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A new method for calibrating the Black-Scholes asset price dynamics model is proposed. The
data used to test the calibration problem included observations of asset prices over a finite set
of (known) equispaced discrete time values. Statistical tests were used to estimate the statistical
significance of the two parameters of the Black-Scholes model: the volatility and the drift. The
effects of these estimates on the option pricing problem were investigated. In particular, the pricing
of an option with uncertain volatility in the Black-Scholes framework was revisited, and a statistical
significance was associated with the price intervals determined using the Black-Scholes-Barenblatt
equations. Numerical experiments involving synthetic and real data were presented. The real data
considered were the daily closing values of the S&P500 index and the associated European call
and put option prices in the year 2005. The method proposed here for calibrating the Black-Scholes
dynamics model could be extended to other science and engineering models that may be expressed
in terms of stochastic dynamical systems.

1. Introduction

The Black-Scholes formulae [1] used to price European call and put options are based
on an asset price dynamics model. This model is a stochastic dynamical system that may
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be written as a stochastic differential equation. The solution to this model takes the form
of a stochastic process called geometric Brownian motion. The model contains two real
parameters: volatility and drift. The volatility and drift parameter values are necessary to
apply the model to asset and option price forecasting; therefore, in practice, the values of
these parameters must be determined prior to using the Black-Scholes dynamics model
and the option pricing formulae derived from it. The problem of estimating the asset price
dynamics model parameters must be considered based on the available data. This problem
is a calibration problem and is an inverse problem for a stochastic dynamical system defined
by a stochastic differential equation. The estimated parameter values obtained by solving the
calibration problem may be used to forecast asset prices at future time points and to evaluate
the option pricing formulae. The “accuracy” and reliability of the estimated parameter values
determine the accuracy and reliability of the forecasted asset prices and the computed and/or
forecasted option prices.

Note that in recent years, the validity of the asset price dynamics model proposed
by Black and Scholes in 1973 [1] has been disputed in the mathematical finance literature,
and several other refined models, such as the Heston model [2], have been introduced to
describe asset price dynamics. Nevertheless, the Black-Scholes asset dynamics model and,
particularly, the option pricing formulae derived from it remain widely used in financial
market practice. We will see that the solution to the Black-Scholes model calibration problem,
using statistical tests, and an investigation of effects on the option pricing problem, are easily
derived using elementary mathematics. For this reason, the Black-Scholes asset dynamics
model is the natural choice to begin our study of solutions to the problems associated with
calibrating stochastic dynamical systems using statistical tests. The ideas introduced in this
paper are rather general and are not limited to the study of the Black-Scholes model.

The data used in the calibration problem include observations of the asset prices over
a finite set of (known) equispaced discrete time values. We show how elementary statistical
tests (i.e., the Student’s t and the χ2 tests) may be used to estimate the drift and volatility
parameters of the Black-Scholes model with statistical significance. Recall that the first step in
formulating a hypothesis testing problem consists of defining the null hypothesis, H0, as well
as an alternative hypothesis, H1. When the goal is to establish an assertion about a probability
distribution parameter based on support from a data set, the assertion is usually taken to be
the null hypothesis H0, and the negation of the assertion itself is taken to be the alternative
hypothesis H1 (or vice versa). The null hypothesis H0 considered later is the hypothesis that
a parameter of a probability distribution belongs to a given interval. In a statistical test, we
must additionally consider the statistical significance. The statistical significance α, 0 < α < 1,
is the maximum probability of rejecting the null hypothesis H0 when the hypothesis is true.
Defining a type I error as the error associated with rejecting the null hypothesis H0 when H0

is true, the statistical significance α, 0 < α < 1, is the maximum probability of making a type
I error. The result of the test is a decision to accept or reject the null hypothesis H0 with a
significance level α, 0 < α < 1.

Let us describe the content of the paper in greater detail. As mentioned, the solution
to the Black-Scholes asset price dynamics model is a stochastic process called geometric
Brownian motion, which depends on two parameters: the drift and the volatility. From
this fact, it follows that the asset price at any given time may be modeled as a random
variable with a log-normal distribution and, therefore, the log return of the asset price is
normally distributed. It is easy to see that the asset price log return increments associated
with observations of the asset price over a (finite) set of equispaced time values comprise
a sequence of values sampled from a set of independent identically distributed Gaussian
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random variables. The mean and variance of these Gaussian random variables can be
expressed using elementary formulae as a function of the drift and volatility parameters of
the Black-Scholes asset price dynamics model and of the time interval between observations.
Starting from a sample of observations of the log return increments over a finite set of
equispaced (known) time values, elementary statistical tests (i.e., the Student’s t and χ2

tests) may be used to estimate, with a given (statistical) significance, the mean and variance
of the Gaussian random variables associated with the log return increments. In fact, the
Student’s t-test [3, 4] is the test used to establish, with statistical significance, whether the
mean of a normally distributed population of independent samples has a certain value or
belongs to an interval specified in a “null” hypothesis. Similarly, the χ2 test [4, 5] is the test
used to establish, with statistical significance, whether the variance of a normally distributed
population of independent samples has a value or belongs to an interval specified in a “null”
hypothesis. Knowledge of the Gaussian random variable parameters associated with the log
return increments derived from the statistical tests permits recovery of the corresponding
parameters of the Black-Scholes model and the associated statistical significances.

The use of statistical tests to solve the problem associated with calibrating stochastic
dynamical systems, such as the Black-Scholes model, is an interesting approach to inverse
problems used elsewhere in mathematical finance as well as in application contexts other than
mathematical finance. The significance levels obtained for the parameter values (intervals) in
the Black-Scholes model are relevant in many practical situations. In Section 3, we consider
the problem associated with pricing an option with an uncertain volatility. This problem has
been considered by several authors in the scientific literature. For simplicity, we refer the
reader to [6, 7], in which the (uncertain) volatility in the Black-Scholes framework is assumed
to belong to a known interval and the corresponding price intervals for the (European vanilla)
option prices may be determined using the Black-Scholes-Barenblatt equations. Thanks to
our methodology, statistical significance levels may be attributed to the option price intervals
determined using the Black-Scholes-Barenblatt equations.

