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An analytic solution of the flow of a third-grade fluid on a porous plate is constructed.
The porous plate is executing oscillations in its own plane with superimposed injection
or suction. An increasing or decreasing velocity amplitude of the oscillating porous plate
is also examined. It is also shown that in case of third-grade fluid, a combination of suc-
tion/injection and decreasing/increasing velocity amplitude is possible as well. Several
limiting situations with their implications are given and discussed.

1. Introduction

Mechanics of nonlinear fluids present a special challenge to engineers, physicists, and
mathematicians. The nonlinearity can manifest itself in a variety of ways. One of the
simplest ways in which the viscoelastic fluids have been classified is the methodology
given by Rivlin and Ericksen [31] and Truesdell and Noll [35], who present constitutive
relations for the stress tensor as a function of the symmetric part of the velocity gradient
and its higher (total) derivatives.

In recent years, there have been several studies [1, 5, 13, 14, 15, 18, 25, 33] on flows
of non-Newtonian fluids, not only because of their technological significance, but also
in view of the interesting mathematical features presented by the equations governing
the flow. On the other hand, it is well known that the rheological properties of many
fluids are not well modelled by the Navier-Stokes equations. For example, in most of these
models, a significant reduction of the drag past solid walls has been observed. Moreover,
elastic properties of real fluids can be detected and measured. A discussion of the various
differential, rate-type, and integral models can be found in the books of Schowalter [32]
and Huilgol [19], and in the survey article by Rajagopal [24]. Amongst these models,
fluids of differential type have attracted much attention, as well as much controversy.
We refer the reader to Dunn and Rajagopal [7] for a complete and thorough discussion
of all the relevant issues. The major attractiveness of these models is the fact that the
constitutive relations, whether we take the second- or the third-grade fluids since they
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have been studied the most, are derived based on first principles, and unlike many other
“phenomenological” models [30], there are no curve fittings or parameters to adjust.
Though, in both of these grade models, there are material properties that need to be
measured. At the same time, the sign of these material parameters and the stability or
instability of the motions have caused a certain degree of misunderstanding. These issues
for the second- and third-grade fluids have been discussed in detail by Dunn and Fosdick
[6], and Fosdick and Rajagopal [11], respectively.

In general, for fluids of the differential type of grade n, the equations of motion are
of order (n + 1). Thus, if n > 1, then the adherence boundary condition is insufficient
for determinacy. The standard method used to overcome this difficulty is to resort to
perturbation that lowers the order of the equation [2, 4, 8, 12, 27, 29, 34], which is not
mathematically rigorous. In fact, the authors in [2, 4, 8, 12, 27, 29, 34] are aware of this,
but in the absence of any rational method for generating additional boundary conditions,
they have no other way out of the impasse. It is possible that in flows in unbounded
domains, we can obtain additional conditions based on the asymptotic structure of the
flow at infinity. Mansutti et al. [22] showed that results by perturbation method and of
augmenting the boundary conditions agree remarkably well. Rajagopal and Gupta have
also discussed this issue in [26] and studied the steady flow of a second-grade fluid past
a porous plate. In another paper, Rajagopal [23] studied some unidirectional flows of a
second-grade fluid. In [10], Foote et al. studied the problem for the flow of an elastico-
viscous fluid on an oscillating porous plate. More recently, Turbatu et al. [36] discussed
the viscous flow of an oscillating porous flat plate with the combination of superimposed
injection or suction and increasing or decreasing velocity amplitude. Hayat et al. [16]
extended this analysis for the viscous flow caused by the noncoaxial rotations of a porous
oscillating disk and a fluid at infinity.

Although the second-grade fluid model is able to predict the normal stress differences
which are characteristic of non-Newtonian fluids, it does not take the shear thinning and
thickening phenomena that many show.

The third-grade fluid model represents a further, although inconclusive, attempt to-
ward a comprehensive description of the properties of viscoelastic fluids. With this in
view, the model in the present paper is a third-grade fluid one. Related studies are in
[3, 9, 28].

The task of this work is to study the unsteady flow of a third-grade fluid on an os-
cillating porous plate with the combination of superimposed suction or blowing and
decreasing or increasing velocity amplitude. In case of third-grade fluid also, a combi-
nation of suction or injection and decreasing or increasing velocity amplitude of the os-
cillating plate is possible. It is found that with the increase in material parameters of the
third-grade fluid, the velocity boundary layer thickness decreases in the case of suction
and increases in the case of blowing and the amplitude of oscillation decreases for ac-
celeration and increases for deceleration. A comparison of the third-grade fluid with the
viscous case shows that in the case of third-grade fluid, the rate of change of boundary
layer thickness decrease/increase for suction/blowing and the rate of change of amplitude
of the oscillation increase/decrease for acceleration/deceleration are greater than that for
the viscoelastic [17] and viscous [36] cases.
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2. Basic equations

