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We consider optimum feedback control strategy for computer communication network,
in particular, the access control mechanism. The dynamic model representing the source
and the access control system is described by a system of stochastic differential equations
developed in our previous works. Simulated annealing (SA) was used to optimize the
parameters of the control law based on neural network. This technique was found to
be computationally intensive. In this paper, we have proposed to use a more powerful
algorithm known as recursive random search (RRS). By using this technique, we have
been able to reduce the computation time by a factor of five without compromising the
optimality. This is very important for optimization of high-dimensional systems serving
a large number of aggregate users. The results show that the proposed control law can
improve the network performance by improving throughput, reducing multiplexor and
TB losses, and relaxing, not avoiding, congestion.

1. Introduction

The widely used IP protocol offers best-effort service; it does not guarantee (specified)
quality of service (QoS). As IP networks have been extensively deployed, all QoS efforts
have to layer on top of the existing technology. The network architectures such as in-
tegrated service (IntServ) and differentiated service (DiffServ), which are proposed by
Internet Engineering Task Force (IETF), provide QoS to deliver real-time applications
effectively and efficiently. Token bucket (TB) algorithm, which is used as a filter to char-
acterize traffic, has been employed in traffic control.

TB size and token generating rate are two major parameters of TB. The size of traffic
burst cannot exceed the size of the TB, and average conformed traffic rate is limited up
to the token generating rate. TB is usually used for traffic shaping, policing, and mark-
ing. In previous papers [2, 1], we developed a TB system model and proposed feedback
control laws to police traffic access. The associated control problem treated on the ba-
sis of the Hamilton-Jacobi-Bellman (HJB) equation presents formidable computational
burden and in fact cannot be solved currently [1]. Instead, a simplified feedback control
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law was proposed based on neural network. As indicator functions were used in the sys-
tem model (see Section 3), many irregular small random fluctuations were imposed on
the overall structure of the system including the objective function. This is a nonsmooth
optimization problem and so more difficult.

Network conditions vary with time and the search algorithm should quickly find bet-
ter network parameters before significant changes occur in the network. Furthermore,
network parameter optimization is based on network simulation which might be very
time consuming.

Simulated annealing (SA) algorithm [5] was applied to optimize network parameters
(weights of the neural network) to achieve a near-optimal FB control law. Although this
method can improve the system performance, computational time is large. In order to
save the computation time, it is necessary to apply a faster algorithm such as recursive
random search (RRS) [10] which was found to reduce the computational time substan-
tially by a factor of five.

Recent network traffic measurement studies have shown the existence of self similarity
and long-range dependency (LRD) properties [3, 4, 6, 9]. Self-similarity means that the
same statistical patterns of behaviour occur over time scales which can vary by many or-
ders of magnitude. LRD exhibits slowly decaying autocorrelation. In order to analyze the
system and the performance of the control law, we also propose a dynamic model for the
traffic. This model is governed by a stochastic differential equation (SDE) driven by frac-
tional Brownian motion (FBM). The process so generated possesses self-similarity and
LRD properties. It is also important to mention that our model produces nonnegative
random process (representing traffic arrival rate) as required [1].

The rest of the paper is organized as follows. Traffic model is presented in Section 2 and
the access control mechanism in Section 3. Full system model is presented in Section 4.
Objective function and performance measures are given in Section 5. Control strategies
are discussed in Section 6. Basic data used for simulation experiments and numerical
results are presented in Sections 7 and 8. The paper ends with the conclusion in Section 9.

2. Traffic model

We proposed a traffic model based on FBM [1, 8]. In general, the traffic model is com-
posed of a drift component and a fluctuation component. In this section, we introduce
the traffic models. Indicator functions are used throughout the paper. They are defined as
follows. Let S denote any logical or mathematical statement. Then the indicator function
of S is defined as follows:

I(S)=

1, if the statement S is true,

0, otherwise.
(2.1)

Let �H(t) denote the FBM, associated with the Hurst parameter (self-similarity pa-
rameter) H which is used to describe the degree of LRD and the burstiness of the traffic.
For any Hurst parameter H ∈ (0,1) and a (variance) scaling parameter σ2, the FBM sat-
isfies the following properties:

(1) BH(t) is Gaussian and BH(0)= 0 with probability one;
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(2) E{BH(t)} = 0;
(3) Cov{BH(t),BH(s)} = (σ2/2)(|t|2H −|t− s|2H + |s|2H).