Finally, the approach used to calibrate the Black-Scholes model is applied to the study
of synthetic and real data. The synthetic data considered were generated by numerically
integrating the stochastic differential equation that defines the asset price dynamics in the
Black-Scholes model, for several choices of the parameter values. The real data studied
were the time series of the daily closing values of the S&P500 index and the associated
European vanilla option prices during the year 2005. The numerical results obtained were
computationally simple and statistically convincing.

In mathematical finance, the problem associated with estimating the volatility of asset
prices, starting from a time series of observed data (asset and/or option prices), has received
significant attention. The methods most commonly used in the literature include the implied
and historical (or realized) volatility methods. The approach proposed here for solving this
problem is distinct. Unlike the implied volatility method, we do not consider the volatility
implied by the option prices observed in the market. That is, we do not estimate the volatility
parameter of the asset price using the prices of various options to the asset with different
strikes and expiration dates. By contrast, our method estimates the volatility based on the
asset prices observed over a finite set of discrete time values, similar to the approach used in
the historical volatility method. Our method improves on the historical volatility method by
associating a significance level to the volatility estimate. In some sense, the transition from
the historical volatility method to the method proposed here corresponds to a transition from
the use of a volatility estimate for “sample volatility” to the use of a statistical test (i.e., the
χ2 test) tailored to the random variable which depends on the parameter to be estimated.
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Roughly speaking, the transition is from a method of descriptive statistics to a method of
mathematical statistics.

The work presented here has several valuable features that are worth noting. First,
the idea proposed here is very simple. Although the approach is introduced in the context
of the Black-Scholes model, it can be applied to other stochastic dynamical systems used in
mathematical finance to describe asset price dynamics, for example, the Heston model (see
[2, 8, 9]), or some of its variants, such as the models introduced in [10–13] to study specific
problems. In [8–13], the models were calibrated using the “implied volatility method” or the
maximum likelihood method. These studies did not implement statistical tests to solve the
calibration problems or estimate the parameters; therefore, no statistical significance could
be associated with the parameter estimates. Note that in calibrating these models or generic
stochastic dynamical system models in general, no elementary statistical tests (such as the
Student’s t or χ2 tests) could be used. Extending the method suggested here to studies of
more general dynamical systems will depend on the development of new ad hoc statistical
tests. The application of these new statistical tests to a sample data will most likely require
substantial use of numerical methods.

The website http://www.econ.univpm.it/recchioni/finance/w11/ makes available
auxiliary material, including animations, to assist the reader in understanding the discussion
present here. References to the authors’ more general studies in the field of mathematical
finance are available at the website http://www.econ.univpm.it/recchioni/finance/.

The remainder of the paper is organized as follows. Section 2 formulates and solves
the calibration problem for the Black-Scholes model. Section 3 addresses the problem of
pricing options with statistical significance when the volatility value is uncertain and lies
in a specified range. Section 4 tests the proposed method on time series data, and the results
obtained from studies of the synthetic and real data are discussed. Section 5 presents some
concluding remarks and a few possible extensions of this work.

2. The Calibration Problem for the Black-Scholes Model

Let St > 0 denote the asset price at time t ≥ 0. The Black-Scholes model [1] assumes that St,
t > 0, is a stochastic process, the dynamics of which are governed by the following stochastic
differential equation:

dSt = μStdt + σStdWt, t > 0, (2.1)

with the initial condition:

S0 = ̂S0, (2.2)

where μ and σ are real parameters, μ is the drift, σ > 0 is the volatility, Wt, t > 0, is a standard
Wiener process, W0 = 0, dWt, t > 0 is its stochastic differential, and the initial condition
̂S0 > 0 is a given random variable. For simplicity, we assume that ̂S0 is a random variable
concentrated at a point with probability one. Abusing the notation, we denote this point as
̂S0 > 0. The parameters μ and σ are the unknowns of the calibration problem.



Journal of Probability and Statistics 5

The stochastic differential (2.1) defines the so-called geometric Brownian motion. In
fact, (2.1) can be rewritten as

dSt

St
= μdt + σdWt, t > 0. (2.3)

Let ln(·) denote the logarithm of · for t ≥ 0. The quantity Gt = ln(St/ ̂S0) is the log return at
time t of the asset with a price St. Using (2.3) and Itô’s Lemma (see [14]), it follows that the
process Gt, t > 0 satisfies the following stochastic differential equation:

dGt =

(

μ − σ2

2

)

dt + σdWt, t > 0, (2.4)

with initial conditions that follow from (2.2), that is, G0 = 0. Equation (2.4) implies that
Gt = ln(St/ ̂S0), t > 0, is a generalized Wiener process with a constant drift μ − σ2/2 and a
constant volatility σ > 0. Therefore, for t ≥ 0, τ > 0, the increment in Gt = ln(St/ ̂S0) occurring
between time t and time t + τ is a Gaussian random variable with mean (μ − σ2/2)τ and
variance σ2τ . That is

Gt+τ −Gt = lnSt+τ − lnSt ∼ N
((

μ − σ2

2

)

τ, σ2τ

)

, t ≥ 0, τ > 0, (2.5)

where, for M and V real constants, V /= 0, N(M,V 2) denotes the Gaussian distribution with
mean M and variance V 2.

