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The present work proposes a novel optimal and exact method of solving large systems of
linear algebraic equations. In the approach under consideration, the solution of a system
of algebraic linear equations is found as a point of intersection of hyperplanes, which
needs a minimal amount of computer operating storage. Two examples are given. In the
first example, the boundary value problem for a three-dimensional stationary heat trans-
fer equation in a parallelepiped in R3 is considered, where boundary value problems of
first, second, or third order, or their combinations, are taken into account. The governing
differential equations are reduced to algebraic ones with the help of the finite element
and boundary element methods for different meshes applied. The obtained results are
compared with known analytical solutions. The second example concerns computation
of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to
transversal uniformly distributed load. The partial differential equations are reduced to
a system of nonlinear algebraic equations with the error of O(h2

x1
+ h2

x2
). The lineariza-

tion process is realized through either Newton method or differentiation with respect to
a parameter. In consequence, the relations of the boundary condition variations along
the shell side and the conditions for the solution matching are reported.

1. Introduction

It is obvious that a vast number of problems in physics, mechanics, and technology is
modelled through linear and nonlinear partial differential equations (PDEs, equations of
mathematical physics). In the next step, PDEs are usually reduced to a linear or nonlinear
set of algebraic equations applying either finite element or finite difference methods. In
what follows, only the method enabling solution of a large number of algebraic equations
is considered. To solve the mentioned problem, there are two classical approaches that
are direct and iterational methods. Perhaps the most popular are the Gauss reduction
for a general system, and the relaxation or relaxation matrix methods usually applied for
triple-diagonal or block-diagonal matrices. The mentioned methods belong to the direct
ones. Their efficiency depends on the system equation order and on the matrix structure.
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From the point of view of iterational methods, a system of equations is treated as the
first-order operator equations of the form Ax = b, where A= (aik) is a square matrix of
dimension n×n, x=(x1,x2, . . . ,xn) stands for the sought vector, and b = (b1,b2, . . . ,b4) is
a given vector (right-hand side). In the case of the mentioned iterational methods, the
system of algebraic equations can be treated as the first-order operator equations with
the operator acting in an n-dimensional space Hn(A : Hn→Hn), x,b ∈Hn.

It is worth noticing that the application of the general theory makes it possible to
prove convergence of iterations for Seidel’s and upper relaxation methods with the mini-
mal constraints used by operator A. Usually, two types of approaches are applied: (i) for
known boundaries γ1 > 0 and γ1 ≥ γ2 for a spectrum of operator A lying in a certain en-
ergy space Hp and (ii) for the case when boundaries γ1 and γ2 are unknown. However,
the triangle variational method seems to be more effective in application.

For all numerical methods, the reduction of the infinite-dimensional problem to that
of the finite dimension plays a key role. It is expressed by the fact that a computational al-
gorithm should yield a solution of the initial problem with a given accuracy ε > 0 through
a finite number Q(k) of actions. Moreover, the algorithm should be practically realized,
that is, should yield a solution to the problem within the required computer time. Fur-
thermore, the number of actions (and hence the time of solution) Q(ε) should be min-
imal for the considered problem. Algorithms with the mentioned properties are called
economical. It is obvious that the choice of a numerical method of solving a system of
linear algebraic equations depends on many circumstances, that is, on the matrix A prop-
erties, on the computational type applied, and so forth.

A computational type is one of the possible formulations of the problem, like finding
a solution to one special problem of Ax = b, or finding solutions to a few variants of
problem Ax = b with the same matrix A and different right-hand sides B. It may happen
that a nonoptimal choice of the problem with one matrix Ax = b can be suitable for
multivariant computations.

Note that for multivariant computations, one may decrease the average number of
operations for one variant if some quantities are conserved and not computed once more
for each variant. It depends on a computer and its operating storage.

The choice of a computational algorithm should depend on the computational type,
on the volume of the operating storage, and on the considered system order.

In this work, the presented method of solution of large algebraic equation systems of-
fers reduction of the infinite-dimensional problem of mathematical physics to the finite-
dimensional one through the finite difference approximation.

The used approach yields a band matrix possessing only a few diagonals with nonzero
elements. Direct methods of solving those systems matched with the transformation of
input matrix A do not enable arrival at similar results, that is, the possibility of solu-
tion of the system of high-order algebraic equations offered by them is rather doubt-
ful.

2. Elimination method for equations

Consider a direct method [6], further referred to as the elimination method for equations,
making it possible to find the system solution as a point of intersection of hyperplanes and
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requiring a minimal operating storage volume. The latter property is rarely considered by
the standard direct methods [3].

The idea of the proposed method will be illustrated and clarified when applied to a
system of linear algebraic equations (SLAE).

Consider first SLAE I of the general form

n∑
k=1

aikxk = bi i= 1,2, . . . ,n. (2.1)

The process of the proposed elimination consists of the following few steps.
Step 1. Assume j = n. Solve the jth equation of system (2.1) j times with respect to xn
by keeping variables x1,x2, . . . ,xn−i fixed. As a result, the set Mj consisting of points {Xk},
k = k = 1,2, . . . , j, with the coordinates

X1(c,c, . . . ,c,x1
n

)
,

X2(p,c, . . . ,c,x2
n

)
,

X3(c, p, . . . ,c,x3
n

)
,

...

