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We present a dynamic model for access control mechanism used in computer commu-
nication network applied to MPEG video transmission over Internet. This model is dif-
ferent from those developed in the previous works related to this topic. In our model,
token buckets supported by data buffers are used to shape incoming traffic and one mul-
tiplexor, serving all the token pools, multiplexes all the conforming traffic. The model is
governed by a system of discrete nonlinear difference equations. We use neural network
as the feedback controller which receives at its input (measurable) available information
and provides at its output the optimal control. The simulated annealing algorithm is used
to optimize the system performance by adjusting the weights. For illustration, we present
numerical results which show that the system performance of MPEG video server can be
improved by using neural network and simulated annealing approach.

1. Introduction

Currently, more and more multimedia applications such as video are transmitted or de-
livered on the Internet in order to provide quality of service (QoS) guarantees to real-time
applications. The Internet Engineering Task Force (IETF) has proposed integrated service
(Intserv) and differentiated service (DiffServ). In particular, token bucket (TB) as a traffic
controller has been incorporated in the design of the network architecture.

In this paper, we focus our efforts on the study of the TB as a traffic shaper. A TB is
associated with a traffic source in order to regulate the rate at which the source may send
its traffic into the network. The terminology of TB as a shaper is that tokens are generated
into the bucket at a rate determined by the volume of incoming traffic and the state of the
network. When the bucket is full of tokens, newly arriving tokens are rejected. If, upon a
packet arrival, enough tokens are available, the token content of the bucket is decreased
according to the packet size; the packet is then classified as belonging to the conforming
traffic and sent into the network. On the other hand, if there are not enough tokens in
the bucket, the packet is buffered in the data buffer (DF) and waits for a fresh supply of
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tokens in the bucket. When the buffer is full, the arriving packet can not be accepted by
the buffer and so is discarded.

TB mechanism has been employed to characterize the traffic generated by MPEG video
in [4, 6, 8]. In [4], Alam et al. study the effects of a traffic shaper at the video source
on the transmission characteristics of MPEG video streams while providing delay and
bandwidth guarantees. In [6], Lombaedo et al. have applied the TB model to evaluate the
probability of marking nonconforming data packets for the transmission of MPEG video
on the Internet. The authors of [8] developed an algorithm to evaluate the TB parameters
which characterize the video stream.

In this paper, we develop a dynamic model for MPEG video transmission over network
using TB access control mechanism. The system includes buffers and a shared multiplexor
controlled by a neural network.

Our model differs from most of the previous studies in two major points. First, we
focus on the modelling of the TB algorithm as a shaper rather than a policer as in [1, 2, 3].
Second, we propose the use of neural network and simulated annealing (SA) technique
to control token generation rate in order to optimize the system performance.

The paper is organized as follows. In Section 2, a dynamic system model is presented.
The system model consists of a number of TBs (one for each source) with DFs and one
multiplexor shared by all the TBs. System state is defined in detail. In Section 3, we define
an appropriate objective function and propose a control strategy by employing the neural
network. We use SA algorithm to optimize system performance. In Section 4, we present
numerical results which show improved performance gained by use of our proposed con-
trol. A brief conclusion is presented in Section 5.

2. Traffic model and system model

In this paper, we present a dynamic model based on the basic philosophy of IP net-
works. Before describing the system model, we define the following symbols which are
used throughout the paper:

(1) for x, y ∈R, we define

x∧ y ≡Min{x, y}, x∨ y ≡Max{x, y}; (2.1)

(2) for x, y ∈Rn, let x = (x1, . . . ,xn) and y = (y1, . . . , yn). We define

x∧ y ≡ (x1∧ y1, . . . ,xn∧ yn
)
, x∨ y ≡ (x1∨ y1, . . . ,xn∨ yn

)
; (2.2)

(3)

I(S)=
1, if the statement S is true,

0, otherwise.
(2.3)
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Figure 2.1. MPEG video transmission over Internet.

2.1. Traffic model. The traffic in this paper is MPEG-encoded video streams which is
transmitted by a video server to clients over the network. MPEG video sequences are
stored in video storage. The server can retrieve data from this storage and transfer it.
Video streams are packetized in a UDP/IP protocol suite. Here, we consider each MPEG-
encoded frame packetized by the UDP/IP of a size of 576 bytes. In other words, each
frame content is divided by 576 into one or more packets of size equal to or less than 576
bytes. Therefore, in our traffic model, a number of IP packets (which may originate from
different frames such as (I, P, B)) per frame interval are emitted. Let Ik, k = 0,1,2, . . . ,K ,
be the frame intervals Ik ≡ [tk, tk+1), which are assumed to be of equal length. Let V(tk)
denote the number of IP packets which the frame has during frame interval Ik ≡ [tk, tk+1).