From (2.5), it follows that the Black-Scholes asset price log return increments
associated with a discrete set of equispaced time values form a sequence of independent
identically distributed Gaussian random variables. Let Δt > 0 be a time increment, and let
ti = iΔt, i = 0, 1, . . . , n, be a discrete set of equispaced time values that later will be chosen as
the set of observation times. We define Xti , the asset price log return increment as t increases
from ti−1 to ti, as

Xti = ln
(

Sti

Sti−1

)

, i = 1, 2, . . . , n. (2.6)

It is easy to see that the random variables Xti , i = 1, 2, . . . , n are independent identically
distributed Gaussian random variables with mean M and variance V 2, where

M =

(

μ − σ2

2

)

Δt, V 2 = σ2Δt. (2.7)

We then have

Xti ∼ N
((

μ − σ2

2

)

Δt, σ2Δt

)

, i = 1, 2, . . . , n. (2.8)
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Consider the following calibration problem: given a time increment Δt > 0, a statistical
significance level α, 0 < α < 1, and the asset price ̂Si observed at time t = ti = iΔt, i =
0, 1, . . . , n, determine two intervals in which the parameters μ and σ of the model (2.1),
respectively, fall with the given significance level α.

Note that in order to apply the calibration problem solution to the problem of pricing
options with uncertain volatility (see Section 3), point estimates of the tested parameters
are not useful. Instead, an interval of variability for the tested parameter (i.e., with a given
significance level α) is necessary. Studies of the problem presented in Section 3, in particular,
require the identification of an interval of variability for the volatility σ. That is, we would like
to determine the interval within which the parameter σ may be found, and to this interval we
would like to associate a significance level α. The option prices in the Black-Scholes model are
independent of the drift parameter μ and depend on the risk-free interest rate. Usually, the
risk-free interest rate is known for a given problem; however, in the numerical experiments
presented in Section 4, a risk-free interest rate was selected, depending on the interval of
variability of μ determined in the calibration problem. For more details see Section 4.

The observations ̂Si of the asset price at time t = ti, i = 0, 1, . . . , n, are nonnegative real
numbers that are assumed to be unaffected by errors. These n + 1 observations of the asset
price and the corresponding time values are the data used in the calibration problem. The
corresponding observed log return increments x̂i = ln( ̂Si/ ̂Si−1), i = 1, 2, . . . , n, are a sample
of n observations taken, respectively, from the random variables Xti , i = 1, 2, . . . , n, that is,
taken from a set of independent identically distributed Gaussian random variables. Using
this sample data, the Student’s t-test and χ2 test (see [3–5]), we identified two intervals over
which the mean M and variance V 2 of the Gaussian random variables were determined to
within a given significance level α. From knowledge of the intervals determined for M and
V 2, the corresponding intervals for μ and σ could be recovered by inverting the relations
(2.7).

In greater detail, given a significance level α, 0 < α < 1, we can perform statistical
tests on the variance V 2 and on the mean M of the random variables Xti = ln(Sti/Sti−1),
i = 1, 2, . . . , n starting from the sample data x̂i = ln( ̂Si/ ̂Si−1), i = 1, 2, . . . , n, using the χ2 and
Student’s t tests, respectively. This implies that for a given α, 0 < α < 1, and the relations
(2.7), we can accept or reject, with a significance level α, the following hypotheses regarding
the parameters of the Black-Scholes asset price dynamics model:

σ1 ≤ σ ≤ σ2, (2.9)

and

μ1 ≤ μ ≤ μ2, (2.10)

where

σi =
Vi√
Δt

, and μi =
Mi

Δt
+

V 2
i

2Δt
, i = 1, 2, (2.11)

and M1 < M2, 0 < V1 < V2 are the quantities that define the corresponding hypotheses on M
and V , respectively. This is performed simply by translating the results on V 2 and M obtained
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using the statistical tests to σ and μ. We can proceed as follows. Given a sample data,

x̂i sampled from Xti ∼ N
(

M,V 2
)

, i = 1, 2, . . . , n, (2.12)

with M and V 2 defined in (2.7), it is possible first to estimate V 2 (and, therefore, σ2) using
the χ2 test along with (2.11), and, subsequently, to estimate M (and, therefore, μ, thanks to
knowledge of σ2 acquired using the χ2 test) using the Student’s t-test along with (2.11).

It should be noted that in many circumstances, it is more practical to try to determine
an interval of variability for the drift μ and volatility σ parameters in the Black-Scholes model
than to try to determine their “exact” values.

To estimate V 2 from the log return increments (2.12), we must choose the hypotheses
that we would like to test. This can be done in many ways. The analysis of data time series in
Section 4 uses the following procedure.

Procedure 1. Given the sample data x̂i, i = 1, 2, . . . , n, fix a statistical significance level α, 0 <
α < 1. Choose a sufficiently large interval I = I(0) = [a(0), b(0)], 0 < a(0) < b(0) such that
V 2 ∈ I(0). Partition I(0) into m subintervals (of equal length) I(0)i = [a(0)

i , b
(0)
i ], i = 1, 2, . . . , m,

and apply the χ2 test to test the hypothesis V 2 ∈ I
(0)
i , i = 1, 2, . . . , m. We restrict our attention

to the subinterval(s) I(0)i∗ = [a(0)
i∗ , b

(0)
i∗ ] ⊂ I(0) over which the (composite) hypothesis:

H0 : a(0)
i∗ ≤ V 2 ≤ b

(0)
i∗ (2.13)

may be accepted with a significance level α, 0 < α < 1. If the hypothesis (2.13) cannot
be accepted over any subintervals I

(0)
i∗ , the choice of I(0) and/or m may be changed. If the

subinterval I(0)i∗ is unique, we set I(1) = [a(1), b(1)] = I
(0)
i∗ , otherwise, we set I(1) = [a(1), b(1)]

equal to the union of the intervals over which (2.13) is accepted with a significance level α.
In both cases, the procedure described above is repeated, in the first case with the division of
I(1), and in the second case, with the shrinking of I(1). In this way, a sequence of subintervals
I(k) = [a(k), b(k)], k = 1, 2, . . . is constructed such that the hypothesis:

H0 : a(k) ≤ V 2 ≤ b(k), k = 1, 2, . . . , (2.14)

is accepted with a significance level α, 0 < α < 1. This procedure stops when b(k) − a(k) < tol,
where tol is a given tolerance. We take the last set constructed using this procedure, over
which the formulated hypothesis may be accepted, as a final estimate of an interval within
which V 2 falls with a significance level α.