X j
(
c,c, . . . ,c, p,x

j
n
)
,

(2.2)

is obtained, where c, p are arbitrary numbers (it is suitable to take c = 1, p =−1).
Step 2. Compute i= j− 1 and construct set M of points that are intersections of straight
lines going through points {X j ,Xk}, k = 1,2, . . . , i, and the hyperplane defined by the ith
system of algebraic equations of the form

n∑
l=1

ailxl = bi,

xl = x
j
l +
(
xkl − x

j
l

)
λk, l = 1,2, . . . ,n,

(2.3)

is solved. System (2.3) yields

λk = bi−
∑n

l=1 ailx
j
l∑n

l=1 ail
(
xkl − x

j
l

) (2.4)

and the coordinates of the kth point of set Mi are computed in the following way:

x̃kl = x
j
l +
(
xkl − x

j
l

)
λk, l = 1,2, . . . ,n. (2.5)

The set Mi of points {Xk}, k = 1,2, . . . , i, belongs to the hyperplane defined through the
ith equation of system (2.1). The coordinates of the points of the mentioned set satisfy
the last n− i equations of system (2.1). In Table 2.1, coordinates of set Mi for i= n− 1 are
reported.
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Table 2.1. Coordinates of points in set Mi (for i= n− 1).

X1 X2 X3 ··· Xi−1 Xi

x1 c x2
1 c ··· c c

x2 c c x3
2 ··· c c

...
...

...
...

...
...

...

xn−3 c c c ··· xi−1
n−3 c

xn−2 c c c ··· c xin−2

xn−1 x1
n−1 x2

n−1 x3
n−3 ··· xi−1

n−1 xin−1

xn x1
n x2

n x3
n ··· xi−1

n xin

Step 3. Assume j = i and go to Step 2.
Repeating computations n− 1 times, one gets a point in an n-dimensional space,

which is a solution to system (2.1).
The above considerations allow the conclusion that the above algorithm is suitable for

solving SLAE through computations of the matrix rows.
Observe also that for a chosen parametrization of set Mn and a given method applied

for the construction of the straight lines, only the coordinates xkk−1, xki , xki+1, . . . ,xkn should
be determined; other coordinates preserve values equal to c.

It is worth noticing that the proposed novel approach becomes four times smaller,
which enables a considerable decrease in the volume of the computer operating storage
used to keep coordinates of points Xk.

Consider SLAE II with a band matrix:

l∑
s=1

aj j+i,xj+i = bj , j = 1,2, . . . ,n, 1 � j + is � n, is ∈ I , (2.6)

where l is the number of nonzero diagonals and I is a set consisting of l elements, that is,
ordered numbers of nonzero band diagonals with an account of sign with respect to the
main diagonal.

The following parameters are further introduced: l1, m1 are the numbers of nonzero
diagonals and width of the band part lying under the main diagonal, respectively; l2, m2

are the numbers of nonzero diagonals and width of the band part lying over the main
diagonal; and m=m1 +m2 + 1 is the bandwidth.

Observe that

m1 =−I(1), m2 = I(l). (2.7)

The algorithm for solving SLAE (2.6) runs as follows.
Step 1. Assume j = n and solve the jth equation of (2.6) m1 + 1 times with respect to
Xn introducing variables xn−m1 ,xn−m1+1, . . . ,xn−1. As a result, the set Mj of points Xk in
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the (m1 + 1)th-dimensional space of variables xn−m1 ,xn−m1+1, . . . ,xn is obtained:

X j−m1
(
c,c, . . . ,c,c,x

j−m1
n

)
,

X j−m1+1(p,c, . . . ,c,c,x
j−m1+1
n

)
,

...

X j−1(c,c, . . . , p,c,x
j−1
n
)
,

X j
(
c,c, . . . ,c, p,x

j
n
)
.

(2.8)

Note that it is advisable to take c = 1, p =−1.
Step 2. Compute i = j − 1. If i > m1, then the set Mj is modified by introducing the
variable

xj−m1−1 = c (2.9)

and the points

X j−m1−1 = X j−m1 ,

X j−m1
(
p,c,c, . . . ,c,c,x

j−m1
n

)
.

(2.10)

A new set M̃j of points {Xk}, k = j −m1 − 1, j −m1, . . . , j, is obtained in the space of
variables xn−m1−1,xn−m1 , . . . ,xn of the form

X j−m1−1(c,c,c, . . . ,c,c,x j−m1−1
n

)
,

X j−m1
(
p,c,c, . . . ,c,c,x

j−m1
n

)
,

...

X j−1(c,c,c, . . . , p,c,x
j−1
n
)
,

X j
(
c,c,c, . . . ,c, p,x

j
n
)
.