2.2. System model. We consider that the system involves n traffic sources, which are
video servers, and that each source is assigned to a TB with a DF that regulates the traffic
rate. All the traffic sources share one and the same multiplexor having finite buffer size Q
and one outgoing link having capacity C. The system model is shown in Figure 2.1.

Let T denote the physical size (capacity) of TBs and T̂ the DF (smoother) size. The
source V(tk) denotes the number of packets entering the DF during the time interval
Ik ≡ [tk, tt+1) and G(tk) denotes the conforming packets, which are allowed to enter into
the multiplexor by the TBs, after TB shaping during the same period. Let u(tk) denote the
number of tokens generated during the frame interval Ik. In case of multiple clients and
servers, these quantities should be considered as vectors. In this case, the system state is
defined by the contents of the TBs, the token buffers, and the multiplexor. We denote this
by the (2n+ 1)-dimensional vector

(ρ, ρ̂,q). (2.4)
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Here, for n TBs, the state is described by an n-dimensional vector-valued function ρ =
(ρ1,ρ2, . . . ,ρn)

′
; for n DFs, we have n-dimensional vector ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂n)

′
. The scalar

(one-dimensional vector) q denotes the state of the multiplexor.
First, we determine the temporal evolution of the state (number of tokens in token

pool) of the TB as follows:

ρ
(
tk+1

)= ρ
(
tk
)

+
{
u
(
tk
)∧ [T − ρ

(
tk
)]}−G

(
tk
)
. (2.5)

This expression is based on simple material balance. The state of each TB at time tk+1 is
determined by its previous state, the number of tokens accepted during the frame inter-
val [tk, tk+1), and the number of tokens consumed during the same period [tk, tk+1). The
consumption equals the conformed traffic G(tk).

Similarly, the state of the DFs, denoting the number of packets in each DF, is de-
scribed by

ρ̂
(
tk+1

)= ρ̂
(
tk
)

+
{
V
(
tk
)∧ [T̂ − ρ̂

(
tk
)]}−G

(
tk
)
. (2.6)

Here the number of packets at the current stage is determined by its previous state, the
number of packets accepted during the frame interval, and the number of packets con-
formed by TB.

In these equations, G represents the conforming traffic, that is, the traffic matching
with the available tokens in the TBs. This is given by G(tk) as

G
(
tk
)= {ρ̂(tk)+

{
V
(
tk
)∧ [T̂ − ρ̂

(
tk
)]}}

∧ {ρ(tk)+
{
u
(
tk
)∧ [T − ρ

(
tk
)]}}

.
(2.7)

This expression simply states that the conforming traffic is given by the minimum of the
available number of tokens in the token pool and the available number of packets in the
DF. In other words, the TB can serve traffic which matches the available tokens. This
traffic is called the conforming traffic.

Now we consider the multiplexor. The dynamics of the multiplexor queue is given by
the following equation:

q
(
tk+1

)= {[q(tk)−Cτ
]∨ 0

}
+

{[ n∑
i=1

Gi
(
tk
)]∧ [Q− [[q(tk)−Cτ

]∨ 0
]]}

. (2.8)

The first term on the right-hand side of expression (2.8) describes the leftover traffic in
the queue at time tk+1 after the traffic has been injected into the network. The second
term represents all the conforming traffic accepted by the multiplexor during the same
period of time.

In summary, the complete system model is given by the vector difference equation
(2.5), (2.6), and the scalar difference equation (2.8).
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Now, we discuss packet losses at the DF and multiplexor. Some packets may be dropped
at the DF because of the limitation of the DF size and the token generation rate. There-
fore, the losses at the DF at time tk are given by

R
(
tk
)= {V(tk)− [T̂ − ρ̂

(
tk
)]}

I
{
V
(
tk
)≥ [T̂ − ρ̂

(
tk
)]}

. (2.9)

When the available (data) buffer space exceeds the incoming traffic, there will be no
packet losses at the DF. Otherwise, in general, some losses would occur. From (2.8), it
is clear that if the multiplexor (of size Q) does not have enough space to store all the
conformed traffic, the excess is discarded. The traffic losses in the multiplexor at time tk,
denoted by L(tk), are then given by

L
(
tk
)= [ n∑

i=1

Gi
(
tk
)]−{[ n∑

i=1

Gi
(
tk
)]∧ [Q− [[q(tk)−Cτ

]∨ 0
]]}

. (2.10)

The term {[∑n
i=1Gi(tk)]∧ [Q − [[q(tk)− Cτ]∨ 0]]} represents conforming traffic ac-

cepted by the multiplexor. If the available buffer space is large enough to accept all the
conforming traffic, no multiplexor losses would occur. Otherwise, some part of the con-
forming traffic must be dropped.

