O

∫

yi

[
P
(
0 ≤ T̃i < ci, Ei = 1 | Xi, yi, Zi, α

)

+ π(bi)P
(
0 ≤ T̃i < ci, Ei = 2 | Xi, yi, Zi, α

)

+ π(bi)P
(
T̃i ≥ ci | Xi, yi, Zi, α

)]
P
(
dyi | Xi, Zi, β

)
.

(4.8)

Here, the probabilities P(0 ≤ T̃i < ci, Ei = k | Xi, Yi, Zi, α), k ∈ {1, 2}, are given by the cumu-
lative incidence functions and P(T̃i ≥ ci | Xi, Yi, Zi, α) by the joint survival function of a
competing risks survival model for the two types of death (e.g., [36, pages 251-252]). These
are in principle identifiable from the observed data for the setO, since the subcohort has been
selected independently of the case status and thus will include a number of other deaths. On
the other hand, if this number is very small, the middle term in the above sum contributes
little to the correction term, and thus unstable estimation of the corresponding parameters
does not necessarily hinder the estimation of the parameters of interest.

4.3.2. Risk Set Sampling

Consider now a nested case-control sampling mechanism in which all cases are selected to
the case-control set with probability one, andm controls per case j are selected using without
replacement sampling from the risk set Rj ≡ {i : Ai(Tj) = 1} \ {j} (of size rj ≡ |Rj | =∑

i∈C Ai(Tj) − 1), where Ai(Tj) is the at-risk indicator for subject i at event time Tj . This is
carried out independently for all cases j ∈ E. Let the sampled set of time-matched controls
for case j be denoted as Sj ⊆ Rj , some of which may also be future cases since the sampling is
carried out without regard to the future case status of the individuals in the risk set. Let
SE ≡ {Sj : j ∈ E} denote the collection of the sampled risk sets and S ≡ ⋃

j∈E Sj the
pooled set of sampled controls. Noting that knowing all of (TC, EC) specifies the risk sets
RE ≡ {Rj : j ∈ E} as well as the order of the events, the risk set sampling mechanism is spe-
cified by the joint probability distribution

P(RC | TC, EC, YC, XC) = P(RC | RE,E)
=

∑

SE:|Sj |=m,j∈E
P(RC | RE,SE,E)P(SE | RE,E)

=
∑

SE:|Sj |=m,j∈E
1{S∪E=O}

∏

j∈E
P
(Sj | Rj

)

=
∏

j∈E

1
( rj
m

)
∑

SE:|Sj |=m,j∈E
1{S∪E=O}.

(4.9)
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If the sampling has been carried out within strata specified by the covariates YC and/or XC
through some function g(Xi, Yi), the risk sets would be defined within strata as Rj = {i :
Ai(Tj) = 1, g(Xi, Yi) = g(Xj, Yj)} \ {j}, and the above reasoning would apply similarly with
the redefined risk sets. The conditional likelihood correction term now becomes

P
(
RC | TC\O, EC\O, YC\O, XC, ZO, θ

)

=
∫

yi:i∈O

∫

ti:i∈O

∑

ei:i∈O

∏

j∈E

1
( rj
m

)
∑

SE:|Sj |=m,j∈E
1{S∪E=O}

×
∏

i∈O

[
P
(
Ti ∈ dti, Ei = ei | Xi, yi, Zi, α

)
P
(
Yi ∈ dyi | Xi, Zi, β

)]
,

(4.10)

which does not reduce into a product form. Exact numerical evaluation of this term would
require enumeration of all possible combinations of sampled risk sets of sizemwhich would
result in the observed case-control setO. This is unlikely to be feasible in practice with realistic
sample sizes, which is why consideration of approximations may be necessary. Samuelsen
[23] showed the inclusion indicators under risk set sampling to be asymptotically pairwise
uncorrelated, with the first-order inclusion probabilities for the noncases i ∈ C \ E given by
P(Ri = 1 | TC, EC\{i}, Ei = 0) = 1−∏j∈E[1−mAi(Tj)/rj] . Thus, it might be tempting to replace
(4.9) with

∏
i∈CP(Ri | TC, EC, YC, XC). However, the properties of such an approximation will

require further research.

5. Extensions

5.1. Missing Second-Phase Covariate Data

Further issue to be considered in practical applications is possible missing covariate data
within the set O. For instance, if the covariates to be collected under the cohort sampling
design are genotypes, after selection of subjects to be genotyped, it may turn out that the DNA
amount or concentration is too low or the genotyping is otherwise unsuccessful. Let MO ≡
{Mi : i ∈ O} be a set of indicator variables indicating whether the measurement of Zi turned
out to be unsuccessful after selection of subject i into the set O, and let M ≡ {i : Mi = 1} ⊆ O.
Now Zi is observed only on the set O \M. We consider the implications of this separately for
all of the three approaches discussed above.

5.1.1. Full Likelihood

If the missingness can be assumed missing at random, that is, MO ⊥ (ZM, θ) | RC, TC, EC, XC,
YC, ZO\M, the missingness indicators can again be included in the proportionality constant,
and the full likelihood expression becomes

P
(
RC,MO, TC, EC, YC, ZO\M | XC, θ

)

(α,β,γ)∝
∏

i∈O\M
P(Ti, Ei | Xi, Yi, Zi, α)P

(
Yi | Xi, Zi, β

)
P
(
Zi | Xi, γ

)

×
∏

i∈C\O∪M

∫

zi

P(Ti, Ei | Xi, Yi, zi, α)P
(
Yi | Xi, zi, β

)
P
(
dzi | Xi, γ

)
.