(2.11)

Construct a set of points attained through intersection of the hyperplane defined
by the ( j −m)th equation of system (2.6) with the straight lines going through points
{X j ,Xk}, k = j−m1− 1, j−m1, . . . , j− 1. For this purpose, i, or m1 + 1 if i > m1, systems
of equations

l∑
s=1

aii+isxi+is = bi,

xi+is = x
j
i+is +

(
xki+is − x

j
i+is

)
λk, s= 1,2, . . . , l, 1 � i+ is � n,

(2.12)

are solved. System (2.12) yields

λk =
bi−

∑n
l=1 aii+isx

j
i+is∑n

l=1 aii+is
(
xki+is − x

j
i+is

) . (2.13)
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Table 2.2. Coordinates of points Mj (for m1 < j� n−m2).

Xk−1 Xk Xk+1 ··· X j−1 X j

xk−1 c p c ··· c c

xk c c xk+1
k ··· c c

...
...

...
...

...
...

...

xj−2 c c c ··· x
j−1
j−2 c

xj−1 c c c ··· c x
j
j−1

xj xk−1
j xkj xk+1

j ··· x
j−1
j x

j
j

x j+1 xk−1
j+1 xkj+1 xk+1

j+1 ··· x
j−1
j+1 x

j
j+1

...
...

...
...

...
...

...

xm−1 xk−1
m−1 xkm−1 xk+1

m−1 ··· x
j−1
m−1 x

j
m−1

xm xk−1
m xkm xk+1

m ··· x
j−1
m x

j
m

Then coordinates of the kth intersection point are computed:

x̃kr = x
j
r +
(
xkr − x

j
r
)
λk, r = k, i, i+ 1, . . . , i+m2, r � n. (2.14)

Step 3. Assume j = i and return to Step 2.
In Table 2.2, coordinates of the points of set Mj for m1 < j� n−m2 are reported.

Notice that for the repeated index combination, the following notation is introduced:
k = j−m1, m= j +m2.

Remark. The already mentioned advantages with respect to the chosen parametrization
of the input points and straight line construction methods hold also for this case.
Step 4. By repeating the computations through Steps 2 and 3 n− 1 times, a point in the
space with coordinates x1,x2, . . . ,xm2 is obtained. The space with obtained coordinates
overlaps with the values of the unknown x1,x2, . . . ,xm2 occurring in the solution of system
(2.6).
Step 5. The order of the initial system is decreased first by neglecting m2 equations and
by putting the found values of the m2 unknowns into the remaining equations. Notice
that during this operation, the parameters of the truncated band matrix do not change.
Step 6. Parameters of the next group are chosen from the m2 unknowns when the com-
putation through Steps 1, 2, and 3 of the truncated system is carried out.

The described procedure of the successive decrease in the system order is repeated
until all values of n unknowns are found. Generally speaking, one may require to get n
and m2 as integers. Notice that by adding a zero diagonal to the compressed band matrix,
parameter m2 may be introduced arbitrarily.

Using the presented method (see [6]), it is possible to apply other variants of SLAE
solution to the band matrix as well.

The proposed novel algorithm is stable with respect to the errors introduced by round-
ings. In this sense, as practical computations show, this method is close to that of
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the Gauss elimination technique for unknowns with a partial choice of the main ele-
ment. For instance, solving the system of equations considered in [6, page 61], for the
matrix conditioned by ω = 4.7 · 105, the proposed method gives exact decimal digits, that
is, of one order less than the Gauss method. This result is obtained owing to a particular
symmetry of the fundamental computational formulas (2.13), (2.14) and a homogeneity
in computations of all unknowns.

Owing to the algorithm, one may conclude that in order to store coordinates of the
points of set Mj , one may isolate independently of the order of the sought system, that is,
the set consisting of (m1 + 2)(m2 + 3) elements. From this point of view, the considered
direct method is similar to iterational methods owing to the required volume of opera-
tional storage.

Furthermore, the proposed method is characterized by a real computational process
cycling and a weak coupling of the algorithm due to constant and full refreshments of
transitional results.

Indeed, giving the corresponding coordinates of the points of manifold M for a certain
j < n, one may begin the process of solution of the system of equations from the equation
with the number i= j− 1.

The mentioned property accounts for an essential increase in the solution process on
a computer owing to the elimination of computation repetitions for truncated systems.
Namely, while solving an input system of order n, we remember the coordinates of the
points of the sets Mj , j = n+ 1− lm2, l = 1,2, . . . ,n/m2− 2, j �m2 + 1Q.

In order to store the values of coordinates, it is advisable to use external computer
memory. Next, after a successive truncated system of order n− km2 , k = 1,2, . . . , has been
formulated, the corresponding set Mj of points j = 2m2 + 1 + (k− 1)m2 is created.

The discussed algorithm for solving SLAE with a band matrix is also suitable for solv-
ing boundary value problems using the method of finite differences in a rectangular par-
allelepiped since the matrix of SLAE possesses a band with a regular structure. The latter
property allows the use of one and only one set I for all equations.

For the space with a solution to a boundary value problem slightly differing from the
canonical one, an artificial way of introducing fictitious equations for the mesh nodes to
SLAE is as follows:

xi = 0, (2.15)

which supplements the given space to a canonical one.
We dwell now for a while on the computation of elements of set I ordered by the

numbers of nonzero diagonals of a band of the SLAE matrix with respect to its main
diagonal. In what follows, a three-dimensional case is considered.