In particular, when H = 0.5, BH(t) is the classical Brownian motion. In this case,

Cov
{
BH(t),BH(s)

}= σ2(t∧ s), Var
(
BH(t)−BH(s)

)= σ2|t− s|. (2.2)

For H �= 0.5, the increments BH(t)−BH(s) are dependent (stochastically correlated) un-
like the Brownian motion. This process has LRD when 0.5 < H < 1. For σ = 1, we have
the standard Brownian motion. In this paper, we use the FBM BH(t), t ≥ 0, a Gaussian
process, given by the integral transform of the classical Brownian motion,

BH(t)=
∫ t

0
KH(t− s)dB(s), t ≥ 0, (2.3)

where {B(t), t ≥ 0} is the standard Brownian motion and K(·) is a suitable kernel satis-
fying certain properties.

For our numerical experiments, we choose the simple kernel KH given by

KH(t)= CHt
(H−1/2),

1
2
<H < 1, (2.4)

where CH is any constant. Note that for the given choice of the kernel K and for any
α≥ 0, BH(αt)(d/−)αHBH(t), the equality understood in the sense of their distributions.
Thus this process is self-similar. If CH = 1 for H = 1/2, limH↓1/2 BH(t)= B(t) for all t ≥ 0.

In a recent paper [1], the authors proposed a traffic model governed by an SDE driven
by FBM. This is given by the following equation:

dai = hi(t)
{
I
(
hi(t) > 0

)
+ I
(
ai(t) > 0, hi(t)≤ 0

)}
dt+ σiI

{
ai(t) > 0

}
dBH

i (t). (2.5)

For H = (1/2), this equation reduces to the classical SDE of Ito type. Equation (2.5)
gives the source dynamics representing the traffic rate generated by any of the ith users.
This equation can be explained as follows. Change of traffic rate is given by the sum of
two terms on the right-hand side of the equation. The first term determines the general
trend of the traffic. It is active under two different situations: first, when hi(t) > 0 and
the value of ai(t) is arbitrary; second, when hi(t) ≤ 0 but ai(t) > 0. The last term in the
equation contains noise and it is active only when ai(t) > 0. This term affects the traf-
fic fluctuation. In case of multiple users, say m, the scalar ai is replaced by an m vector
a≡ {ai, i= 1,2, . . . ,m}.

Thus the source dynamics is governed by the following system of SDE of Ito type:

da= b(t,a)dt+ σ(t,a)dB, (2.6)

where B represents either the standard Brownian motion or the FBM taking values in
Rm. Since, in general, the sources are independent users, the drift vector b is the vector
of infinitesimal rates of individual users and the diffusion (fluctuation/voltility) σ is a
diagonal matrix representing the intensity of fluctuation of each of the user’s individual
traffic. It should be noted that (2.6), based on (2.5), generates self-similar random process
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taking values from the positive orthant Rm
+ ⊂ Rm and therefore can be used to model

network traffic. For the first time in the literature [1], this model was proposed to describe
the source dynamics. It is flexible in the sense that choice of the parameters {hi} and {σi}
can produce a large class of traffic for each user and distinct traffic for different users. Note
that the coefficients characterizing the drift and diffusion are discontinuous functions
unlike in standard Ito equations.

3. Access control mechanism

Each of the user’s traffic is processed by a dedicated TB before it is passed on to the
multiplexor, where they are queued up for service into the outgoing link. Considering m
users, the state of the system is described by the occupancy status of all the TBs and the
multiplexor giving m+ 1 equations.

Let Ti > 0, i= 1,2, . . . ,m, denote the size of the ith TB, and ρi(t) the number of tokens
available at time t in the ith TB. We can use the following equation to describe the rate of
change of token population, as presented in [1]:

dρi =
{
ui(t)I

(
ρi(t) < Ti

)− ai(t)I
(
ρi(t) > 0

)}
dt. (3.1)

This is simply a balance equation, where the rate of change of token population (count)
is given by the algebraic sum of fresh token supply rate ui (provided the bucket is not full)
and the consumption rate ai due to the arrival of traffic from the source i (subject to the
condition that the corresponding bucket is not empty). Clearly, TBs will drop noncon-
forming packets whenever they are empty.