The stress in a third-grade fluid is given by [35]

T=−pI +µA1 +α1A2 +α2A2
1 +β1A3 +β2

(
A2A1 + A1A2

)
+β3

(
trA2

)
A1, (2.1)

where µ is the coefficient of viscosity, and α1, α2, β1, β2, and β3 are the material moduli.
In the above representation, −pI is the spherical stress due to the constraint of incom-
pressibility, and the kinematic tensors A1, A2, and A3 are defined by

A1 = (gradV) + (gradV)�,

An = dAn−1

dt
+ An−1(gradV) + (gradV)�An−1, n= 2,3,

(2.2)

where V denotes the velocity field, grad is the gradient operator, � the transpose, and
d/dt is the material time derivative which is defined by

d

dt
(·)= ∂

∂t
(·) +

[
grad(·)]V, (2.3)

where ∂/∂t is the partial derivative with respect to time. A detailed thermodynamic anal-
ysis of the model, represented by (2.1), is given by Fosdick and Rajagopal [11]. They
showed that if all the motions of the fluid are to be compatible with thermodynamics
in the sense that these motions meet the Clausius-Duhem inequality and if it is assumed
that the specific Helmholtz free energy is a minimum when the fluid is locally at rest, then

µ≥ 0, α1 ≥ 0, β1 = β2 = 0, β3 ≥ 0,
∣∣α1 +α2

∣∣≤ √24µβ3. (2.4)

It is pointed out that the second-grade fluid is incapable of shear thinning or shear thick-
ening. The third-grade fluid model represented by (2.1), under the assumption given in
(2.4), is a shear thickening fluid. Rigorous mathematical results have been established for
fluids that can shear thin or shear thicken in the book by Málek et al. [20]. Also, the is-
sues concerning mathematical results, especially concerning the stability of flows of fluids
that can shear thicken or shear thin, are discussed by Málek et al. [21]. The constitutive
relation for a thermodynamically compatible third-grade fluid becomes

T=−pI +µA1 +α1A2 +α2A2
1 +β3

(
trA2

)
A1. (2.5)

If the normal stress parameters α1 and α2 are zero, then

T=−pI +
[
µ+β3

(
trA2

)]
A1, (2.6)

where the quantity in the brackets can be thought of as an effective shear-dependent
viscosity. If we go to (2.1) and assume β1 = β2 = β3 = 0, we obtain the model for the
second-grade fluid:

T=−pI +µA1 +α1A2 +α2A2
1. (2.7)

This model also has a constant shear viscosity.
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3. Statement of the problem

We are interested in the third-grade fluid over an infinite plate. The plate considered is
porous. Choose the x-axis along the plate and the y-axis perpendicular to it. For t < 0,
fluid is at rest and for t > 0, the plate is moving periodically. The basic governing equa-
tions are the conservation of mass and the conservation of linear momentum. These are

∂ρ

∂t
+ div(ρV)= 0, (3.1)

ρ
dV
dt
= div T + ρb, (3.2)

where ρ is the density and b is the body force. Since we are assuming that the fluid can
undergo only isochoric motion, (3.1) reduces to

div V= 0. (3.3)

We seek a solution for the velocity field of the form

u= u(y, t), v =V0, (3.4)

where u and v are velocity components in the x- and y-coordinates direction, respectively.
Also V0 < 0 is the suction velocity and V0 > 0 is the blowing velocity.

The boundary conditions on the flow are

u(0, t)=U(t)=U0 · e(β0−iω)t, ω > 0, t > 0, β0 = const �= 0,

u(y, t)−→ 0 as y −→∞,
(3.5)

where U0 is the reference velocity or free-stream velocity.
Using (3.4), (3.3) is identically satisfied and (3.2) in the absence of body forces yields

∂u

∂t
+V0

∂u

∂y
= ν

∂2u

∂y2
+β
[
V0

∂3u

∂y3
+

∂3u

∂y2∂t

]
+ γ

[
∂2u

∂y2

(
∂u

∂y

)2
]

, (3.6)

where

ν= µ

ρ
, β = α1

ρ
, γ = 6β3

ρ
. (3.7)

The shear stress in the direction of x-axis normal to the y-axis is given by

τxy = µ
∂u

∂y
+α1

{
V0

∂2u

∂y2
+

∂2u

∂y∂t

}
+ 2β3

(
∂u

∂y

)3

. (3.8)

The above equations can be rewritten in the following dimensionless form:

∂ f

∂τ
+
√

2d
∂ f

∂η
= 1

2
∂2 f

∂η2
+φ1

[
∂3 f

∂η2∂τ
+
√

2d
∂3 f

∂η3

]
+φ2

∂2 f

∂η2

(
∂ f

∂η

)2

,

τxy = 1√
2νωρU0

τxy = 1
2
∂ f

∂η
+φ1

[
∂2 f

∂η∂τ
+
√

2d
∂2 f

∂η2

]
+

1
2
φ2

(
∂ f

∂η

)3

,

(3.9)
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where

η =
√

ω

2v
y, d = V0

2
√
vω

, τ = ωt,

f = u

U0
, φ1 = ω

2v
β, φ2 = ωU2

0

4v2
γ.