Let n1, n2, n3 be the numbers of mesh nodes in directions ox1, ox2, ox3, respectively.
For approximation of partial derivatives of second order in the node {i, j,k}, the seventh
point pattern is used: {i, j,k; i± 1, j,k; i, j ± 1,k; i, j,k± 1}, where 1 � i � n1, 1 � j � n2,
1 � k � n3. Observe that the number of nonzero band diagonals is equal to that of nodes
in the pattern l = 7. The position of nonzero diagonals with respect to the main diagonal
of the band matrix is defined using ordered numbers of the unknowns corresponding to
the nodes appearing in the pattern.
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Numbering of unknowns is defined by the number of mash nodes during SLAE for-
mulation. Although various variants are possible, only those which formulate a band ma-
trix of a regular structure are interesting, that is, one set I gives the position of nonzero
coefficients in all equations.

The variant associated with the successive picking of nodes in directions ox1, ox2, ox3

and corresponding to the formula for the computation of unknown number n in the
node {i, j,k} reads

si, j,k = i+ ( j− 1)n1 + (k− 1)n1n2. (2.16)

Formula (2.16) yields

i1 = si, j,k−1− si, j,k =−n1n2,

i2 = si, j−1,k − si, j,k =−n1,

i3= si−1, j,k − si, j,k =−1,

i4 = si, j,k − si, j,k = 0,

i5 = si+1, j,k − si, j,k = 1,

i6 = si, j+1,k − si, j,k = n1,

i7 = si, j,k+1− si, j,k = n1n2.

(2.17)

For the last band matrix parameters, one gets

m1 = n1n2, m2 =m1, m= 2n1
(
n2 + 1

)
, n= n1n2n3. (2.18)

The formula used for the successive picking of nodes along directions ox3, ox1, ox2, that
is, the formula applied to compute an unknown number in the node {k, i, j}, is

sk,i, j = j + (k− 1)n3 + ( j− 1)n1n3, (2.19)

where elements is of set I read

i1 =−n1n3, i2 =−n3, i3 =−1,

i4 = 0, i5 = 1, i6 = n3, i7 = n2n3,
(2.20)

and the band parameter matrix follows:

m1 = n1n3, m2 =m1, m= 2n1n3 + 1. (2.21)

Finally, the last variant of the successive node picking in directions ox2, ox3, ox1 corre-
sponds to the formula for computation of the unknown number in the node { j,k, i},
that is,

s j,k,i = j + (k− 1)n2 + (i− 1)n2n3, (2.22)

where elements is of set I read

i1 =−n2n3, i2 =−n2, i3 =−1,

i4 = 0, i5 = 1, i6 = n2, i7 = n2n3,
(2.23)
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Table 2.3. Exchange of mesh nodes.

Pattern Row Variant of the nodes exchange

Node Element i, j,k k, i, j j,k, i
i, j,k− 1 1 1 3 2
i, j− 1,k 2 2 1 3
i− 1, j,k 3 3 2 1
i, j,k 4 4 4 4
i+ 1, j,k 5 5 6 7
i, j + 1,k 6 6 7 5
i, j,k+ 1 7 7 5 6

and the band element matrix has the form

m1 = n2n3, m2 =m1, m= 2n2n3 + 1. (2.24)

It follows from the algorithm description that both the parameter m-band SLAE ma-
trix width and the system of order n determine the dimension of the operating storage
and the machine time required to solve the equations on a computer.

Therefore, if values n1, n2, n3 are different, then the variant of mesh nodes preserving
the minimal matrix bandwidth should be chosen. It is clear that the last picking procedure
should be associated with the maximal number of nodes in direction nx.

In practice, when the SLAE matrix in the form of a compressed band is built (only
nonzero elements are considered), only one picking variant of the shell nodes (indepen-
dently of the values of n1, n2, n3) is taken. Therefore, minimization of the bandwidth is
introduced, which is reduced to the exchange of elements in rows, exchange of rows, and
exchange of column elements of free terms.

In the considered example, the correspondence between elements of the band row is
given in Table 2.3 for three variants of picking of mesh nodes. Relations (2.16), (2.19),
and (2.22) are used for the exchange of rows and of column elements of free terms, which
define simultaneously the ordering numbers of the system equations for the various vari-
ants of picking of the shell nodes.

If one considers the boundary value problem for a system of differential equations
with respect to a few sought functions, then with the use of finite difference method,
the structure of the SLAE matrix becomes dependent on the choice of the numbering of
unknowns.

In the case of successive numeration of unknowns into groups corresponding to sought
functions, the matrix has a block structure. The bandwidth exceeds the system order,
which makes the considered algorithm noneffective.

Note that numeration of similar unknowns with a step equal to the number of sought
functions corresponds to successive numeration of all (related to a mesh node)
unknowns, and the SLAE matrix possesses a regular band-type structure. The bandwidth
is essentially smaller than the system order, and hence the proposed method can be ap-
plied.
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In practice, both numeration methods mentioned above are applied. The first one is
used in the computation of nonzero elements of the equation matrix. The second one is
applied during transformation of the matrix to a form suitable for the application of the
direct solution method.