Let q(t) denote the state of the multiplexor measured in terms of (any suitable unit,
such as bytes) space occupied in its buffer which has size Q > 0. Let C(t) denote the (out-
going) link capacity available at time t. The multiplexor injects the traffic into the link at
a rate determined by the available capacity. The dynamics of the multiplexor can then be
formulated as follows:

dq =
{
−C(t)I

(
q(t) > 0

)
+

[ m∑
i=1

ai(t)I
(
ρi(t) > 0

)]
I
(
q(t) < Q

)}
dt. (3.2)

This equation describes the occupancy status of the multiplexor. The rate of change of
the multiplexor queue is determined by the algebraic sum of link service rate (provided
the multiplexor is not empty) and the sum of all conforming traffic rates from all the TBs
(subject to the condition that the corresponding multiplexor is not full).

In order to achieve QoS satisfaction of each accessing traffic and maximum utilization
of the multiplexor, the controller adjusts the token supply at each TB to control access rate
of each traffic. This can be used in current networks to improve utilization by dynamically
allocating bandwidth to each user [2, 1].

Remark 3.1. Note that in developing these dynamic equations, we have assumed that both
the TBs and the multiplexor are noiseless.
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4. Full system model

Considering (2.6), (3.1), and (3.2) and defining

fi
(
t,ρi,ai,ui

)≡ {uiI(ρi < Ti
)− aiI

(
ρi > 0

)}
,

f (t,ρ,a,u)≡ col
{
fi
(
t,ρi,ai,ui

)
, i= 1,2, . . . ,m

}
,

g(t,ρ,a,q)≡ {−C(t)I(q > 0) +
(
Σn
i=1aiI

(
ρi > 0

))
I(q < Q)

}
,

(4.1)

we can rewrite (2.6), (3.1), and (3.2) as a system given by

da= b(t,a)dt+ σ(t,a)dB,

dρ = f (t,ρ,a,u)dt,

dq = g(t,ρ,a,q)dt.

(4.2)

This is a (2m+ 1≡ n)-dimensional SDE describing the dynamics of our system that con-
sists of the source (traffic) dynamics and the dynamics of the access control mechanism
at the edge of a backbone network. For analysis of the system, it is more convenient to
write these equations as an n-dimensional stochastic differential system. Define the state
vector as ξ ≡ col{a,ρ,q}, the control vector as u, and the drift and diffusion matrices as

F ≡


b
f
g


 , G≡




� � 0 ··· ··· 0

σ
...

. . .
...

(m×m) 0 0

� �
...

...
0 ··· ··· 0 ··· ··· 0
...

. . .
. . .

...
0 ··· ··· 0 ··· ··· 0




, (4.3)

where F is an n-vector and G is an n×m matrix-valued function as indicated. Using these
notations, we can rewrite our system in the compact form as follows:

dξ(t)= F
(
t,ξ(t),u(t)

)
dt+G

(
t,ξ(t)

)
dB, t ≥ 0. (4.4)

5. Objective function and performance measures

5.1. Objective function. The objective functional for a network provider proposed in
[1] is given by

J(u)≡ E

{∫
l
λ1(t)

{ n∑
i=0

ai(t)I
(
ρi(t)= 0

)}
dt

+
∫
l
λ2(t)

{( n∑
i=0

ai(t)I
(
ρi(t) > 0

))
I
(
q(t)=Q

)}
dt+

∫
l
λ3(t)q(t)dt

}
.