(5.1)
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5.1.2. Inverse Probability Weighting

If themissingnessmechanismwould be known (andmissing at random), a weighted pseudo-
likelihood expression for the setO\M could be obtained bymultiplying the original selection
probabilities by the probabilities of observing the value of Zi after selection

∑

i∈O\M

logP
(
Yi | Xi, Zi, β

)

P
(
Mi = 0 | RC, TC, EC, XC, YC, ZO\M

)
P(Ri = 1 | TC, EC, XC, YC)

. (5.2)

In practice, however, the missingness mechanism would have to be modeled to obtain esti-
mates for these probabilities.

5.1.3. Conditional Likelihood

By partitioning the observed data into W = (TO\M, EO\M, YO\M) and V = (RC,MO, TC\O∪M,
EC\O∪M, YC\O∪M, XC, ZO\M), we obtain a conditional likelihood

P
(
QO\M | RC,MO, QC\O∪M, XC, ZO\M, θ

)

θ∝ P
(
MO | RC, QC, XC, ZO\M, θ

)

P
(
MO | RC, QC\O∪M, XC, ZO\M, θ

)
∏

i∈O\MP(Qi | Xi, Zi, θ)

P
(
RC | QC\O∪M, XC, ZO\M, θ

) ,
(5.3)

where P(RC | QC\O∪M, XC, ZO\M, θ) is obtained from (4.5) by replacing the set O with O \M.
Unlike the second-phase sampling mechanism, the missingness mechanism is generally un-
known. From (5.3), it can be seen that if we are willing to assume that ZM are either missing
completely at random or that MO depends only on XC, the terms involving the missingness
indicators cancel out of the likelihood. On the other hand, if the missingness may depend on
the response variablesQC, the missingness mechanism would have to be modeled. However,
in such a case, it may be easier to work with the partitioningW = (MO, TO, EO, YO, ZO\M) and
V = (RC, TC\O, EC\O, YC\O, XC) and model the population distribution of Zi rather than trying
to estimate parameters describing the missingness mechanism. This in fact corresponds to
what was done by Saarela and Kulathinal [19] and was required there because haplotypes
are only partially identifiable from unphased genotype data.

5.2. Incident Outcomes and Left Truncation

Previous discussion was specific to a primary mortality outcome using time on study as the
main time scale. In this section, we discuss separately how the different methods can accom-
modate cohort sampling for incident nonfatal primary outcomes. In the analysis of secondary,
non-time-to-event outcomes, the presence of left truncation due to exclusion of cases of pre-
valent disease presents an additional complication. If the parameters of the secondary out-
come model correspond to the background population alive at the cohort baseline (rather
than to the disease-free population), this additional selection factor requires further adjus-
tment. If the primary outcome is a mortality endpoint, this is not an issue, since then there
is no further selection due to prevalent conditions. In likelihood-based adjustment for left
truncation, the main time scale of the analysis has to be chosen as age instead of time on
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study. In survival modeling, it is well known that conditioning on event-free survival until
the age at study baseline corresponds to exclusion of the followup time before that (e.g., [37,
page 580], and the references therein). However, this is no longer true in the case of missing
covariate data (e.g., [8, pages 5997-5998]), or indeed in the analysis of secondary outcomes,
as will be demonstrated below. The set notations C andO are here taken to refer to the disease
free cohort and second-phase study group.

It should also be noted that under case-cohort designs it is common to collect second-
phase covariate data for more than a single outcome, since the case-cohort design naturally
enables the analysis of multiple outcomes using a single subcohort selection. This is also the
case in our example cohort discussed in Sections 1 and 6.3, where, in addition to cases of
all-cause mortality, genotype data has been collected also on cases of nonfatal incident car-
diovascular disease events. To keep the example simple, in the data analysis, we consider
only the case-cohort set for all-cause mortality. However, it is in principle straightforward to
accommodate multiple outcome types in the likelihood expressions discussed below by using
competing risks type notation where Ti denotes the observed time of the first incident disease
event, death, or censoring, with Ei = 0 indicating censoring and Ei ∈ {1, 2, . . . , K} the different
types of outcome events for which the second-phase covariate data is collected. Since utilizing
the likelihood expressions does not necessitate estimation ofK different hazard functions, the
endpoint definitions may be pooled as seen suitable.

5.2.1. Full Likelihood

The full likelihood expression (2.1) is now conditioned on the selection rule TC ≥ bC ≡ Ti ≥ bi
for all i ∈ C, that is, event-free survival until the age at the cohort baseline. The likelihood
expression becomes

P(RC, TC, EC, YC, ZO | TC ≥ bC, XC, θ)

(α,β,γ)∝
∏

i∈O

P(Ti, Ei | Xi, Yi, Zi, α)P
(
Yi | Xi, Zi, β

)
P
(
Zi | Xi, γ

)
∫
yi

∫
zi
P
(
Ti ≥ bi | Xi, yi, zi, α

)
P
(
dyi | Xi, zi, β

)
P
(
dzi | Xi, γ

)

×
∏

i∈C\O

∫
zi
P(Ti, Ei | Xi, Yi, zi, α)P

(
Yi | Xi, zi, β

)
P
(
dzi | Xi, γ

)
∫
yi

∫
zi
P
(
Ti ≥ bi | Xi, yi, zi, α

)
P
(
dyi | Xi, zi, β

)
P
(
dzi | Xi, γ

) .

(5.4)

5.2.2. Inverse Probability Weighting

The weighted pseudolikelihood approach does not readily take into account additional
selection which occurs in studies of incident outcomes. This was also pointed out by Reilly et
al. [15], who in their discussion note that their reweighting approach for case-control studies
is not valid for incident or nested case-control studies, since the incident cases and healthy
controls available cannot be reweighted to represent the general population. Although this
is true for the basic estimating function (3.1), similarly as in the missing data case, a double
weighting mechanism can be devised to account for the additional selection step as

∑

i∈O

logP
(
Yi | Xi, Zi, β

)

P(Ti ≥ bi | Xi, Yi, Zi, α̂)P(Ri = 1 | TC, EC, XC, YC)
. (5.5)
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Since this weighting requires estimation of the time-to-event model parameters α, resamp-
ling-based variance estimation would be required to obtain valid standard errors for the
estimates of β to account for the uncertainty in estimation of the weights.