It is worth noticing that using the described approach, the general properties of the
matrix transformation algorithm are applied independently of the number of the sought
functions. The procedure consists of the following steps.
Step 1. Elements of set I , that is, ordering numbers of nonzero diagonals of the ma-
trix with respect to the main diagonals, are computed. For this purpose (analogously to
(2.16), (2.17)), ordering numbers of the unknowns corresponding to the nodes of the
difference pattern scheme are computed first with respect to each group of the same un-
knowns in accordance with the first numbering order.
Step 2. Elements of set Ik are computed, that is, the relative numbers of these unknowns
for the cases when the unknowns lie on the main diagonal associated with the first, the
second, . . . , the kth group of the unknowns named the same.
Step 3. A nonorder set I matching all sets Ik is constructed. Further, an increasing ordering
of the elements of set I is carried out and the number of elements of set I with parameters
l1, l2, m1, m2, m is computed.
Step 4. The reconstruction of the initial block-band compressed matrix is initiated
through changes of row elements, rows, and free column elements with respect to the
second numbering way for unknowns: first elements of all blocks, second elements of all
blocks, and so on; first rows of blocks corresponding to the equations of the boundary
value problem, second rows of these blocks, and so forth.

Elements of the column of free terms are transformed in a way similar to that applied
to the rows.
Step 5. Then a band-type matrix in the compressed form is built in the following way:
ordering numbers of the row elements from the block of the input matrix are defined
through the condition of equality of the corresponding elements of sets Ik, I .

Notice that in its essential part, the resulting band is filled with zero elements.
Consider an example of the SLAE matrix transformation occurring during the solving

of the boundary value problem for the system of two differential equations in partial
derivatives of fourth order with variable coefficients in two-dimensional space using the
method of finite differences. Denote by n1, n2 the numbers of mesh nodes in directions
ox1, ox2, respectively.

The derivatives in mesh node {i, j} are approximated through difference relations on
the pattern consisting of 13 nodes (see Figure 2.1).

The following coordinates of the local nodes {is, js}, s= 1,2, . . . ,13, are introduced:

i1 = i− 2, j1 = j; i2 = i− 1, j2 = j− 1; i3 = i− 1, j3 = j;

i4 = i− 1, j4 = j + 1; i5 = i, j5 = j− 2; i6 = i, j6 = j− 1;

i7 = i, j7 = j; i8 = i, j8 = j + 1; i9 = i, j9 = j + 2;

i10 = i+ 1, j10 = j− 1; i11 = i+ 1, j11 = j;

i12 = i+ 1, j12 = j + 1; i13 = i+ 2, j13 = j.

(2.25)
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∗
i, j + 2

∗
i, j + 1

∗
i, j

∗
i, j − 1

∗
i, j − 2

∗
i + 1, j + 1

∗
i + 1, j

∗
i + 1, j − 1

∗
i + 2, j

∗
i− 1, j + 1

∗
i− 1, j

∗
i− 1, j − 1

∗
i− 2, j

Figure 2.1. The pattern of 13 nodes.

The input matrix in the compressed form (nonzero diagonals) is built owing to the
first numbering way for unknowns, and it describes a two-dimensional packet of dimen-
sion kn · kl, where k = 2 is the number of sought functions, n = n1n2 is the number of
mesh nodes for which equations are constructed, and l = 13 is the pattern dimension.

The discussed matrix is a block-diagonal one consisting of k2 blocks and possessing 39
nonzero diagonals.

Local index s of the pattern node defines a position in the row of a coefficient stand-
ing by the corresponding unknown in the equation for node {i, j}. The computation is
carried out with respect to the beginning of the corresponding block.

Then, elements of the following sets are computed:

i1,k ∈ I1, i2,k ∈ I2, k = 1,2, . . . ,26. (2.26)

For this purpose, the relative members of all unknowns corresponding to pattern nodes
and appearing in equations for node {i, j} are computed:

i1,k = lk − l13, i2,k = lk − l14, (2.27)

where even k : lk = 2((is− 1)n2 + js), odd k : lk−1 = 2((is− 1)n2 + js)− 1, s= 1,2, . . . ,13.
The set I = I1∪ I2 is constructed and its elements are ordered in an increasing manner.

The corresponding results for n2 = 5 are reported in the first four columns of Table 2.4.
As seen from this table, the number of nonzero diagonals of the band matrix is equal

to 31. This value does not depend on n2 but is defined only through a type of the pattern
chosen for approximation of derivatives and by the number of the functions sought in
the boundary value problem.

Comparing elements of sets I1, I2, and I , one obtains a rule of distribution of the row
elements in the modified matrix during construction of the band matrix in the compact
form.

The correspondence between the ordering numbers of nonzero coefficients for the
even and odd rows of the modified matrix and rows of the band matrix is reported in the
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Table 2.4. Comparison of obtained results (see text).