(5.1)
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The first term represents (traffic or cell) losses at TB, the second term gives the losses
at the multiplexor, and the third term is a measure of service delay. The functions λi,
i= 1,2,3, are nonnegative measurable functions used as weights or importance given to
each of the losses. This can be chosen by network designers to reflect as different concerns
and scenarios as necessary. Note that the cost function is an implicit functional of the
control policy {u}. Clearly, in terms of our final-state equation given by (4.4), the cost
functional (5.1) can be compactly written as

J(u)= E
{∫ T

0
�
(
t,ξ(t)

)
dt
}

, (5.2)

where � denotes the integrand of the expression (5.1). One of the objectives of the net-
work provider is to improve the system performance by using control strategies that min-
imize this cost functional. Note that control policy has no direct influence on the source
though this information must be used by the controller to achieve its goal. However, the
individual sources may adjust their rates by adjusting {hi} on the basis of information re-
garding nonconforming traffic at the TBs. This provision requires information feedback
which is not included in the model.

5.2. Other performance measures. In addition to the concern for cell losses in the sys-
tem, there are other measures of system performance which are equally important. For
example, first time of occurrence of congestion and residence time in state of congestion
are important factors characterizing the network performance. Here we define several
related concepts.

(A) System congestion. Congestion is a state of the network resources in which the ag-
gregate demand may exceed the capacity of the system or the multiplexor is close to its
full capacity. Clearly, it is expected that congestion may result in degradation of QoS to
the end users [1, 2]. For the system under consideration, we may define the congestion as
follows.

Definition 5.1 (congestion). The system is said to be in state of congestion whenever the
multiplexor state q enters the closed interval Qα ≡ [αQ,Q], where 0 < α≤ 1 and Q is the
multiplexor buffer size.

In general, one may consider the system to be in a state of congestion if 90% of the
buffer space is occupied. In this case, one may choose α = 0.90. The value of α can be
chosen arbitrarily by the service provider. Choice of α= 1 may induce traffic oscillation
leading to degradation of QoS.

(B) Mean first time to congestion. Traffic loads in a network keep changing randomly,
with peaks and valleys occurring during certain periods of operation. Considering the
traffic observation period to be [0,T], let CT denote the set of time instants during which
the multiplexor hits the congestion zone. In symbols, this is given by

CT ≡
{
t ∈ [0,T] : q(t)∈Qα

}
, (5.3)
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where q(t) is the state of the multiplexor. The first time to congestion, denoted by τc, is
then given by

τc ≡

inf

{
CT
}

, if the set is nonempty,

T , if the set is empty.
(5.4)

We are interested in the expected value of this, denoted by

Tc ≡ E
{
τc
}
. (5.5)

(C) Mean residence time in congestion zone. Residence time in congestion zone is the total
time spent by the system in the state of congestion.

Definition 5.2 (residence time). For any sample path q(t), t ∈ I ≡ [0,T], representing the
history of multiplexor queue, the residence time denoted by τr is the time spent in the set
Qα as given by

τr ≡
∫ T

0
I
(
q(t)∈Qα

)
dt. (5.6)

Again, we are interested in the expected value giving

Tr ≡ E
{
τr
}
. (5.7)

Note that the cost functional given by (5.6) can be absorbed in the general functional
given by (5.2) by adding the integrand of (5.6) to those of (5.1) with desired weight. Later
in the sequel, we will use Monte Carlo techniques to compute functionals (5.5) and (5.7)
and the measures of performance.

6. Control strategies

To find the optimal control for the dynamic system (5.1) with the cost functional (5.3), we
may make use of dynamic programming. Let �t be an increasing family of (right contin-
uous) the smallest sigma algebras with respect to which the solution process {ξ(t), t ≥ 0}
is measurable, and let U be a closed bounded possibly convex subset of the set Rm

+ ≡ {v ∈
Rm : vi ≥ 0, i= 1,2, . . . ,m}, where the controls can take values from it. Let �ad denote the
class of �t adapted random processes taking values from U . This is the set of admissible
controls.