5.2.3. Conditional Likelihood

As in Section 4.2, we get

P
(
QO | RC, TC ≥ bC, QC\O, XC, ZO, θ

)
=

∏
i∈OP(Qi | Xi, Zi, θ)

P
(
RC, TC ≥ bC | QC\O, XC, ZO, θ

) , (5.6)

where the correction term becomes

P
(
RC, TC ≥ bC | QC\O, XC, ZO, θ

)

=
∫

yi:i∈O

∫

ti∈[bi,∞):i∈O

∑

ei:i∈O
P(RC | TC, EC, YC, XC)

×
∏

i∈O

[(
Ti ∈ dti, Ei = ei | Xi, yi, Zi, α

)
P
(
Yi ∈ dyi | Xi, Zi, β

)]
.

(5.7)

In the case-cohort design discussed in Section 4.3.1, with type I censoring, this further
simplifies into

P
(
RC, TC ≥ bC | TC\O, EC\O, YC\O, XC, ZO, θ

)

(α,β)∝
∏

i∈O

∫

yi

∫

ti∈[bi,ci]

∑

ei

P
(
Ri = 1 | ti, ei, yi, Xi

)

× P
(
Ti ∈ dti, Ei = ei | Xi, yi, Zi, α

)
P
(
Yi ∈ dyi | Xi, Zi, β

)

=
∏

i∈O

∫

yi

[
P
(
bi ≤ T̃i < ci | Xi, yi, Zi, α

)
+ π(bi)P

(
T̃i ≥ ci | Xi, yi, Zi, α

)]

× P
(
Yi ∈ dyi | Xi, Zi, β

)

=
∏

i∈O

∫

yi

[
P
(
T̃i ≥ bi | Xi, yi, Zi, α

)
− (1 − π(bi))P

(
T̃i ≥ ci | Xi, yi, Zi, α

)]

× P
(
Yi ∈ dyi | Xi, Zi, β

)
.

(5.8)

6. Illustrations

6.1. Simulation Study

In order to compare the efficiency of the alternative estimation methods discussed above,
namely, full likelihood, conditional likelihood, and weighted pseudolikelihood, we sup-
plemented the cohort data described in Section 1 with a simulated covariate, following
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the real-data-based simulation approach described by Saarela et al. in [8, pages 5998–6000],
in order to have the simulation setting resemble as closely as possible the real data analysis
setting of Section 6.3. This Bayesian procedure corresponds to multiple imputation [21],
where given the observed data (TC, EC, XC, YC) and predetermined associations with the
primary and secondary outcomes, an additional “missing” covariateZC is simulated from the
posterior predictive distribution P(ZC | TC, EC, XC, YC). Case-cohort sampling was then
simulated in the complete datasets (TC, EC, XC, YC, ZC) thus obtained. The objective of this
approach, as compared to using completely simulated data, was to obtain simulation results
directly relevant to the real study of interest. We included a set ofN = 5039 individuals with a
BMI measurement (Yi) available and eligible for the case-cohort study. The primary (time-to-
event) outcome (Ti, Ei) was taken to be all-cause mortality, with d = 996. Given the primary
and secondary outcome data and age at baseline (Xi ≡ bi) observed for the cohort, and
the current parameter values, additional binary covariate values were drawn from the con-
ditional distributions

P
(
Zi = zi | Ti, Ei, Yi, Xi, α, β, γ

)

=
P(Ti, Ei | Xi, Yi, zi, α)P

(
Yi | Xi, zi, β

)
P
(
Zi = zi | Xi, γ

)
∑

zi∈{0,1} P(Ti, Ei | Xi, Yi, zi, α)P
(
Yi | Xi, zi, β

)
P
(
Zi = zi | Xi, γ

) ,
(6.1)

where themodel for the survival outcome, P(Ti ∈ dti, Ei = ei | Xi, Yi, Zi, α)
α∝ [λi(ti)]

1{ei=1}Si(ti),
was specified as a proportional hazards model λi(u) ≡ λ0(u) exp{α1bi+α2Yi+α3Zi}, with time
on study as the time scale and age at baseline as a covariate. Here, the the baseline hazard
function λ0 was specified in terms of a piecewise constant function using 15 time bins of
equal length over the followup period of seven years. Flat improper priors were used for all
parameters (those not fixed to selected values), on log scale for the nonnegative parameters.

Normal model Yi | Xi, Zi, β ∼ N(β0 + β1bi + β2Zi, β
2
3) was used for the secondary out-

come, while the population distribution of the additional covariate was specified as P(Zi =
zi | Xi, γ) = γzi(1 − γ)1−zi . Here, parameters α3, β2, and γ were fixed at selected values while
the other parameters were allowed to be determined by the data and integrated out by
drawing from their respective full conditional posterior distributions using Markov chain
Monte Carlo sampling. Variables Yi and bi were centered but otherwise untransformed. 1000
values for each Zi, i ∈ C, were obtained by running the MCMC sampler for 25000 rounds
after a 10000-round burn-in with each set of fixed values of (α3, β2, γ) given in Table 1 and
saving every 25th state of the chain. In each of the complete datasets obtained by combining
the observed data and the simulated covariate values Zi, case-cohort selection was carried
out by matching the age distribution of the subcohort to that of the cases by first fitting a
logistic regression model with age as a covariate to the observed survival status, as detailed
in Section 4.3.1. The predictive probabilities from the logistic model were scaled to give an
expected subcohort size of 1000, and the subcohort was selected using the obtained pro-
babilities in Bernoulli sampling. This procedure gave an expected case-cohort set size of
E(n | EC, XC) = 1761.