N I1 I2 I k = 1 k = 2

1 −20 −21 −21 2 1

2 −19 −20 −20 3 2

3 −12 −13 −19 5 4

4 −11 −12 −13 6 5

5 −10 −1 −12 7 6

6 −9 −10 −11 8 7

7 −8 −9 −10 9 8

8 −7 −8 −9 10 9

9 −4 −5 −8 12 11

10 −3 −4 −7 13 12

11 −2 −3 −5 14 13

12 −1 −2 −4 15 14

13 0 −1 −3 16 15

14 1 0 −2 17 16

15 2 1 −1 18 17

16 3 2 0 19 18

17 4 3 1 20 19

18 5 4 2 21 20

19 8 7 3 23 22

20 9 8 4 24 23

21 10 9 5 25 24

22 11 10 7 26 25

23 12 11 8 27 26

24 13 12 9 28 27

25 20 19 10 30 29

26 21 20 11 31 30

27 — — 12 — —

28 — — 13 — —

29 — — 19 — —

30 — — 20 — —

31 — — 21 — —

last two columns of Table 2.4. The free positions in the row of the matrix are filled out by
zeros. Notice that for arbitrary n1, n2, this correspondence is the same.

As known, when solving numerically boundary value problems for PDEs using fi-
nite element methods, there appears SLAE associated with matrices including a relatively
small number of nonzero elements, most of which remain on the main diagonal, that



Jan Awrejcewicz et al. 389

is, in this case, the equations dealt with are associated with the band matrix of irregular
structure (the so-called cutting-off matrix).

However, there exists a modification of the elimination method for equations due to
which it is possible to solve SLAE of a similar form. The cutting-off matrix will be intro-
duced through two sets: the set of nonzero matrix elements and the corresponding set of
indices, that is, relative numbers of nonzero elements with respect to the elements lying
on the main diagonal, which are associated with the indices.

In what follows, contrary to the band matrix of a regular structure requiring only one
row of indices for nonzero elements (set I), in our case, this type of row is formulated for
each of the equations (set Ii). Here lies the fundamental difference in the application of
the elimination method for the equations of SLAE using the cutting-off matrix.

We comment on parameters m1, m2. Being the same for all equations, they are com-
puted initially as

m1 =max
(− Ii(1)

)
, m2 =max

(
Ii
(
li
))

, (2.28)

where l1 denotes the number of nonzero coefficients in the ith equation. Therefore, the
row of nonzero coefficients and the row of indices for each equation are supplemented, if
necessary, by zeros in the case of elements, and by

Ii(1)=−m1, Ii
(
li
)=m2 (2.29)

in the case of indices, where li is the value of Ii satisfying the above requirement.
As a result, SLAE with a band matrix of nonregular structure is obtained.
Note that the formulation of the cutting-off matrix with the help of two packets is

optimal with respect to the memory storage volume since for the index conservation, it
is sufficient that the machine word be 2 bytes long.

The corresponding computation shows, for instance, that for the conservation of a
band-type matrix of the 27th order and a regular structure obtained through approxima-
tion of the Laplace operator in a three-dimensional space by finite difference equations,
5832 bytes are required in the general case, 1512 bytes are required in the case of its com-
pressed form (only nonzero elements are considered), and finally 1350 bytes are needed
when the matrix is represented by two packets.

It is worth noticing that the method of elimination extends essentially the possibility of
computer computation needed to solve large-order SLAE through reaching a match be-
tween the advantages of both direct (universality, finiteness of the computational process,
exactness) and iterational (minimal requirement of the storage volume) methods.

We finally emphasize particularities of the SLAE matrix in each separate case, which
can also be treated as an advantage of the method.

3. Numerical solution of a three-dimensional equation of elliptic type

Many stationary processes of different physical properties lead to PDEs of elliptic type, to
mention only the stationary problem of current distribution in a medium, problems of
electrostatics and magnetostatics of the theory of plates and shells, problems of the theory
of elasticity or the theory of filtration, and so forth.



390 On the economical solution of algebraic equations

Exact solution to the boundary value problems for elliptic equations can be found
in rare cases only. Therefore, numerical methods are usually applied to solve differential
equations of elliptic type (linear or nonlinear). In the latter case, equations are linearized
through differentiation along the parameter [7] or using the “setup” method [2]. Hence,
the problem is finally reduced to the solution of the SLAE.

Moreover, a majority of methods for nonlinear problem solving are reduced to a series
of linear systems. Application of the method of finite differences to elliptic equations
results in SLAE with a band-type matrix. In the case of PDEs, the matrix (SLAE) possesses
the cutting-off band, with only a few nonzero elements (see Section 2).

We briefly model the problem of stationary heat distribution in a certain volume G
with surface Γ of three-dimensional space x = (x1,x2,x3). The heat transfer equation is
governed by the Fourier principle. A vector of heat stream density W is proportional to
the temperature gradient V =V(x) such that

W =−K gradV , (3.1)

where K = K(x) is the heat transfer coefficient. The density of the heat stream is equal to
the amount of the heat stream, a unit of time passing through a unit area of an isotermic
surface.

To derive the equation governing the heat balance for certain volume U ∈ G and sur-
face S, let the distributed heat sources exist inside volume U with density ϕ(x), where
ϕ(x)dU is the heat amount occurring in volume dU .