For any t ∈ I ≡ [0,T], let ξ(t) = x denote the state of the system given at time t. Let
u∈�ad and suppose ξt,x(s), s∈ (t,T], is the unique strong solution of (5.1) starting from
the state x at time t and driven by the control policy u. Define the functional

J(t,x,u)= E
∫ T

t
�
(
s,ξt,x(s)

)
ds+Ψ

(
ξt,x(T)

)
, t ∈ [0,T], (6.1)

where Ψ is terminal cost, possibly representing penalty for failing to clear the traffic by
the end of the observation or contract period. The value function is then given by

V(t,x)≡ inf
u∈�[t,T]

J(t,x,u), (6.2)
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where �[t,T] is the restriction of �ad over the time interval [t,T]. This is the optimal
cost corresponding to the starting time t ∈ [0,T] and the state x ∈ Rn. Our goal is to
determine the value function V and then, from this, find the optimal cost V(0,x) and the
corresponding optimal control uo ∈�ad if any.

In case B is a standard Brownian motion, with values in Rm, following Bellman’s prin-
ciple of optimality, one can easily derive the so-called HJB equation which is given by

∂V(t,x)
∂t

+ �(t,x) +H(t,x,DV) +
(

1
2

)
Tr
(
D2VGG∗

)= 0,

V(T ,x)=Ψ(x),
(6.3)

where

H(t,x, p)≡ inf
v∈U

(
p, f (t,x,v)

)
. (6.4)

Under certain regularity assumptions on the coefficients, one can prove the existence
of a viscosity solution for (6.3). Given the existence of such a solution and a verification
theorem, our original control problem will have a solution.

Unfortunately, the HJB equation given above has two major difficulties. Firstly, the co-
efficients {�,F,G} are discontinuous functions of the state variable x; secondly, the matrix
GG∗ is singular. In other words, we have a degenerate HJB equation with discontinuous
coefficients. We believe that such problems have not been considered in the literature so
far. We leave this as an outstanding open problem.

In case B is a FBM, one may be able to construct an integro-partial differential equa-
tion for the value function which is more complex than the standard HJB equation.

In addition to these theoretical difficulties, there is also the computational complex-
ity in solving the HJB equation in multidimensional space (n= 2m+ 1). In case we have
m = 100 users, we must solve the HJB equation (a nonlinear partial differential equa-
tion) in 201-dimensional real Euclidean space. This is beyond any super computer at this
time. In view of this, we have chosen not to seek the optimum and, instead, look for sim-
ple, practically realizable but sufficiently efficient control strategies. We propose a simple
feedback control law based on neural networks. Before we present this feedback law, we
discuss some standard open-loop controls (OCs) used in current network management
practice. We compare the performance of the feedback policy with those corresponding
to open-loop strategies and show that the proposed feedback control offers superior per-
formance compared with open-loop policies.

Open-loop control. In current practice [7], simple OC strategies with fixed token genera-
tion rates are used. Token generation rates are chosen based on statistical properties of the
user traffic such as the mean rate, peak rate, and variance. In our numerical experiments,
we choose such rates as controls and compute the corresponding performance and then
compare the results with those corresponding to the proposed feedback law.
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Figure 6.1. Neural network structure.

Feedback control based on neural network. Neural network (Figure 6.1) has been found
to be a powerful tool in the design of feedback controls for many physical systems. This
may not produce optimal policies, but it can certainly improve performance without
going into rigorous and complex methodologies such as HJB equations. A neural net-
work is simply a nonlinear memoryless transformation of one set of variables, say x =
{xα, α= 1,2, . . . ,�}, into another, say u= {ur , r = 1,2, . . . ,m}, with adjustable parameters,
W = {w1,w2, . . . ,wν}, ν = n(� + 1) +m(n+ 1), called the weights. We consider a 2-layer
neural network with � = (2m+ 1) inputs, m outputs, and one hidden layer consisting of
n neurons. This can be described by the following general expression:

ur = gr

( n∑
s=1

W2
s,r fs

( �∑
α=1

W1
α,sxα + b1

s

)
+ b2

r

)
, r = 1,2, . . . ,m, (6.5)

where the functions { fs,gr} are the basic nonlinear elements and {b1
s ,b2

r } are the biases
constituting the neurons. The weight vector W is given by W ≡ {W1

α,s,W
2
s,r ,b

1
s ,b2

r , α =
1,2, . . . ,�; s = 1,2, . . . ,n; r = 1,2, . . . ,m} conveniently arranged as a vector of dimension
n(m+ �). All these can be compactly described by the following weighted nonlinear trans-
formation:

u≡N(W ,x), (6.6)

where ur =Nr(W ,x), r = 1,2, . . . ,m. Identifying x with the state vector (a,ρ,q)′ and sub-
stituting the control law given by (6.6) into the state equation (5.1), we arrive at the
closed-loop system given by

dξ(t)= F
(
t,ξ(t),N

(
W ,ξ(t)

))
dt+G

(
t,ξ(t)

)
dB, t ≥ 0. (6.7)
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Table 7.1. System configuration and parameters.