In fitting models to the datasets so obtained, we used the same model specifications
as above, with the exception of the proportional hazards model, where we fitted a “mis-
specified”Weibull model λi(u) ≡ (α4/α0)(u/α0)

α4−1 exp{α1bi+α2Yi+α3Zi}. Even though this is
a different model than the one specified for the simulation step, we did not simulate the time-
to-event outcome data, which was taken from the example cohort; a comparison between
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fitted piecewise constant and Weibull hazards (results not shown) indicated that the Weibull
model is adequate for modeling these data, accounting for the increasing baseline mortality
rate due to ageing of the cohort. Full likelihood function (2.1), conditional likelihood function
(4.3), and weighted pseudolikelihood function (3.1) were maximized with respect to the
parameters (α, β, γ), (α, β), and β, respectively, substituting in the above parametric models.
The numerical optimization was carried out using the optim function of the R statistical
software, applying the BFGS optimization algorithm [38]. The integrals over yi in (4.7) were
evaluated using numerical (quadrature) integration, using the gsl integration qagi func-
tion of GNU scientific library [39]. The standard errors of the maximum likelihood estimators
were evaluated by inverting the numerically differentiated Hessian matrix at the maximum
likelihood point. The standard errors of the inverse-probability-weighted estimates were
evaluated using the robust variance formula of Appendix A with the observed information
(A.4) and observed score (A.5). The results from the 1000 replications are presented in
Table 1. Here, the parameters (α3, β2, γ), corresponding to the simulated covariate, are of main
interest; the other parameters reflect the observed data, and thus the Monte Carlo variances
for these are not relevant. The standard errors for the corresponding parameters are given
in the real-data example of Section 6.3. The results indicate that conditional likelihood
estimation gives similar efficiency compared to the corresponding full likelihood estimates
irrespective of whether the covariate of interest was associated with the survival outcome. In
contrast, both likelihood-based approaches gave better efficiency compared to inverse pro-
bability weighting. This is expected, as the weighted pseudolikelihood gives smaller weights
to cases, whereas the conditional likelihood weights cases and noncases differentially only
to the extent they actually differ. Both the inverse observed information and robust variance
estimates agreed well with the Monte Carlo variances.

6.2. Multimodality under Full Likelihood When
the Sampling Fraction Is Small

Let now the observed data be only (RC, YC, ZO), and let the sampling mechanism be simple
random sampling without replacement; P(RC) = 1/

(
N
n

)
, where the sample size n is fixed.

The specific aim of the following example is to demonstrate the vulnerability of observed data
likelihoods, integrated over the missing covariate data on the set C \ O, to misspecification

of the response model. The full likelihood expression now becomes P(RC, YC, ZO | θ) (β,γ)∝∏
i∈O[P(Yi | Zi, β)P(Zi | γ)]

∏
i∈C\O

∫
zi
P(Yi | zi, β)P(Zi ∈ dzi | γ). Due to the simple random

sampling, the corresponding conditional likelihoods simplify into P(YO | RC, YC\O, ZO, θ) =∏
i∈OP(Yi | Zi, β) and P(YO, ZO | RC, YC\O, θ) =

∏
i∈O[P(Yi | Zi, β)P(Zi | γ)].

With N = 1000, we simulated covariate values from Zi ∼ Bernoulli(0.2) and two
different sets of response values (both independently of Zi) from Yi ∼ N(4, 4) and Yi ∼
Gamma(4, 1) (same mean and variance, but the latter distribution is skewed to the right).
We fit two alternative models to these data, in both models Zi | γ ∼ Bernoulli(γ), with
the models for the response specified as Yi | Zi, β ∼ N(β0 + β1Zi, β

2
2) and Yi | Zi, β ∼

NPQM(β0 + β1Zi, β2, β3, β4), where β are the collections of all model parameters. The latter
model is the normal-polynomial quantile mixture distribution proposed by Karvanen ([20,
pages 950–953]; see also R package Lmoments), which we apply here for regression modeling.
The parametrization here can be expressed in terms of the first four L-moments as λ1 = E(Yi |
Zi, β) = β0 + β1Zi, λ2 = β2/

√
π (L-scale), λ3 = β3 (L-skewness), and λ4 = β4 (L-kurtosis).

This distribution is suitable for regression modeling as the first L-moment is the mean of
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Figure 1: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; normal model fitted to normal data (Yi ∼ N(4, 4)).

the distribution, while the two additional shape parameters allow for more flexible modeling
of the residual distribution. The NPQM distribution includes normal distribution as a special
case when λ3 = 0 and λ4/λ2 = 0.1226. The full and conditional log-likelihood expressions
under these model specifications were maximized with respect to β and γ as described in the
previous section. Initial values for the algorithm were set at the sample moments calculated
from the marginal distribution of the response variable, with the regression coefficient set to
β1 = 0 and γ = 0.5.

Table 2 shows the mean maximum likelihood estimates over 1000 replications for all
8 combinations of data generating model, fitted model, and estimation method. With the
response simulated from normal distribution, both models estimated using either full or
conditional likelihood give the expected results (Figures 1 and 2). However, with the response
simulated from gamma distribution and the sampling fraction n/N small, the misspecified
normal model estimated using full likelihood indicates a spurious association between the
response and the covariate. This is because the missing data act as extra parameters, allowing
the optimization procedure to obtain a better fit to the skewed data. The corresponding samp-
ling distributions for β1 shown in Figure 3 have become bimodal. It should be noted that
the initial values given to the optimization algorithm corresponded always to the “correct
solution” of no covariate effect, thus enabling the algorithm to find the correct mode.
However, bimodality in the sampling distribution does not necessarily indicate that the likeli-
hood functions given a single realized dataset would be bimodal.
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Figure 2: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; NPQM model fitted to normal data (Yi ∼ N(4, 4)).