Procedure 2. A similar procedure is used to estimate an interval within which M falls with a
significance level α, based on the data sample x̂i, i = 1, 2, . . . , n, using the Student’s t test.

The synthetic and real data are analyzed in Section 4 using Procedures 1 and 2 to
identify intervals within which the parameters σ and μ fall with a significance level α.

Let us briefly discuss the design of Procedures 1 and 2. We focus on the motivations
for the design of Procedure 1, which are not substantially different from the motivations
for the design of Procedure 2. In Procedure 1, the statistical tests performed during
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the calibration process were chosen as hypotheses with the goal of balancing two needs.
On the one hand, a careful and conservative procedure is desirable, which means that
a sufficiently large interval surrounding the volatility σ must be specified in the null
hypothesis. On the other hand, the interval surrounding the volatility σ should be small
enough to provide a meaningful range of variability around the corresponding option prices.
Too large an interval of variability around the volatility σ generates a large interval of
variability around the corresponding option prices, making the information about the option
prices useless. To satisfy these contrasting needs, we initially select a large interval for the
volatility σ, such that we trust that the estimated parameter lies within this interval. All
scenarios, even the most extreme cases, may be considered systematically based in this choice.
We then use an ad hoc procedure (i.e., Procedure 1) to gradually reduce the size of the chosen
interval based on the idea that if a given hypothesis has already been accepted, it should be
possible to refine it. The suggested procedures are iterative. At each step, the null hypothesis
H0 of the considered test is modified in light of what has been discovered in the preceding
steps. This leads to an iterative hypothesis testing procedure. Note that the only purpose
underlying this iterative approach is to identify a satisfactory formulation of the test’s null
hypothesis. The sample data used in the tests do not vary with the iterative procedure. Type I
errors that occur during each test are calculated as if the other tests were not performed. This
iterative procedure is conceptually different from a multiple testing procedure [15] and from
an analytic induction procedure [16]. In fact, in a multiple testing procedure (see [15]), a set
of statistical inferences is considered simultaneously (i.e., each test has his own sample data),
and the type I errors increase as the number of comparisons increases, unless the tests are
perfectly dependent. In an analytic induction procedure (see [16]), the type I errors decrease
because the size of the sample data set considered increases during the induction procedure.

An alternative approach to determining the range within which the volatility, σ, varies
involves using an elementary method based on elementary statistics. For example, the sample
data is used to obtain a point estimate of the parameter σ (i.e., compute the volatility of
the sample data), then a confidence interval is constructed around this point estimate to
quantify the uncertainty. Similarly, elementary statistics may be used to determine the range
of variability of the drift μ.

For the purposes pursued here, the method described in Procedures 1 and 2 is
preferable to methods based on elementary statistics. Elementary statistics methods risk
yielding dubious results in the event that a low-quality point estimate is selected. Also,
the construction of large intervals of variability for the volatility can spoil any predictions
regarding the corresponding option prices.

Finally, we note that in this paper, the idea of calibrating stochastic dynamical systems
using statistical tests is suggested and implemented in the context of the Black-Scholes model.
Procedures 1 and 2 are only heuristic procedures for selecting test hypotheses. Many other
methods are available for estimating the model parameters using statistical tests that are
plausible, such as methods based on elementary statistics, as mentioned previously.

3. Option Prices with Uncertain Volatility and Statistical Significance

Consider the Black-Scholes asset price dynamics model (2.1) and the problem of pricing
options with uncertain volatility in the Black-Scholes model with a given statistical
significance α, 0 < α < 1. We assume that the volatility value σ is not known exactly, but
it is known that the volatility lies within a specified range, say, σ1 ≤ σ ≤ σ2, where σ1 and σ2
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are constants and 0 < σ1 < σ2, with a given significance level α. The χ2 test may be applied
to the data used in the calibration problem, as described in Section 2, to decide whether to
accept or reject the statement:

σ1 ≤ σ ≤ σ2, with significance level α. (3.1)

We limit our attention to European vanilla call and put options.
The question that we want to answer is given a significance level α, 0 < α < 1, and

assuming that the hypothesis H0 : σ1 ≤ σ ≤ σ2 is accepted with a significance level α,
determine the corresponding range within which the value of a European vanilla option lies
(with a significance level α).

The answer to this question follows from the work of Avellaneda et al. [6] and of Lyons
[7]. These authors proposed a method for estimating price options in the Black-Scholes model
if the volatility σ is not known exactly but it is known that:

σ1 ≤ σ ≤ σ2. (3.2)

In [6, 7], significance levels were not considered.
We remark that the bounds σ1 and σ2 in (3.1) and (3.2) were determined in different

ways. In (3.1), these bounds correspond to parameters that can be chosen together with a
significance level in such a way that the χ2 test will accept the hypothesis H0 : σ1 ≤ σ ≤
σ2 over the sample data considered with a significance level α. Alternatively, these bounds
are parameters determined from the sample data through an iterative procedure, such as
Procedure 1 described in Section 2. In (3.2), these bounds are assigned using common sense
assumptions, or they are determined either by looking at extreme values of the volatility
implied by the observed option prices or by looking at the low and high peak values of the
historical volatility.