Ti Q ∆t K M

1500 bytes 4000 bytes 0.001 s 4000 300

The corresponding cost functional (5.3) may now be written as a function of the weight
vector W :

J(W)≡ E
∫ T

0
�
(
t,ξ(W , t)

)
dt, (6.8)

where now the state obviously depends on the choice of W . This is the functional to be
minimized by an appropriate choice of the weight. In a previous paper [1], we have used
SA algorithm to find the lowest cost and the corresponding weights. In this paper, we
have used RRS technique which appears to be much faster as illustrated by our numerical
results shown in Table 8.2. For details on the RRS algorithm, see [10].

7. Basic data used for simulation experiments

For numerical simulation, we assume the system has a simple scenario comprised of three
traffic sources policed by three TBs with their (conforming) outputs multiplexed by a
single multiplexor.

7.1. System parameters used for simulation. In all the numerical experiments, we make
the following three assumptions. First, the traffic generated by the three independent
sources has the same statistical characteristics such as mean rate and variance. Second,
the unit of tokens is measured in terms of bytes, and one byte is consumed for one byte
of traffic. Third, there is no feedback control delay.

Depending on the requirements of different applications, the weights chosen for TB
losses, multiplexor loss, and penalty for delay can be taken differently. For some applica-
tions, it is preferable to drop packets at TBs rather than at the multiplexor. In our experi-
ments, we give the largest weight to losses at the multiplexor. The losses at TB are weighted
more heavily than those for delay. We choose λ1(t)= 5, λ2(t)= 10, and λ3(t)= 0.1 for all
i. System configuration and parameters are given in Table 7.1; here K represents the num-
ber of time intervals in a trace and M is the number of sample paths. State initialization
is set as ρi(t0)= 0, i= 1,2,3, q(t0)= 0.

The structure of neural network that is used for the experiment is shown in Table 7.2.

7.2. Specification of traffic traces. Different 4-second (traffic) traces are used as our traf-
fic sources. We use FBM to generate the traffic through the SDE (2.5). Based on Bellcore
real traffic, we calculated the Hurst parameter to be 0.7625. This is then used as the Hurst
parameter for the FBM which, in turn, determines the traffic via the SDE (2.5). Since
we use the Monte Carlo method to calculate the expected values, the number of sample
paths required for numerical experiments is crucial and has to be determined carefully.
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Table 7.2. Neural network parameters.

Number of inputs 7

Number of outputs 3

Number of layers 2

Number of neurons in layer 1 3

Number of neurons in layer 2 3

Transfer function in layer 1 Tangent sigmoid

Transfer function in layer 2 Positive linear

Table 8.1. Cost versus control strategies.

Control Cost J

strategies C = 2 M C = 3M C = 4M C = 5M

FB(SA) 48.4954 27.7329 9.6738 0

FB(RRS) 51.2574 27.7329 9.8481 0

OPC 71.4317 47.7816 13.1386 0.1486

OPM 95.4174 55.3937 13.3965 1.0167

OPP 96.4339 56.4101 14.5820 0.1465

This number is very strongly dependent on the variance of the traffic. The larger the vari-
ance, the larger the number of sample paths required. See [1] for details. For numerical
computation, we found 300 sample paths to be sufficient.

8. Numerical results

In order to study the performance of the system and the feedback control law, we compute
the objective functional (5.1) and other measures of performance given by the expected
values (5.5) and (5.7). We consider three OC laws: open loop with token generation rate
equal to the channel capacity, which is denoted by (OPC), open loop with mean incoming
traffic rate (total mean incoming traffic rate for our experiment is 4.0994 Mbps), denoted
by (OPM), and open loop with peak incoming traffic rate denoted by (OPP). The corre-
sponding results are compared with those corresponding to the feedback control law.