Using the NPQMmodel which allows a skewed residual distribution does not correct
the situation either when combined with full likelihood estimation (Figure 4). This is not
unexpected since adding more parameters to an already overparameterized situation is not
necessarily helpful in solving identification problems. In contrast, conditional likelihood
continues to give reasonable results in all cases, with the skewness of the data correctly reflec-
ted by the parameter β3 of the NPQMmodel. Some degree of misspecification of the response
model is required for the multimodality to appear since when we simulated the response
variable from NPQM distribution, the full likelihood fit of the NPQM model indicated no
problems, while the full likelihood fit of the normal model showed the same problems as with
gamma data (Figures 5 and 6). We also repeated all the simulation alternatives with β1 = 1
(Yi ∼ Zi + N(4, 4) and Yi ∼ Zi + Gamma(4, 1)), with the conclusions essentially unchanged
(Table 3 and Figures 7, 8, 9, and 10).

6.3. An Example with Real Data

The case-cohort set for all-cause mortality in the example cohort (N = 5039) is of size n =
1816, the union of a subcohort of size 1068 and 996 deaths due to any cause (since the
subcohort has been selected independently of the case status, it includes a number of
cases). The case-cohort design applied in this cohort was described in Section 4.3.1. Due to
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Figure 3: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; normal model fitted to gamma data (Yi ∼ Gamma(4, 1)).

sample unavailability or unsuccessful genotyping, the genotype for the lactase persistence
SNP rs4988235 was unavailable for 156 individuals, giving |O \ M| = 1660. The model for
the data described in Section 1 was specified as follows: Hardy-Weinberg model Zi | γ ∼
Binom(2, γ) was used for the number of lactase persistence alleles. The model for BMI,
which is the response variable of interest, given age at baseline Xi ≡ bi and the genotype
Zi, was taken to be Yi | bi, Zi, β ∼ NPQM(β0 + β1bi + β21{Zi=0}, β3, β4, β5). The model for
the survival outcome was taken to be P(Ti ∈ dti, Ei = ei | Yi, Zi, α)

α∝ [λi(ti)]
1{ei=1}Si(ti),

where Si(ti) ≡ exp{∫ ti0 λi(u)du}, and using again the Weibull form for the hazard function
λi(u) ≡ (α4/α0)(u/α0)

α4−1 exp{α1bi + α2Yi + α31{Zi=0}}. In both regression models, the lactase
persistence allele noncarriers are compared to the hetero- and homozygote carriers of the
allele. Under the case-cohort design where the subcohort sampling probabilities depend on
bi, the conditional likelihood expression takes the form

P
(
TO\M, EO\M, YO\M | RC,MO, TC\O∪M, EC\O∪M, YC\O∪M, XC, ZO\M, θ

)

(α,β)∝
∏

i∈O\M

P(Ti, Ei | Yi, Zi, α)P
(
Yi | bi, Zi, β

)
∫
yi
[1 − (1 − π(bi))Si(ci)]P

(
dyi | bi, Zi, β

) ,
(6.2)
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Figure 4: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; NPQM model fitted to gamma data (Yi ∼ Gamma(4, 1)).

or

P
(
MO, TO, EO, YO, ZO\M | RC, TC\O, EC\O, YC\O, XC, θ

)

(α,β,γ)∝
∏

i∈O\M

P(Ti, Ei | Yi, Zi, α)P
(
Yi | bi, Zi, β

)
P
(
Zi = zi | γ

)
∑

zi

∫
yi
[1 − (1 − π(bi))Si(ci)]P

(
dyi | bi, zi, β

)
P
(
Zi = zi | γ

)

×
∏

i∈M

∑
zi
P(Ti, Ei | Yi, zi, α)P

(
Yi | bi, zi, β

)
P
(
Zi = zi | γ

)
∑

zi

∫
yi
[1 − (1 − π(bi))Si(ci)]P

(
dyi | bi, zi, β

)
P
(
Zi = zi | γ

) ,

(6.3)

depending on whether we condition upon the observed genotype data ZO\M, or whether
this is modeled as part of the likelihood (see Section 5.1.3). The difference between these two
approaches is that the former requires more assumptions on the missingness mechanism.
Therefore, we compare here the two approaches to see whether there is any observable dif-
ference between the results. In addition, expression (6.3) enables estimation of the population
allele frequency γ . However, it should be noted that while the summation over the single
SNP genotype variable Zi is not a computational problem in the present example, this is not
necessarily the case generally, with multiple continuous covariates in the model. Therefore,
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Figure 5: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; normal model fitted to NPQM data (Yi ∼ NPQM(4, 2, 0.15, 0.14)).

the potential advantage of expression such as (6.2) is that it avoids specification of the co-
variate distribution and the integration over the missing covariate values.