Let r be the risk-free interest rate, t be the time variable, S be the asset price,
T > 0, g(S), S > 0, be the expiration date, and the pay-off function of the option to be
priced. References [6, 7] showed that in the Black-Scholes framework, when the volatility
satisfies (3.2), there exists an interval [V1,V2], depending on S and t, such that the price
V = V(S, t), S > 0, 0 < t ≤ T, of the option lies within this interval. That is, (3.2) implies that

V1(S, t) ≤ V(S, t) ≤ V2(S, t), S > 0, 0 < t ≤ T. (3.3)

The worst case option value V1(S, t), S > 0, 0 < t ≤ T satisfies the following nonlinear partial
differential equation:

∂V1

∂t
+

1
2
a(Γ1)2S2 ∂

2V1

∂S2
+ rS

∂V1

∂S
− rV1 = 0, S > 0, 0 < t < T, (3.4)

with final conditions

V1(S,T) = g(S), S > 0, (3.5)
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where

Γ1 =
∂2V1

∂S2
, (3.6)

and

a(Γ1) =

⎧

⎨

⎩

σ2, if Γ1 ≤ 0,

σ1, if Γ1 > 0.
(3.7)

Similarly, the best-case option value V2(S, t), S > 0, 0 < t ≤ T satisfies the following nonlinear
partial differential equation:

∂V2

∂t
+

1
2
b(Γ2)2S2 ∂

2V2

∂S2
+ rS

∂V2

∂S
− rV2 = 0, S > 0, 0 < t < T, (3.8)

with final conditions

V2(S,T) = g(S), S > 0, (3.9)

where

Γ2 =
∂2V2

∂S2
, (3.10)

and

b(Γ2) =

⎧

⎨

⎩

σ2, if Γ2 ≥ 0,

σ1, if Γ2 < 0.
(3.11)

For example, for a European vanilla call option, we have g(S) = max(S−K, 0), S > 0, and for a
European vanilla put option, we have g(S) = max(K−S, 0), S > 0, where K is the strike price
of the option. To ensure the existence of a unique solution for the European vanilla call option,
the following boundary conditions must be added to (3.4) and (3.5) and to (3.8) and (3.9):

V(S, t) −→ 0 as S −→ 0, 0 < t < T, (3.12)

V(S, t) ∼ S −Ke−r(T−t) as S −→ ∞, 0 < t < T. (3.13)

Similar boundary conditions must be added to (3.4) and (3.5) and to (3.8) and (3.9) when
considering a European vanilla put option.

Equations (3.4) and (3.8) are known as the Black-Scholes-Barenblatt equations, and
they reduce to the usual Black-Scholes equation in the absence of uncertainty about the
volatility value (i.e., in the case of σ1 = σ2). For a general pay-off function, these equations do
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not have a closed-form solution and must be solved numerically; however, the properties of
the Black-Scholes-Barenblatt (3.4) and (3.8) or, more generally, of the maximum principle of
parabolic partial differential equations, ensure that when a call or a put option is considered,
the convexity of the corresponding payoff functions g(S), S > 0 imply that the functions
∂2V1/∂S

2 and ∂2V2/∂S
2 do not change sign for S > 0, 0 < t < T. That is, when S > 0, 0 < t < T,

the functions ∂2V1/∂S
2 and ∂2V2/∂S

2 retain the value of their sign at t = T; therefore, in the
context of a call or a put option, (3.4) and (3.8) reduce to the Black-Scholes equation. Note that
when t = T, we have Vi(S,T) = g(S), S > 0, i = 1, 2, and in the context of the payoff functions
g of the call and put European vanilla options, the corresponding ∂2g/∂S2 are Dirac delta
functions, which requires that the sign of ∂2g/∂S2 must be interpreted in the context of the
distributions. The Black-Scholes equation is linear. Under simple final conditions, such as the
conditions relevant to the call and put options, this equation can be solved explicitly to yield
the Black-Scholes formulae.

For example, consider the situation in which the worst-case option value V1 is the
solution to the following problem relating to a European call option:

∂V1

∂t
+

1
2
σ2

1S
2 ∂

2V1

∂S2
+ rS

∂V1

∂S
− rV1 = 0, S > 0, 0 < t < T, (3.14)

V1(S,T) = max(S −K, 0), S > 0, (3.15)

with boundary conditions (3.12) and (3.13). Similarly, the best-case call option value V2

satisfies

∂V2

∂t
+

1
2
σ2

2S
2 ∂

2V2

∂S2
+ rS

∂V2

∂S
− rV2 = 0, S > 0, 0 < t < T, (3.16)

V2(S,T) = max(S −K, 0), S > 0, (3.17)

with boundary conditions (3.12) and (3.13).
The explicit solutions of (3.14) and (3.15) and of (3.16) and (3.17), in the context of the

boundary conditions (3.12) and (3.13) are respectively [1]:

V1(S, t) = SN(d1) −Ke−r(T−t)N(e1), S > 0, 0 < t < T, (3.18)

V2(S, t) = SN(d2) −Ke−r(T−t)N(e2), S > 0, 0 < t < T, (3.19)

where

d1 =
log(S/K) +

(

r + (1/2)σ2
1

)

(T − t)

σ1
√
T − t

, e1 = d1 − σ1

√

T − t, S > 0, 0 < t < T, (3.20)
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d2 =
log(S/K) +

(

r + (1/2)σ2
2

)

(T − t)

σ2
√
T − t

, e2 = d2 − σ2

√

T − t, S > 0, 0 < t < T, (3.21)

and

N(x) =
1√
2π

∫x

−∞
e−(1/2)y2

dy, −∞ < x < ∞. (3.22)

A similar analysis can be used to determine the worst-value and best-value European
vanilla put options. Note that the formulae (3.18) and (3.19) are the Black-Scholes formulae.

We are now in a position to address the question posed at the beginning of this Section.
First, let us assume that a “true” value of the volatility σ exists, even if it is unknown. In the
Black-Scholes model, the price V of an option is a monotonically increasing function of the
volatility σ. We can therefore conclude that when (3.1) holds, we have:

“V1(S, t) ≤ V(S, t) ≤ V2(S, t), S > 0, 0 < t < T with significance level α”, (3.23)

where V1(S, t), V2(S, t), S > 0, 0 < t < T, are the solutions to the appropriate Black-Scholes-
Barenblatt equations. Note that if we consider European vanilla call and put options V1(S, t),
V2(S, t), S > 0, 0 < t < T, can be determined explicitly (see formulae (3.18) and (3.19), and
similar formulae that can be deduced for put options).