Let Wn describe the vector W projection onto external normal n to surface S. The heat
balance equation is governed by the known rule, that is, the total heat stream passing
through surface S,

∫∫
S
WndS, (3.2)

should be equal to the heat amount of∫∫∫
U
ϕ(x)dU (3.3)

appearing in volume U , that is,
∫∫

S
WndS=

∫∫∫
U
ϕ(x)dU. (3.4)

Using the Gauss formula
∫∫
SWndS=

∫∫∫
U div, balance equation (3.4) is transformed to the

form ∫∫∫
U

(
divW −ϕ(x)

)
dU = 0. (3.5)

As volume U is arbitrary, therefore, if ϕ(x) and divW are continuous functions of point
x = (x1,x2,x3), then (3.5) yields

W = ϕ(x). (3.6)



Jan Awrejcewicz et al. 391

Substituting here expression (3.1) for the vector of heat stream W , the following equation
for the stationary temperature V =V(x) is obtained:

LV = div(K gradV)=−ϕ(x), (3.7)

or in the equivalent form,

3∑
α=1

(
K(x)V(x),xα

)
,xα
=−ϕ(x), (3.8)

where K is the function of point x = (x1,x2,x3).
Heat transfer equation (3.8) is obtained under an assumption of isotropy of the heat

transfer process. If a heat coefficient depends on direction and is a tensor (an isotropic
medium), then, instead of (3.8), the following equation is taken:

3∑
α1β=1

(
KαβV(x),xβ

)
,xα =−ϕ(x). (3.9)

If Kαβ ≡O and α �= β, then (3.9) reads

3∑
α=1

(
KαV(x),xα

)
,xα
=−ϕ(x). (3.10)

Equation (3.8) holds for all internal points of space G. Additional conditions of the fol-
lowing form are attached to boundary Γ:

(1) temperature is given: V(x)= g(x) for x ∈ Γ;
(2) heat stream is given: K(∂V/∂n)= g(x) for x ∈ Γ;
(3) heat transfer of Newton’s rule is applied:

K
dV

dn
= æV + g(x), x ∈ Γ,æ= æ(x) > 0. (3.11)

Consider the boundary value problem for the equation of the stationary heat transfer
in a rectangular parallelepiped of a three-dimensional space:

Ḡ= {0 � xα � lα, α= 1,2,3
}
. (3.12)

In this case, the method of finite differences is used; the construction of the difference
equation on the mesh with a variable step is realized through the method of functional
approximation [5]. Consider the boundary value conditions (1), (2), and (3) in various
states, and, if necessary, symmetry q of solution is accounted:

3∑
α=1

(
Kα(X)V(x),xα

)
,xα
=−ϕ(x), x ∈ Ḡ; (3.13)

Kα(x)V(x),xα = æ−α(x)
(
V(x)−V0(x)

)
, xα = 0,

−Kα(x)V(x),xα = æ+α(x)
(
V(x)−V0(x)

)
, xα = lα,

(3.14)
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where Kα(x) is the heat transfer coefficient in direction xα, x±α(x) is the heat exchange
coefficient with surrounding medium on walls xα = 0, lα, and Vα(x) is the temperature of
surrounding medium.

It is known that a solution to the boundary value problem (3.13), (3.14) satisfies the
functional minimum:

I(u)=
∫∫∫

G

( 3∑
α=1

kαV
2
,xα − 2Vϕ

)
dx

+
3∑

α=1

∫ lβ

0

∫ lγ

0

((
V 2− 2g−αV

)∣∣
xα=0 +

(
V 2− 2g+αV

)∣∣
xα=lα

)
dxβdxγ, α �= β �= γ,

(3.15)

where g±α(x)= æ±α(x)V0(x).
Indeed, variating functional (3.15) with respect to V , V,xα, integrating by parts the

terms with δV,xα, and comparing variations of the functional to zero, relations (3.4) and
(3.14) are obtained as the necessary conditions to minimize functional (3.15).

Further, instead of V and K , v and k will be used.
We introduce the following fundamental mesh:

ω̄=
3∏

α=1

ω̄α, (3.16)

where ω̄α = {xαi, i = 0,1,2, . . . ,Nα − 1,Nα}—mesh on interval [0, lα]. The set of interval
mesh nodes is denoted by

ω =
3∏

α=1

ωα, (3.17)

where ωα = {xαi, i= 1,2, . . . ,Nα− 1}.
We introduce the following notations:

hαi = xαi− xαi−1, i= 1,2, . . . ,Nα,

h̃αi =




0, 5α1, i= 0,

0, 5hαi−1 +hαi, i= 1,2, . . . ,Nα− 1,

0, 5hαNα , i=Nα,

vi, j,k = v
(
x1i,x2 j,x3k

)
,

k
i±0,5, j,k
1 = 0,5

(
k
i, j,k
1 + k

i±1, j,k
1

)
,

k
i, j,±0,5,k
2 = 0,5

(
k
i, j,k
2 + k

i, j,±1,k
2

)
,

k
i, j,k±0,5
3 = 0,5

(
k
i, j,k
3 + k

i, j,k±1
3

)
.

(3.18)
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All integrals occurring in functional (3.15) are substituted by quadratures. If the under-
integral function includes a partial derivative, then the center triangle formula is applied
with respect to the corresponding variable (in other cases, the trapezoid rule is used).

Derivatives are approximated through difference approximations, for instance, by
v,x1(x1i− 0,5h1ix2 j,x3k)= (vi, j,k − vi−1, j,k)/h1i.