(3.10)

The appropriate boundary conditions are

f (0,τ)= e(c−i)τ , c = β0

ω
,

f −→ 0 as η −→∞.
(3.11)

4. Solution of the problem

We suppose the dimensionless velocity f can be expanded in power series in φ2 [28]:

f
(
η,τ;φ2

)= f0(η,τ) +φ2 f1(η,τ) + ··· . (4.1)

On substituting the expansion (4.1) for f and equating like powers of φ2, we obtain the
following equations of zeroth and first powers, respectively:

∂ f0
∂τ

+
√

2d
∂ f0
∂η

= 1
2
∂2 f0
∂η2

+φ1

[
∂3 f0
∂η2∂τ

+
√

2d
∂3 f0
∂η3

]
,

f0(0,τ)= e(c−i)τ ,

f0(η,τ)−→ 0 as η −→∞,

∂ f1
∂τ

+
√

2d
∂ f1
∂η

= 1
2
∂2 f1
∂η2

+φ1

[
∂3 f1
∂η2∂τ

+
√

2d
∂3 f1
∂η3

]
+
∂2 f0
∂η2

(
∂ f0
∂η

)2

,

f1(0,τ)= 0,

f1(η,τ)−→ 0 as η −→∞.

(4.2)

Introducing the similarity transformations

f0(η,τ)= g0(η)e(c−i)τ , f1(η,τ)= g1(η)e3(c−i)τ (4.3)

in (4.2), and employing the procedure used in [2], we obtain the following real parts:

f0(η,τ)= exp
[
cτ +

(
C0R +C1Rφ1 +C2Rφ

2
1

)
η
]

× cos
[
τ − (C0I +C1Iφ1 +C2Iφ

2
1

)
η
]
,

f1(η,τ)= e(3cτ+k3η)[q1 cos
(
3τ− k4η

)
+ q2 sin

(
3τ− k4η

)]
− e3(cτ+k1η)[q1 cos3

(
τ − k2η

)
+ q2 sin3

(
τ − k2η

)]
,

(4.4)

where the constants appearing in (4.4), and in the forthcoming special cases of (4.4), can
be found in a straight manner. The velocity field can be obtained by combining the results
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(4.4) in (4.1). The dimensionless stress at the plate (η =√ω/2vy = 0) is respectively given
by

τ0w = 1√
2νωρU0

τ0w = 1
2
Aφ1e

(c−i)τ[√2dA+ (c− i)
]
,

τ1w = 1√
2νωρU0

τ1w

= A4e3(c−i)τ

A∗

[
B
{

1
2

+
(√

2dB+ 3(c− i)
)
φ1

}
−A

{
3
2

+ 9(A+ c− i)φ1

}]
+

1
3
A3e3(c−i)τ .

(4.5)

5. Special cases

To understand the different physical aspects of solution (4.1), we discuss some special
cases.

5.1. Oscillating plate (viscous; c = d = φ1 = φ2 = 0). Stokes’ second problem can be ob-
tained by taking c = d = φ1 = φ2 = 0, that is,

fNS(η,τ)= exp(−η)cos(τ −η). (5.1)

5.2. Oscillating porous plate (viscous; c �= 0, d �= 0, and φ1 = φ2 = 0). The results of
Turbatu et al. [36] can be readily recovered by taking c �= 0, d �= 0, φ1 = φ2 = 0, that is,

fNP(η,τ)= exp
[
cτ +C0Rη

]
cos
[
τ −C0Iη

]
. (5.2)

5.3. Oscillating porous plate (viscoelastic; c �= 0, d �= 0, φ1 �= 0, and φ2 = 0). Viscoelastic
second-grade fluid [17] can be obtained by taking c �= 0, d �= 0, φ1 �= 0, and φ2 = 0, that
is,

fV (η,τ)= exp
[
cτ +

(
C0R +C1Rφ1 +C2Rφ

2
1

)
η
]

× cos
[
τ − (C0I +C1Iφ1 +C2Iφ

2
1

)
η
]
.