The meaning of (3.23) can be restated as follows: if we assume that a “true” value of
the volatility σ exists and that an analysis of sample data permits us to accept the hypothesis
that this true value lies in the range [σ1, σ2] with a significance level α, that is, σ1 ≤ σ ≤ σ2

with probability 1 − α, it follows that the corresponding “true” value of the option price V
lies in the range [V1,V2] with probability 1 − α, that is, “V1(S, t) ≤ V(S, t) ≤ V2(S, t), S > 0,
0 < t < T, with significance level α”, where V1 and V2 are the solutions to the appropriate
Black-Scholes-Barenblatt equations.

4. Numerical Experiments

Several numerical experiments were conducted to demonstrate the principles described
above. As a first example, we consider a numerical experiment that involves solving the
calibration problem discussed in Section 2 using synthetic data. This experiment features
an analysis of the time series corresponding to daily data of asset prices over a period
of ten years. We assume that one year is composed of 253 trading days. The time series
studied comprises 253 · 10 + 1 = 2531 daily asset price data points, that is, it comprises the
asset price ̂Si observed at time t = ti = iΔt, i = 0, 1, . . . , 2530, Δt = 1/253. The synthetic
data were obtained by computing one trajectory using the stochastic differential equation
(2.1) for several choices of the parameter values, then examining the computed trajectory
at time t = ti = iΔt, i = 0, 1, . . . , 2530. We choose as the initial conditions, time t = t0 = 0,
S0 = ̂S0 = 1200. We choose μ = μ1 = 0.01 and σ = σ1 = 0.1 in the first five years (i.e., for
t = ti, i = 0, 1, . . . , 1264), μ = μ2 = 0.06 and σ = σ2 = 0.4 in the sixth and seventh years (i.e.,
for t = ti, i = 1265, 1266, . . . , 1770), and μ = μ3 = 0.03 and σ = σ3 = 0.2 in the last three years
(i.e., for t = ti, i = 1771, 1772 . . . , 2530). The synthetic data were generated such that the last
data point of the fifth year was the initial data point of the sixth year. Similar statements hold
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Figure 1: The daily log return increments (synthetic data).

for the initial data point values of the last three years. The daily log return increments of the
synthetic asset prices generated in this way are shown in Figure 1. The fact that the data are
generated using three different parameters can be readily seen by inspection of Figure 1.

Consider the following calibration problem: given Δt = 1/253, α = 0.1, and the asset
price observation ̂Si at time t = ti = iΔt, i = 0, 1, . . . , 2530, determine intervals within which
the parameters μ and σ of model (2.1) fall with a significance level α = 0.1.

We solve this calibration problem by applying Procedures 1 and 2, described in
Section 2, to the data associated with a time window comprising 253 consecutive observa-
tions, that is, the observations corresponding to 253 consecutive trading days (one year).
This window is moved stepwise across the ten years of data, discarding the datum corre-
sponding to the first observation time within the window and inserting the datum corre-
sponding to the next observation time after the window. The calibration problem is solved for
each data time window by applying Procedures 1 and 2 described in Section 2. In other
words, the problem is solved 2530 − 253 + 1 = 2278 times, identifying two intervals
for each calibration problem solved within which the volatility and drift parameters
fall with a significance level α = 0.1. Referring to Procedures 1 and 2 described
in Section 2, we choose m = 2, tol = 2 · 10−4 and appropriate initial intervals
I = I(0) to determine an interval within which the parameters σ and μ fall. The
parameter reconstructions obtained from moving the window along the data are shown
in Figure 2. The abscissa in Figure 2 corresponds to the data window used to reconstruct
the model parameters. The data windows are numbered in ascending order, beginning
with one, according to the first day within the window being considered. Figure 2
shows that the intervals containing the parameters μ and σ, chosen by Procedures 1 and
2, and the times at which the parameter values changed were reconstructed satisfactorily.

The second numerical experiment involved the use of real data. The real data studied
were the 2005 daily values of the U.S. S&P500 index (see Figure 3) and of the prices of the
European vanilla call and put options on this index. Recall that the U.S. S&P500 index is one
of the leading indices of the New York Stock Exchange. Specifically, we considered the daily
closing values of the S&P500 index and the bid prices of the vanilla European call and put
options on the S&P500 index during a period of 12 months, beginning on January 3, 2005, and
ending on December 30, 2005. Within this period are 253 trading days and more than 153 000
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Figure 2: The parameters σ2 and μ, reconstructed from the synthetic data.
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Figure 3: The S&P500 index (year 2005).

option prices. We limit our study to the call and put prices corresponding to options with
a positive volume (i.e., a positive number of contracts) and a positive bid price, traded on
the day corresponding to the price considered. This data set included 46 823 options prices.
Because there are 253 trading days in the year 2005, we define a “year” as 253 consecutively
ordered trading days. The time t = t0 = 0 was assigned to the day of January 3, 2005. A total
of 253 daily S&P500 index values ̂Si were observed at time t = ti = iΔt, i = 0, 1, . . . , 252, with
Δt = 1/253 year. The S&P500 index and the corresponding (daily) log return increments in
the year 2005 are shown in Figures 3 and 4, respectively.
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Figure 4: The S&P500 daily log return increments (year 2005).