A remaining issue to be considered is the numerical evaluation of the integrals over yi

in the correction terms of (6.2) and (6.3). It should be noted that these have to be evaluated at
each parameter value tried at the hill-climbing numerical optimization. Although numerical
(quadrature) integration would be feasible in one dimension, here we propose evaluation
of such integrals using Monte Carlo integration by repeated sampling from the distribution
P(Yi ∈ dyi | bi, Zi, β). This has an added advantage that while the numerical evaluation of
the density of the NPQMmodel is computationally expensive, random variates can be easily
simulated from this distribution since it is defined through the quantile function. This pro-
ceeds by drawing random variates from [0, 1]-uniform distribution and applying formula
(6.2) of Karvanen [20]. With random variates y

(j)
i ∼ NPQM(β0 + β1bi + β21{Zi=0}, β3, β4, β5),

j = 1, . . . , k, drawn for each i ∈ O \ M given the current parameter values, the integrals in
(6.2) are then approximated by the means (1/k)

∑k
j=1[1 − (1 − π(bi))P(Ti > ci | y(j)

i , Zi, α)].
Maximum likelihood estimates obtained by numerical maximization of the expres-

sions (6.2) and (6.3)with respect to α, β, and in the latter case also γ , are presented in Table 4
(α̂ and γ̂) and Table 5 (β̂). For comparison, we also maximised a full likelihood of the form
(5.1) with respect to (α, β, γ) and a weighted pseudolikelihood of the form (5.2) with respect
to β. In the latter case, we accounted for the missingness within the case-cohort set by fitting
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Figure 6: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; NPQM model fitted to NPQM data (Yi ∼ NPQM(4, 2, 0.15, 0.14)).

a logistic regression model logit{P(Mi = 0 | Ei, bi, Yi, η)} = η0 + η1Ei + η2bi + η3Yi in the set
O and calculated the adjusted weights as inverses of P(Mi = 0 | Ei, bi, Yi, η̂)P(Ri = 1 | Ei, bi).
Due to the extra estimation step, we used bootstrap with 5000 replications to obtain standard
errors for the weighted pseudolikelihood estimates. Both conditional likelihood expressions
gave very similar results, suggesting that the missing data within the case-cohort set is not
a major issue in the present case. The comparison between different number of Monte Carlo
replicates in numerical evaluation of the conditional likelihood correction term suggests that
the estimates do no longer appreciably change when k is increased from 1000. However, the
change in the estimates when increasing k from 100 to 1000 is already well within the stan-
dard errors.

Full likelihood and weighted pseudolikelihood estimates agreed well with the condi-
tional likelihood ones, although the latter had higher standard errors, as was the case also in
the simulations. As noted by Kettunen et al. [10], the absence of the lactase persistence allele
shows association with lower body mass index. The residuals from the model for BMI are
significantly skewed to the right, as indicated by the estimates of β4.

7. Discussion

Although conditional logistic likelihood is well known in the context of risk set sampling
designs (e.g., [5, 18, 40]), its connection to the general concept of conditional likelihood has
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Figure 7: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; normal model fitted to normal data (Yi ∼ Zi +N(4, 4)).

rarely been emphasized by authors. Furthermore, use of the conditional likelihood approach
is not limited to the binary event outcome response situation. In this paper we have attemp-
ted to highlight these issues in the context of modeling a continuous secondary response vari-
able under cohort sampling designs. Naturally, the conditional likelihood approach is also
valid for the primary time-to-event outcome. Although here we considered only parametric
specifications for the time-to-event outcome, semiparametric maximum likelihood tech-
niques could also be utilized here. A potential disadvantage of the likelihood-based methods
for secondary analysis is that they require specification of a model for the primary time-
to-event outcome even though it is not of main interest in the secondary analysis setting,
whereas specification of this model is avoided in the weighted pseudolikelihood approach.

Compared to the full likelihood approachwhichwould be applicable under any cohort
sampling design, the advantage of the conditional likelihood is that modeling of the popu-
lation distribution of the covariates collected in the second phase can be avoided, if this is not
of primary interest. In addition, as we demonstrated in a simulation example, full likelihood
expressions with most of the covariate data unobserved may no longer be well behaved,
a problem which the conditional likelihood approach does not have. The disadvantage of
the conditional likelihood approach is that the second-phase sampling mechanism, that is,
the joint distribution of the inclusion indicators, needs to be specified. In the case-cohort/
Bernoulli sampling situation, this is straightforward, but in mechanisms such as risk set
sampling, where the sampling probabilities are specified only implicitly, resolving the joint
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Figure 8: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; NPQM model fitted to normal data (Yi ∼ Zi +N(4, 4)).

sampling probability can be computationally nontrivial, and approximations may be needed
in practice. This is avoided in the full likelihood approach, since it does not require speci-
fication of the sampling mechanism. The inverse-probability-weighted estimating function
only requires specification of the first-order selection probabilities, but the possible depen-
dencies induced by the sampling mechanism need to be addressed in the variance estimation
step. The full and conditional likelihood approaches gave equivalent efficiencies in our simu-
lated setting, although the result might be different if the first-phase data involves covariates
which are highly predictive of the second-phase covariate of interest. In any case, both likeli-
hood-based methods gave a clear improvement in efficiency in the secondary analysis setting
compared to the inverse-probability-weighted method.

Appendices

A. On Inverse-Probability-Weighted Pseudolikelihood Estimators

The use of the expression (3.1) in approximating the corresponding complete data log-likeli-
hood

∑
i∈C logP(Yi | Xi, Zi, β), where we denote logP(Yi | Xi, Zi, β) ≡ li(β), is justified by

considering the expectation of the pseudoscore function with respect to the joint distribution
P(RC, TC, EC, YC, ZC, XC) = P(RC | TC, EC, XC, YC)P(TC, EC, YC, ZC, XC), which is assumed to
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Figure 9: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; normal model fitted to gamma data (Yi ∼ Zi +Gamma(4, 1)).

be the correct data generating mechanism. This becomes

ERC,TC,EC,XC,YC,ZC

[
∑

i∈C

1{Ri=1}∂ logP
(
Yi | Xi, Zi, β

)
/∂β

P(Ri = 1 | TC, EC, XC, YC)

]

=
∫
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β
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)

P
(
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)

× P
(
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β
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∑

ei

P
(
Ti ∈ dti, Ei = ei | xi, yi, zi

)