3. Neural network/simulated annealing algorithm for performance optimization

We have seen above several losses that may occur in the network. In our system, losses
may occur at DF and also at the multiplexor. Further, there are delays in DF and the
multiplexor due to time spent in the queue before being served. Considering all these
factors, we can define the following objective function:

J(u)≡
K∑
k=0

α
(
tk
)
L
(
tk
)

+
n∑
i=1

K∑
k=0

βi
(
tk
)
Ri
(
tk
)

+
K∑
k=0

γ
(
tk
)
ρ̂
(
tk
)

+
K∑
k=0

λ
(
tk
)
q
(
tk
)
. (3.1)

The first term of the objective functional describes the weighted packet losses at the mul-
tiplexor; the second term represents the weighted losses at the DFs; the third term gives
the weighted cost associated with service delay at the DF; and the last term is the weighted
cost associated with queuing delay at the multiplexor. These last two terms are approx-
imate measures of service delay. Relative weights to various losses are denoted by the
parameters α(tk), βi(tk), γ(tk), λ(tk), i = 1,2, . . . ,n, which are nonnegative functions of
time and can be assigned by network designers to reflect different concerns and scenarios
as necessary.

To find the optimal control for the dynamic system (equations (2.5), (2.6), (2.8)) with
the objective functional (3.1), we may use dynamic programming (DP) or genetic algo-
rithm (GA) as proposed in a recent paper [1]. This gives rise to the Bellman equation
of DP. Note that because of the presence of logical functions in the dynamic equations,
the associated Hamilton-Jacobi-Bellman (HJB) equation will have discontinuous coeffi-
cients. This is a much more difficult problem to solve (see [1]). Here we propose a suffi-
ciently efficient but simple control strategy by using the neural network and SA algorithm
[5, 7]. We use SA to find the optimal weights that minimize the cost function.
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Figure 3.1. 2-layer neural network.

3.1. Neural network as controller. In principle, one can use Bellman’s DP equations to
find optimal feedback controls. Often it involves difficult nonlinear partial differential
equations in multidimensional spaces which have to be solved offline to determine the
control law. Clearly, this is computationally intensive. If one is satisfied with suboptimal
strategies, this can be avoided by using simple neural network with inputs being the avail-
able information and outputs being the controls. Once this is integrated with the system,
the only variables that have to be chosen optimally are the weights of the neural network.
This can be done relatively easily using SA. In this paper, we have used the following
neural network structure with p denoting the input vector and u the output vector rep-
resenting the control. The parameters shown in Figure 3.1 are the weights which can be
adjusted for optimization as discussed later. All these can be compactly described by the
following parameterized nonlinear transformation:

u≡N(W , p), (3.2)

where ur =Nr(W , p), r = 1,2, . . . ,n, and the input-state vector p = (V ,ρ, ρ̂,q). If this con-
trol law is inserted in the state equations (2.5), (2.6), (2.8), the corresponding cost func-
tional (see expression (3.1)) may be written as a function of the weight vector W :

J(W)≡
K∑
k=0

α
(
tk
)
L
(
tk,W

)
+

n∑
i=1

K∑
k=0

βi
(
tk
)
Ri
(
tk,W

)

+
K∑
k=0

γ
(
tk
)
ρ̂
(
tk,W

)
+

K∑
k=0

λ
(
tk
)
q
(
tk,W

)
,

(3.3)

where now the state obviously depends on the choice of W . Thus the original optimal
control problem has been transformed into a parameter optimization problem. More
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Table 4.1. MPEG-4 Simpsons statistics specification.