The first two rows of Table 8.1 show, for four different channel capacities (C = 2,3,4,
5Mbps), the cost corresponding to feedback control law based on neural network opti-
mized by use of SA and RRS, respectively. The last three rows show similar results asso-
ciated with OC laws: OPC, OPM, and OPP as described above. It is clear from this table
that for any given control strategy, the cost decreases as the channel capacity increases.
Similarly, for any given channel capacity, the costs corresponding to feedback controls
are much less than those corresponding to OCs.
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Table 8.2. Cost versus congestion.

Control First time to congestion (ms) Residence time (ms)

strategies C = 2M C = 3M C = 4M C = 2M C = 3M C = 4M

FB(RRS) 3578 3991 4000 310 10 0

OPC 34 44 1106 3871 3621 1627

OPM 16 30 1054 3985 3969 1747

OPP 16 30 1015 3985 3969 2006

Table 8.3. Computation time versus optimization methods.

Optimization Computation time (h)

methods C = 2M C = 3M C = 4M C = 5M

FB(SA) 20.43 20.23 20.06 19.98

FB(RRS) 3.88 3.84 3.87 3.88

The mean first time to congestion and mean residence time in the state of congestion
for different control strategies and channel capacities are given in Table 8.2. For any given
control strategy, the first time to congestion increases with increasing channel capacity,
while the residence time decreases as expected. Also, we note that the feedback control
reduces the chance (probability) of congestion by way of increasing the mean first time
to congestion. Further, it reduces the mean residence time in the state of congestion. It
is clear from these results that the performance of the feedback control law is superior to
those of OCs.

Further, we observe that the cost corresponding to feedback control law, optimized
using SA algorithm, is somewhat less than that optimized using RRS algorithm. However,
the computation time (we used Matlab 6.5 and Pentium 4 1.8 G) for RRS algorithm is
five times shorter than that of SA. This is a remarkable improvement compared with
the corresponding results of our paper [1] where SA algorithm was used. Thus for high-
dimensional problems arising from a large number of users connected to a large network,
the RRS algorithm is most suitable. This is shown in Table 8.3.

We use RRS algorithm to search in the space of weights W ∈ Rn(m+�) for the mini-
mal cost and the corresponding weight Wo. This is done for two different situations: (i)
feedback control based on full information {a,ρ,q} and (ii) feedback control based on
partial information {ρ,q}. For case (i), we have used {a,ρ,q} as the input to the neural
network, while for case (ii), the input is {ρ,q}. It is clear that case (i) requires elabo-
rate source monitoring which is too costly. The optimal cost associated with case (ii), as
shown in Figure 8.1, is inferior to that corresponding to case (i) but still superior to those
corresponding to the open-loop strategies OPC, OPP, and OPM. This result is practically
important since it uses only state feedback and does not require any direct measurement
of the incoming traffic.



N. U. Ahmed and C. Li 275

Channel capacity (Mbps)

RRS with full information

RRS with partial information

0
2 3 4

10

20

30

40

50

60

J

Figure 8.1. Cost comparison for full and partial information.

9. Conclusion

We have developed a continuous-time stochastic traffic model that captures the network
traffic characteristics of self-similarity, LRD, and nonnegativity as observed in real net-
works. This model is then combined and coupled with the system describing the dy-
namics of the TB access control mechanism and the multiplexor. An objective functional
reflecting the losses at the TBs and the multiplexor, including the service delay, is used to
evaluate the performance of the system. We have proposed a feedback control law based
on neural network with full or partial information. In case of full information, we use
incoming traffic and the system state as the input and for partial information, we use
only state as the input. The output of the neural network is the control. We have used SA
algorithm and RRS algorithm to compute the optimum parameters determining the op-
timal feedback law. The numerical results clearly demonstrate that this feedback system
can improve performance. Compared with SA algorithm, RRS algorithm has a slightly
higher cost but can save significant computation time. To achieve optimum performance,
one must solve the complex HJB equation. By using the proposed control law, we have
avoided this complexity and achieved good performance.
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