This data set were interpreted using the Black-Scholes model, as described in Section 2.
We begin by studying the variance and drift in the Black-Scholes model applying the
S&P500 index over the year 2005. The S&P500 daily log return increments x̂i = ln( ̂Si/ ̂Si−1),
i = 1, 2, . . . , 252, were analyzed using the Black-Scholes model. The data were considered
as a sample (see Figure 4) of 252 observations taken from a set of independent identically
distributed Gaussian random variables:

x̂i is sampled from Xti ∼ N
(

M,V 2
)

, i = 1, 2, . . . , 252, (4.1)

where the mean M and the variance V 2 are defined in (2.7). Procedures 1 and 2, described
in Section 2, were used to estimate V 2 (and, therefore, σ2) using the χ2 test. Subsequently, M
(and, therefore, μ) was estimated using the Student’s t-test.

Given the sample data comprising the S&P500 daily log return increments x̂i, i =
1, 2, . . . , 252, the significance level α = 0.1, m = 2, tol = 10−4, and the appropriate initial
intervals I = I(0), we initiated Procedures 1 and 2 to find that the hypotheses:

2.5297 · 10−3 = σ2
1 ≤ σ2 ≤ σ2

2 = 2.7232 · 10−2, (4.2)

−1.1087 · 10−2 = μ1 ≤ μ ≤ μ2 = 2.5968 · 10−2, (4.3)

are accepted with a significance level α = 0.1.
We next perform a type of stability analysis over the intervals (4.2) and (4.3)

determined from the statistical tests. To do this, we fixed α = 0.1 and applied Procedures 1
and 2 to determine the intervals within which σ2 and μ lay with the significance level α,
starting from a window of 70 consecutive observations corresponding to 70 consecutive
observation times (i.e., 70 consecutive trading days). The data window was shifted stepwise
over the data time series, discarding the datum corresponding to the first observation time
of the window and inserting the datum corresponding to the next observation time after



16 Journal of Probability and Statistics

20 40 60 80 100 120 140 160 180

0
0.005
0.01

0.015
0.02

0.025
0.03

Data windows

σ2
1 = 0.00253

σ2
2 = 0.02723

σ
2

(a)

20 40 60 80 100 120 140 160 180

−0.01

0

0.01

0.02

0.03

Data windows

 

μ2 = 0.02597
μ1 = −0.01109

μ

(b)

Figure 5: The parameters σ2 and μ, reconstructed from the S&P500 data (year 2005).

the window. This procedure generated 252−70+1 data windows over the data time series. For
each window, the corresponding calibration problem was solved. We found 252−70+1 pairs of
intervals within which the volatility and drift parameters lay with a significance level of α =
0.1. Figure 5 shows that as the data window was shifted, the intervals determined through
Procedures 1 and 2 remained stable. The abscissa in Figure 5 represents the data windows
used to reconstruct the model parameters, numbered in ascending sequential order, begin-
ning with one. Figure 5 shows the intervals determined by Procedures 1 and 2 of Section 2
corresponding to each data window.

Finally, we considered the 46.823 S&P500 European call and put option prices during
the year 2005, and we attempted to interpret these values using the method developed in
Section 3. The estimates (2.9), (2.10) established with a significance level α = 0.1 permitted
us to determine the corresponding option price intervals using the Black-Scholes-Barenblatt
equations. The worst-case option values V1(S, t), S > 0, 0 < t ≤ T, and the best-case option
values V2(S, t), S > 0, 0 < t ≤ T could thereby be determined. Note that V1 and V2 could
be determined using the Black-Scholes formula using (2.9). We selected r = (μ1 + μ2)/2,
with μ1 and μ2, as defined in (2.10). It should be noted that the value of r was not relevant in
determining V1 and V2, and varying r over a reasonable range did not substantially change V1

or V2. Moreover, the time to maturity within the Black-Scholes framework may be computed
by considering a year composed of 365 days. We compute the percentage of European call
(% call) and put (% put) option prices on the S&P500, observed over the year 2005, that
verified (3.23), assuming (2.9). The results obtained are shown in Tables 1–3. In these tables,
Ncall and Nput denote respectively the number of call prices and put prices corresponding
to options with the characteristics described in the caption of the table. The quantities Icall

and Iput denote respectively the average relative amplitude of the call price intervals and
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Table 1: S&P500 option prices: in the money options (year 2005). These results were obtained using the
estimates (4.2) and (4.3).

January–April 2005 % call % put Ncall Nput Icall Iput Pcall Pput

73.8% (172.22) 72.3% (313.01) 1571 1822 0.23 0.34 94.01 76.82
May–August 2005 % call % put Ncall Nput Icall Iput Pcall Pput

74.6% (335.25) 62.0% (202.34) 2005 1745 0.24 0.35 92.03 76.73
September–December 2005 % call % put Ncall Nput Icall Iput Pcall Pput

65.5% (401.78) 59.7% (557.22) 2174 2300 0.23 0.35 97.94 76.14

Table 2: S&P500 option prices: at the money options (year 2005). These results were obtained using the
estimates (4.4) and (4.5).

January–April 2005 % call % put Ncall Nput Icall Iput Pcall Pput

51.1% (1358.18) 67.7% (1869.60) 852 902 0.27 0.28 28.29 24.76
May–August 2005 % call % put Ncall Nput Icall Iput Pcall Pput

56.5% (1899.99) 66.2% (1989.07) 1115 1154 0.28 0.28 27.40 22.52
September–December 2005 % call % put Ncall Nput Icall Iput Pcall Pput

41.5% (2377.19) 59.4% (2652.84) 1188 1208 0.27 0.28 30.29 23.45

put price intervals determined using the Black-Scholes-Barenblatt equations, and Pcall, Pput

denote respectively the average bids of the call and put prices. It should be noted that the %
call and % put columns may be expressed as the average number of contracts applied to the
options that were considered to have been traded.