Max frame size Min frame size Peak rate µp Mean rate µ

15234 bytes 555 bytes 3.047 Mbps 1.490 Mbps

precisely, the problem is to find a Wo ∈Rd, d =m(� + 1) +n(m+ 1), that minimizes the
cost functional J(W) given by (3.3) subject to the dynamic constraints (2.5), (2.6), (2.8),
and (3.2). For this purpose, one can use DP and GA as in [1]. But because of the curse
of dimensionality presented by DP, computational time is extremely large. To avoid the
computational complexity of DP, we have chosen to accept suboptimal policies which can
be determined by use of SA algorithm in a reasonable computing time. In other words,
we find the lowest possible cost achievable in a finite number of iterations and declare the
corresponding weights as being optimum.

4. Numerical results

For numerical simulation, we consider the simple scenario: one MPEG server emits IP
packets with the flow controlled by one TB transmitting conformed outputs into the
multiplexor.

4.1. Specification of traffic trace. The traces used in our experiments correspond to the
traffic statistics of one MPEG-4 sequence. Here, we choose 12-second MPEG-4 trace of
“Simpson” as our traffic (http://trace.eas.asu.edu). Each group of pictures (GoP) con-
tains 12 frames with a frame rate of 25 frames/second. The GoP pattern can be charac-
terized as IBBPBBPBBPBB. I-frame stands for “intraframe” which is the most basic type
of frames used in video compression. P-frame, “predictive frame,” is more complicated
than I-frames. P-frames are built from a previous I- or P-frame. B-frame stands for “bidi-
rectional frame.” The basis of B-frames is the logical extension of the idea of P-frames.
Whereas P-frames are built from the previous frame, B-frames are built from two frames,
typically, one or both are P-frames. B-frames are completely independent of each other.
The video traffic statistics which is used in our experiment is given in Table 4.1. Since the
maximum frame size is 15234, a video frame is segmented into a number of packets equal
to or less than 27. The trace is shown in Figure 4.1.

4.2. Parameters used in simulation experiment. In this paper, we assume UDP/IP pro-
tocol suite. Therefore, each frame is packetized by UDP/IP protocol into more IP packets
with a dimension of 576 bytes or less. We further assume that one token takes one packet.
We consider the tradeoff between two actual losses (packet losses at the DF and the mul-
tiplexor) and the cost associated with waiting time in the DF and multiplexor buffer. The
weights assigned to these losses are arbitrary and depend on the QoS desired. The service
provider and the network management are free to choose these weights according to spec-
ified QoS. For our numerical experiments, we choose α(tk)= 10, βi(tk)= 5, γ(tk)= 0.05,
and λ(tk) = 0.05, for all i and all tk. State initialization is set as ρ(t0) = 0, ρ̂(t0) = 0, and
q(t0)= 0. The system configurations are specified as follows:

http://trace.eas.asu.edu
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Figure 4.1. 7-second MPEG-4 trace (Simpsons).

(i) T = 15000 bytes; the TB has been set to allow maximum frame size to pass
through;

(ii) C = 1.0 Mbps, 1.49 Mbps, and 2.0 Mbps;
(iii) T̂ = 30000 bytes; the DF size has been set for twice the maximum frame size;
(iv) Q = 17000 bytes; the multiplexor has been set large enough to be able to accom-

modate the maximum frame;
(v) τ = 40 milliseconds; this represents the frame interval (frames are generated at a

rate of 25 frames per second).

For our experiment, we choose the structure of a neural network as follows:

(a) number of inputs: 4;
(b) number of outputs: 1;
(c) number of layers: 2;
(d) number of neurons in layer 1: 3;
(e) number of neurons in layer 2: 1;
(f) transfer function in layer 1: tangent sigmoid;
(g) transfer function in layer 2: positive linear.

As to the parameters for SA, we use geometric decrement method, which sets the next
temperature tn as a positive multiple of the current temperature tc, that is, tn = φtc, with
0 < φ < 1. In this experiment, we take φ = 0.6.

4.3. Simulation results and analysis. Here we present numerical simulation results by
studying the following cases.

(1) Case 1: open loop u= 1 Mbps (≤mean rate).
(2) Case 2: open loop u= µ= 1.49 Mbps (mean rate).
(3) Case 3: open loop u= µp = 3.047 Mbps (peak rate).
(4) Case 4: optimal control based on neural network providing variable bit rate.