× P
(
Xi ∈ dxi, Yi ∈ dyi, Zi ∈ dzi

)
=
∑

i∈C
EXi,Yi,Zi

[
l′i
(
β
)]

=
∑

i∈C
EXi,Zi

{
EYi|Xi,Zi

[
∂ logP

(
Yi | Xi, Zi, β

)

∂β

]}
,

(A.1)

the last form being the expectation of the complete data score function for parameters β,
which becomes zero through the inner expectation if the parametric model P(Yi | Xi, Zi, β)
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Figure 10: Sampling distributions for maximum likelihood estimates of regression coefficient β1 from 1000
replications; NPQM model fitted to gamma data (Yi ∼ Zi +Gamma(4, 1)).

is correct, that is, corresponds to the data generating mechanism. Thus, the expression (3.1)
gives a valid estimating equation for parameters β. However, since the variance of the pseu-
doscore function does not equal the Fisher information, a robust/sandwich type variance esti-
mator must be used instead of the inverse of the observed information. As an example, below
we derive this in the special case of a Bernoulli sampling mechanism P(RC | TC, EC, YC, XC) =∏

i∈CP(Ri | Ti, Ei, Yi, Xi), where this is straightforward. For consideration of asymptotic
variances of inverse-probability-weighted estimators under stratified without replacement
sampling or risk set sampling, we refer to Breslow and Wellner [41] and Cai and Zheng [42].

Denoting q(β) ≡ ∑
i∈O logP(Yi | Xi, Zi, β)/P(Ri | Ti, Ei, Yi, Xi) and β̂ ≡ argmaxβ q(β),

the latter is given as a solution to the estimating equation q′(β) = 0, or approximately, by
the first-order Taylor expansion at the true value β0, as a solution to q′(β0) + q′′(β0)(β −
β0) = 0, which in turn, by substituting expected to observed pseudoinformation, gives the
approximate relationship β̂ − β0 ≈ E[−q′′(β0)]−1q′(β0). Taking covariance of both sides then
gives cov β̂ ≈ E[−q′′(β0)]−1 cov[q′(β0)]E[−q′′(β0)]−1, where the pseudo-Fisher information is
given by

E
[−q′′(β0

)]
= E

[
−
∑

i∈C

1{Ri=1}l
′′
i

(
β0
)

P(Ri = 1 | Ti, Ei, Xi, Yi)

]

=
∑

i∈C
EXi,Zi

{
EYi|Xi,Zi

[−l′′i
(
β0
)]}

.

(A.2)
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Since the pseudoscore function has zero mean and now Ri ⊥ Rj , i /= j, its covariance is given
by

cov
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⎣
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T
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]
.

(A.3)

In practice, these quantities are evaluated at the maximum likelihood point, replacing the ex-
pected quantities by their observed counterparts as

E
[−q′′(β0

)] ≈ −
∑

i∈O

l′′i
(
β̂
)

P(Ri = 1 | Ti, Ei, Xi, Yi)
, (A.4)

cov
[
q′
(
β0
)] ≈

∑

i∈O

l′i
(
β̂
)
l′i
(
β̂
)T

P(Ri = 1 | Ti, Ei, Xi, Yi)
2
. (A.5)

Alternatively, bootstrap variance estimation might be utilized, but it should be noted
that standard bootstrap would be valid only under Bernoulli type sampling designs, which
can be interpreted as sampling from infinite population, whereas dependencies induced
by sampling without replacement would require application of finite population bootstrap
methods (e.g., [43, 44, page 37]).

B. Relationship to Retrospective Likelihood

Consider a special case where the observed data are only (RC, EC, YO, ZO), where Ei, i ∈ C, are
binary indicators for the case status. This corresponds to the case-control situation considered
by Jiang et al. [6] and Lin and Zeng [7]. The set C now represents a study base fromwhich the
cases and controls have been selected. Now choosing a partitioning W = (YO, ZO) and V =
(RC, EC), and supposing only the case status information has been used in the selection of
cases and controls, we obtain a conditional likelihood

P(YO, ZO | RC, EC, θ) =
P(RC | EC)P(EC, YO, ZO | θ)

P(RC | EC)P(EC | θ)

=
∏

i∈O

P(Ei | Yi, Zi, α)P
(
Yi | Zi, β

)
P
(
Zi | γ

)
∫
yi

∫
zi
P
(
Ei | yi, zi, α

)
P
(
Yi ∈ dyi | zi, β

)
P
(
Zi ∈ dzi | γ

) .
(B.1)
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The last form is the retrospective form suggested by Lin and Zeng [7, page 257] for secon-
dary analysis under case-control designs. Thus, retrospective likelihood is a special case of
conditional likelihood. The advantage of the above expression is that the terms specifying
the sampling mechanism cancel out. The drawbacks are that the baseline risk level (part of α)
is not identifiable from this expression (see, e.g., [30, page 1076]) and that the parameters γ
have to be estimated or otherwise made to disappear (Lin and Zeng [7] applied profile likeli-
hood). However, nothing prevents us from choosing a more useful partitioning of the ob-
served data. For instance, with W = YO and V = (RC, EC, ZO), we obtain

P(YO | RC, EC, ZO, θ) =
P(RC | EC)P(EC, YO, ZO | θ)
P(RC | EC)P(EC, ZO | θ)

=
∏

i∈O

P(Ei | Yi, Zi, α)P
(
Yi | Zi, β

)
∫
yi
P
(
Ei | yi, Zi, α

)
P
(
Yi ∈ dyi | Zi, β

) ,
(B.2)

or, with W = (EO, YO) and V = (RC, EC\O, ZO), analogously to Section 4.2,

P
(
EO, YO | RC, EC\O, ZO, θ

)

θ∝ P(EC, YO, ZO | θ)
P
(
RC | EC\O, θ

)
P
(
EC\O, ZO | θ)

=
∏

i∈OP(Ei | Yi, Zi, α)P
(
Yi | Zi, β

)
∫
yi:i∈O

∑
ei:i∈O P(RC | EC)

∏
i∈OP

(
Ei = ei | yi, Zi, α

)
P
(
Yi ∈ dyi | Zi, β

) .