(5.3)

5.4. Oscillating porous plate (third grade; c = 0, d �= 0, φ1 �= 0, and φ2 �= 0). For c = 0,
d �= 0, φ1 �= 0, and φ2 �= 0, solution (4.1) gives

f (η,τ)= exp
[(
Ĉ0R + Ĉ1Rφ1 + Ĉ2Rφ

2
1

)
η
]

× cos
[
τ − (Ĉ0I + Ĉ1Iφ1 + Ĉ2Iφ

2
1

)
η
]

+φ2
{
e(3cτ+k̂3η)[q̂1 cos

(
3τ − k̂4η

)
+ q̂2 sin

(
3τ− k̂4η

)]
− e3(cτ+k̂1η)[q̂1 cos3

(
τ − k̂2η

)
+ q̂2 sin3

(
τ − k̂2η

)]}
.

(5.4)

The solution for the velocity component f is plotted in Figures 5.1 and 5.2 for different
values of φ1 and φ2 and for a fixed time τ = 2π as a function of the suction/blowing
velocity V0, given by d = V0/2

√
vω. The values d = 0, φ1 = 0, and φ2 = 0 refer to the
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Figure 5.1. Influence of suction/blowing on the velocity distribution at τ = 2π; c = 0, φ1 = 0, φ2 = 0.

classical Stokes problem. It is noted that the boundary layer thickness is controlled by the
suction velocity (V0 < 0), that is, it decreases with an increase in suction velocity.

In case of blowing (V0 > 0), the boundary layer thickness becomes large as is expected
physically.

Figure 5.2 gives the effect of material parameter of third-order fluid. It is observed
that with the increase in third-grade parameter φ2, the boundary layer thickness rapidly
decreases in the case of suction (V0 < 0) and rapidly increases in the case of blowing
(V0 > 0) when compared with the viscoelastic case [17] and viscous case [36].

5.5. Oscillating plate with acceleration/deceleration (third grade; c �= 0, d = 0, φ1 �= 0,
and φ2 �= 0). In this section, the superposition of two time-dependent functions is taken
into account, one of which is due to the oscillation of the plate with imposed frequency
ω and the second is an exponential increase or decrease of the velocity amplitude of the
plate with the parameter β0.

For d = 0, c �= 0, φ1 �= 0, and φ2 �= 0, solution (4.1) takes the form

f (η,τ)= exp
[
cτ +

(
C̃0R + C̃1Rφ1 + C̃2Rφ

2
1

)
η
]

× cos
[
τ − (C̃0I + C̃1Iφ1 + C̃2Iφ

2
1

)
η
]

+φ2
{
e(3cτ+k̃3η)[q̃1 cos

(
3τ− k̃4η

)
+ q̃2 sin

(
3τ− k̃4η

)]
− e3(cτ+k̃1η)[q̃1 cos3

(
τ − k̃2η

)
+ q̃2 sin3

(
τ − k̃2η

)]}
,

(5.5)
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Figure 5.2. Influence of suction/blowing on the velocity distribution at τ = 2π; c = 0, φ1 = 0.1, φ2 =
0.1.
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Figure 5.3. Influence of increasing or decreasing the amplitude of the plate on the normalized velocity
distribution at τ = 2π; d = 0, φ1 = 0, φ2 = 0.
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Figure 5.4. Influence of increasing or decreasing the amplitude of the plate on the normalized velocity
distribution at τ = 2π; d = 0, φ1 = 0.1, φ2 = 0.1.

or

g(η,τ)= f (η,τ)
exp(cτ)

= exp
[(
C̃0R + C̃1Rφ1 + C̃2Rφ

2
1

)
η
]

× cos
[
τ − (C̃0I + C̃1Iφ1 + C̃2Iφ

2
1

)
η
]

+φ2
{
e(2cτ+k̃3η)[q̃1 cos

(
3τ− k̃4η

)
+ q̃2 sin

(
3τ − k̃4η

)]
− e(2cτ+3k̃1η)[q̃1 cos3

(
τ − k̃2η

)
+ q̃2 sin3

(
τ − k̃2η

)]}
.

(5.6)

The parameter c = β0/ω gives the variation of the amplitude of the plate velocity and
c = 0, φ1 = 0, and φ2 = 0 imply the classical viscous case. Solution (5.6) is plotted in
Figures 5.3 and 5.4 for τ = 2π, φ1 = 0, φ2 = 0, and for τ = 2π, φ1 = 0.1, φ2 = 0.1, re-
spectively. Figures 5.3 and 5.4 show the variation of β0, φ1, and φ2. It is noted that with
the increase in third-grade parameter φ2, the amplitude of the oscillations rapidly in-
creases/decreases according to β0 > 0/β0 < 0.

6. Conclusion

We have presented here results for the flow field of a fluid, which is called the third-order
fluid or the fluid of grade three, on an oscillating plate with superimposed blowing or
suction. The analysis presented is further concerned with an increasing or decreasing
velocity amplitude of the oscillating plate. The results in [17, 36] can be recovered as a
special case of the problem considered by taking the parameters φ1 and φ2 to be zero and
φ2 to be zero, respectively. This provides a useful mathematical check.
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