Here, µ denotes the mean traffic rate and µp the peak rate.
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4.3.1. Dependence of cost on control strategies. Figures 4.2 and 4.3 show the system per-
formance corresponding to four different control strategies. The results of Figure 4.3 are
based on link capacity C = 1 Mbps and those of Figure 4.4 are based on link capacity
C = 1.49 Mbps. The results show that Case 4, which corresponds to optimal control
based on neural network, offers the minimum cost despite the variation of the output
link capacity. Cases 1, 2, and 3, which correspond to open-loop control strategies, are
inferior to feedback control strategy provided by neural network (Case 4). In the case of
C = 1.0 Mbps (see Figure 4.2), the output link capacity is equal to or less than the to-
ken generating rates (Cases 1, 2, and 3). In this situation, as the token generating rate
increases, in spite of reduced TB losses, more and more packets are dropped by the mul-
tiplexor thereby increasing the overall cost.
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In the case of C = 1.49 Mbps (see Figure 4.3), we observe that the (total) cost corre-
sponding to Case 2 is very close to that of Case 4. This is because the token generating
rate in Case 2 is the same as the traffic mean rate and the outgoing link capacity. When
the traffic mean rate is equal to the token generating rate, the DF losses are small. Since
in this case, the input rate of the multiplexor equals the outgoing link capacity, no losses
occur in the multiplexor either. Hence the performance of the mean rate control and the
optimal control are close.

4.3.2. Performance analysis. In this section, we present the temporal performance of the
feedback system (based on optimized neural network) by comparing the data flow in the
TB and the DF.

Comparison of incoming traffic with conformed traffic. Figure 4.4 presents, for different
link capacities (C = 1.0, 1.49 Mbps), the traces of the incoming traffic along with the
conformed traffic resulting from a control strategy based on optimized neural network.
It is natural that the conformed traffic depends on the outgoing link capacity. In the case
of C = 1.0 Mbps, which is less than the mean incoming traffic rate, the feedback control
tries to follow the incoming traffic but, because of shortage of bandwidth, fails to satisfy
the demand. In the case of C = 1.49 Mbps (equal to the mean traffic rate), when the
traffic rate is much higher than the mean rate during some time periods, the network
saturates and serves at its maximum capacity. Therefore, during these busy periods, the
conformed traffic is maintained at the saturation level. For C = 2 Mbps, Figure 4.5 shows
the conformed traffic trace. In this case, the capacity C = 2 is greater than the mean traffic
rate and, as a result, the conformed traffic trace, shown in Figure 4.5, almost matches with
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Figure 4.5. Conformed traffic (C = 2 Mbps).
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Figure 4.6. Incoming traffic versus traffic accepted by DF (C = 1.49 Mbps).

the incoming traffic (Figure 4.4). This is because the service rate is large enough to serve
the incoming traffic with less losses.

Comparison of incoming traffic with accepted traffic. Figure 4.6 shows the traces of in-
coming traffic along with the traffic accepted by the DF which is based on the link ca-
pacity (equal to the mean traffic rate). Again we observe that during some time periods
(see Figure 4.6, 145–250), when the incoming traffic rate is greater than the link capac-
ity (equivalent to the mean traffic rate), the network experiences congestion and during
these periods, the network serves at its maximum capacity (7450 bytes within one frame
interval). As a result, the DF drops packets whenever the rate exceeds this level.
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Figure 4.8. Available tokens in TB versus available packets in DF (C = 2.0 Mbps).

Comparison of available tokens with packets in DF. Figures 4.7, 4.8, and 4.9 give us the
traces of available tokens in the TB and available packets in the DF based on optimal con-
trol strategy corresponding to different link capacities. In the case of C = 1.49 Mbps (see
Figure 4.7), we notice that when the traffic rate is greater than the mean rate, the DF is
full (T̂ = 30K), and during the same period, the available tokens do not exceed the num-
ber of packets the network can serve. For C = 2 Mbps (Figure 4.8) and C = 3.047 Mbps
(Figure 4.9), the available tokens in the token pool are larger than the available packets in
the DF. In these cases, losses are significantly reduced as expected.
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Figure 4.9. Available tokens in TB versus available packets in DF (C = 3.047 Mbps).

5. Conclusion

In this paper, we have constructed a dynamic system model based on token bucket al-
gorithm with supporting buffers and multiplexors. We have proposed a feedback control
strategy using neural network. We define an objective functional reflecting all the sys-
tem losses including queuing delays. Using simulated annealing algorithm, we minimize
the cost (objective) functional giving the optimal control law (neural network with op-
timum weights). The numerical results indicate that a neural-network-based control law
properly optimized can produce improved system performance.
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