(B.3)

The baseline risk level may be identifiable from this last expression, depending on the samp-
ling mechanism used (cf. [18]). The misconception that case-control design necessitates the
use of retrospective likelihood has been recently criticized by Langholz [45] and results from
equating likelihood function to a data generating mechanism. However, the order of the data
collection does not need to determine how the likelihood is factorized, as long as the sampling
mechanism is properly taken into account.

C. Mean and Variance of the Conditional Likelihood Score Function

In the following, we suppress the covariates XC from the notation since these are always con-
ditioned upon and do not affect the derivations. Also, for notational simplicity, the parameter
θ is taken to be a scalar, and the notation is compressed so that, for example, P(dzO | θ) ≡
P(ZO ∈ dzO | θ) ≡ P(Zi ∈ dzi for all i ∈ O | θ). The probability measures indexed with
respect to θ are assumed to possess the regularity properties allowing interchanging the
order of integration with respect to the random variables and differentiation with respect to θ.
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The conditional likelihood function of interest is now

P
(
dqO | rC, qC\O, zO, θ

)
=

P
(
rC | qC, zO, θ

)
P
(
dqC, dzO | θ)

P
(
rC | qC\O, zO, θ

)
P
(
dqC\O, dzO | θ)

θ∝ P
(
dqO, dqC\O | zO, θ

)
P(dzO | θ)

P
(
rC | qC\O, zO, θ

)
P
(
dqC\O | zO, θ

)
P(dzO | θ)

=
P
(
dqO | qC\O, zO, θ

)

P
(
rC | qC\O, zO, θ

) ,

(C.1)

and the corresponding score function becomes

∂ logP
(
dqO | rC, qC\O, zO, θ

)

∂θ
=

∂ logP
(
dqO | qC\O, zO, θ

)

∂θ
− ∂ logP

(
rC | qC\O, zO, θ

)

∂θ

=
∂P

(
dqO | qC\O, zO, θ

)
/∂θ

P
(
dqO | qC\O, zO, θ

) − ∂P
(
rC | qC\O, zO, θ

)
/∂θ

P
(
rC | qC\O, zO, θ

) .

(C.2)

The expectation of the score function is considered with respect to the full model P(rC | qC,
zC, θ)P(dqC, dzC | θ). The expectation of the first term in (C.2) becomes

E

[
∂P

(
dqO | qC\O, zO, θ

)
/∂θ

P
(
dqO | qC\O, zO, θ

)
]

=
∑

rC

∫

qC

∫

zC

∂P
(
dqO | qC\O, zO, θ

)
/∂θ

P
(
dqO | qC\O, zO, θ

) P
(
rC | qC, zC, θ

)
P
(
dqC, dzC | θ)

=
∑

rC

∫

qC

∫

zO

∂P
(
dqO | qC\O, zO, θ

)
/∂θ

P
(
dqO | qC\O, zO, θ

)

×
∫

zC\O
P
(
rC | qC, zC\O, zO, θ

)
P
(
dqC, dzC\O, dzO | θ)

=
∑

rC

∫

qC

∫

zO

∂P
(
dqO | qC\O, zO, θ

)
/∂θ

P
(
dqO | qC\O, zO, θ

)

× P
(
rC | qC, zO, θ

)
P
(
dqO | qC\O, zO, θ

)
P
(
dqC\O, dzO | θ).

(C.3)

In the above expressions, it should be noted that the index set O is fixed by rC. Due to
the assumption on unconfounded sampling mechanism, the term P(rC | qC, zO, θ) does not
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depend on θ, and we get

E

[
∂P

(
dqO | qC\O, zO, θ

)
/∂θ

P
(
dqO | qC\O, zO, θ

)
]

=
∑

rC

∫
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∫
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∂
[
P
(
rC | qC, zO, θ
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(
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)]
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(
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∫
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[∫
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P
(
rC | qO, qC\O, zO, θ

)
P
(
dqO | qC\O, zO, θ

)]
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P
(
dqC\O, dzO | θ)

=
∑

rC

∫

qC\O

∫

zO

∂P
(
rC | qC\O, zO, θ

)

∂θ
P
(
dqC\O, dzO | θ).

(C.4)

Similarly, the expectation of the second term in (C.2) becomes

E

[
∂P

(
rC | qC\O, zO, θ

)
/∂θ

P
(
rC | qC\O, zO, θ

)
]

=
∑
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(
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(
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(
dqC, dzC | θ)

=
∑

rC

∫
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∫
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(
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(
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(
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(
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(
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(
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(
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(
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(C.5)

Thus, we have

E

[
∂P

(
dqO | qC\O, zO, θ

)
/∂θ

P
(
dqO | qC\O, zO, θ

)
]
= E

[
∂P

(
rC | qC\O, zO, θ

)
/∂θ

P
(
rC | qC\O, zO, θ

)
]
, (C.6)
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and the conditional likelihood score function has zero expectation. The Fisher information is
given by

E

[
−∂

2 logP
(
dqO | rC, qC\O, zO, θ

)

∂θ2

]

= E

[
∂2 logP
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(C.7)

By writing open the expectations as above, it is easy to see that
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(C.8)

Thus, the Fisher information becomes
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(C.9)

that is, equal to the variance of the conditional likelihood score function.
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