Recall that given the asset price S and the strike price K of an option, a call option (or
a put option) is in the money if S > K (if S < K) is out the money if S < K (if S > K) and is
at the money if S = K. In the numerical experiments, the condition S = K is substituted with
|S − K| < ε, where ε is a (given) positive quantity. As a consequence, the conditions S > K,
S < K may be rewritten as S > K + ε and S < K − ε, respectively. Using these criteria, the
46 823 option prices considered above may be divided into three subsets corresponding to
the prices of in the money, at the money, or out of the money options. Take ε to be equal to
one percent of the average strike price of the options considered.

Table 1 refers to the in the money S&P500 option prices, obtained by specifying (2.9)
and (2.10) as (4.2) and (4.3), respectively.

A similar analysis of the S&P500 option prices corresponding to options out of and at
the money reveals that the use of the intervals (4.2) and (4.3) leads to huge call and put price
intervals, making the obtained results of dubious practical value. One way to overcome this
drawback is to refine the estimates (4.2) and (4.3) by reducing the parameter tol in Procedures
1 and 2 of Section 2 until the option price intervals of “acceptable average relative amplitude”
(i.e., average relative amplitude of some tens of percentage points) are obtained. Taking tol1 =
tol/4 = 10−4/4, we find that the hypotheses:

8.7051 · 10−3 = σ2
1 ≤ σ2 ≤ σ2

2 = 1.4881 · 10−2, (4.4)

1.2646 · 10−3 = μ1 ≤ μ ≤ μ2 = 1.0528 · 10−2, (4.5)
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Table 3: S&P500 option prices: out of the money options (year 2005). These results were obtained using
the estimates (4.6) and (4.7).

January–April 2005 % call % put Ncall Nput Icall Iput Pcall Pput

20.1% (691.52) 2.41% (1061.76) 3412 4892 0.26 0.57 11.13 9.05
May–August 2005 % call % put Ncall Nput Icall Iput Pcall Pput

13.4% (929.68) 3.55% (1337.39) 3644 6316 0.23 0.58 9.89 8.33
September–December 2005 % call % put Ncall Nput Icall Iput Pcall Pput

12.6% (1598.65) 2.71% (1908.66) 4055 6468 0.24 0.59 12.73 8.58

are accepted with a significance level α = 0.1. The choice of (4.4), (4.5) as intervals containing
σ2 and μ, respectively, leads to an average relative amplitude of some tens of percentage
points for the option price intervals when the call and put options at the money are
considered. Table 2 shows the results obtained on at the money option prices using (4.4) and
(4.5).

In the context of the S&P500 option prices relative to options out of the money, the
parameter tol must be further reduced to keep the average relative amplitudes of the option
price intervals to reasonable values. For example, taking tol2 = tol/10 = 10−4/10, we find that
the hypotheses:

1.1021 · 10−2 = σ2
1 ≤ σ2 ≤ σ2

2 = 1.2565 · 10−2, (4.6)

4.7385 · 10−3 = μ1 ≤ μ ≤ μ2 = 7.0544 · 10−3, (4.7)

are accepted with a significance level of α = 0.1. Table 3 shows the results obtained from out
of the money option prices using (4.6), (4.7).

Table 1 shows that the in the money S&P500 option prices were reasonably well
interpreted by the model proposed here. Some 60%–80% of the prices of in the money S&P500
call and put options could be explained by the model, and 20%–40% of the average relative
amplitudes of the option price intervals were considered to be of possible practical value.
Table 1 further shows that in the case of in the money options, the call prices seemed to be bet-
ter explained than the put prices. On the other hand, the numerical results shown in Table 2
indicated that the at the money S&P500 put option prices were better explained than the
corresponding S&P500 call options prices. The results relative to at the money S&P500 option
prices were satisfactory. Unfortunately, Table 3 shows that the out of the money S&P500
option prices and, above all, the S&P500 prices relative to out of the money put options,
were not well interpreted using our methodology. This could result from the fact that the out
of the money options usually had low prices. Tables 1–3 showed that the prices of the options
out of the money were the smallest values.

5. Conclusions

A method for calibrating the Black-Scholes asset price dynamics model using the χ2 and
Student’s t tests was developed to obtain estimates, with statistical significance, of the
volatility and drift parameters of the model. The effects of these estimates on the option
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pricing problem were considered. The pricing problem for European call and put options
with uncertain volatility in the Black-Scholes framework was reinterpreted by associating
a statistical significance to the option price intervals determined using the Black-Scholes-
Barenblatt equations. The proposed method was tested on synthetic and real data. The real
data considered were S&P500 values and the corresponding European call and put option
prices over the year 2005. The calibration problem for the Black-Scholes model was solved
based on the S&P500 data, and the S&P500 call and put option price data were interpreted in
the framework of option prices with uncertain volatility and significance level. In the money
and at the money S&P500 option prices could be modeled with a high degree of accuracy.
The out of the money S&P500 option prices were not explained well by this model.

The methodology discussed in this paper was introduced in the context of the Black-
Scholes asset dynamics model to take advantage of the model simplicity and to offer an
alternative approach to the calibration techniques in widespread use by practitioners in the
financial markets. The calibration problem may be solved using statistical tests that can affect
the (call, put) option pricing, and these effects may be studied using elementary mathematics.
Several extensions of our work may be considered. For example, the skew-normal models
(see, e.g. [17]) are commonly used to interpret financial data. Many financial data sets exhibit
asymmetric distributions, and several models, including the skew-normal models, have been
proposed to capture this asymmetry and repair any inadequacies of the Black-Scholes model.
In these models, a solution to the calibration problem that uses statistical tests should not
differ too significantly from the solution proposed here. The extension of our methodology
to the study of more general stochastic dynamical models, such as the Heston model or some
of its variants, may require the development of new ad hoc statistical tests. Any application
of new statistical tests to a sample data set should rely on the use of numerical methods.
Another interesting idea to explore involves attempting to simplify the new statistical tests
developed, solve the calibration problem, and approximate the relevant probability density
functions using an asymptotic expansion within some meaningful limit. The intelligent use
of these asymptotic expansions can provide significant computational advantages.
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