In what follows, the function with n variables vi, j,k is obtained:

In(v)=
N1∑
i=1

N2∑
j=0

N3∑
k=0

k
i−0,5, j,k
1

(
vi, j,k − vi−1, j,k

)2
h̃2 j h̃3k

h1i

+
N1∑
i=0

N2∑
j=1

N3∑
k=0

k
i, j−0,5,k
2

(
vi, j,k − vi, j−1,k

)2
h̃1ih̃3k

h2 j

+
N1∑
i=0

N2∑
j=0

N3∑
k=1

k
i, j,k−0,5
3

(
vi, j,k − vi, j,k−1

)2
h̃1ih2i

h3k

+
N1∑
i=0

N2∑
j=0

N3∑
k=0

ϕi, j,kvi, j,kh̃1ih̃2 j h̃3k

+
3∑

α=1

Nβ∑
j=0

Nγ∑
k=0

æ−αv
(
xα0,xβ j ,xγk

)2− 2g−αv
(
xα0,xβ j ,xγk

)

+ æ+αv
(
xαNα,xβ j ,xγk

)2− 2g+αv
(
xαNα,xβ j ,xγk

)
h̃β j h̃γk, α �= β �= γ,

n=
3∏

α=1

(
Nα + 1

)
.

(3.19)

As known, the minimum of this function is achieved at the point where its partial deriva-
tives are equal to zero with respect to vi, j,k.

We construct a system of difference equations of order n to define values vi, j,k realiz-
ing the minimum of the functional (3.15) and being a solution to the boundary value
problem (3.13), (3.14). The following four cases are considered.

(1) Internal mesh nodes of space Ḡ.
Terms (3.19) including vi, j,k are reported below:

S1 =
(
k
i−0,5, j,k
1

(
vi, j,k − vi−1, j,k

)2

h1i
+
k
i+0,5, j,k
1

(
vi+1, j,k − vi, j,k

)2

h1i+1

)
h̃2 j h̃3k

+

(
k
i, j−0,5,k
2

(
vi, j,k − vi, j−1,k

)2

h2 j
+

(
k
i, j+0,5,k
2

(
vi, j+1,k − vi, j,k

)2

h2 j+1

)
h̃1ih̃3k

+

(
k
i, j,k−0,5
3

(
vi, j,k − vi, j,k−1

)2

h3k

)
k
i, j,k+0,5
3

(
vi, j,k+1− vi, j,k

)2

h3k+1

)
h̃1ih̃2 j

− 2ϕi, j,kvi, j,kh̃1ih̃2 j h̃3k.

(3.20)
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By differentiating S1 with respect to v(i, j,k) and comparing its derivative to zero, the fol-
lowing difference equation is obtained at node {i, j,k} of the mesh owing to the division
by 2h1ih2 jh3k:

(
k
i+0,5, j,k
1

(
vi+1, j,k − vi, j,k

)
/h1i+1− k

i−0,5 j,k
1

(
vi, j,k − vi−1, j,k

)
/h1i

)
h̃1i

+

(
k
i, j+0,5,k
2

(
vi, j+1,k − vi, j,k

)
/h2 j+1− k

i, j−0,5,k
2

(
vi, j,k − vi, j−1,k

)
/h2 j)

h̃2 j

+

(
k
i, j,k+0,5
3

(
vi, j,k+1− vi, j,k

)
/h3k+1− k

i, j,k−0,5
3

(
vi, j,k − vi, j,k−1

)
/h3k

)
h̃3k

=−ϕi, j,k, 1 � i�N1− 1, 1 � j �N2− 1, 1 � k �N3.

(3.21)

(2) Node of the parallelepiped wall.

i= 0, 1 � j �N2− 1, 1 � k �N3− 1. (3.22)

Terms (3.19) (including variable vi, j,k for i= 0) follow:

S2 =
k
i+0,5, j,k
1

(
vi+1, j,k − vi, j,k

)2
h̃2 j h̃3k

h1i+1

+

(
k
i, j−0,5,k
2

(
vi, j,k − vi, j−1,k

)2

h2 j
+
k
i, j+0,5,k
2

(
vi, j+1,k − vi, j,k

)2

h2 j+1

)
h̃1ih̃3k

+

(
k
i, j,k−0,5
3

(
vi, j,k − vi, j,k−1

)2

h3k
+
k
i, j,k+0,5
3

(
vi, j,k+1− vi, j,k

)2

h3k+1

)
h̃1ih̃2 j

− 2ϕi, j,kvi, j,kh̃1ih̃2 j h̃3k +
(
æ−1v

2
i, j,k − 2g−1vi, j,k

)
h̃2 j h̃3k.

(3.23)

By differentiating S2 with respect to vi, j,k and comparing the corresponding derivative
to zero, the following difference equation (after division by 2h̃1ih̃2 j h̃3k) is obtained at the
parallelepiped node x1 = 0:

(
k
i+0,5, j,k
1

(
vi+1, j,k − vi, j,k

)
/h1i+1−æ−1vi, j,k)

h̃1i

+

(
k
i, j+0,5,k
2

(
vi, j+1,k − vi, j,k

)
/h2 j+1− k

i, j−0,5,k
2

(
vi, j,k − vi, j−1,k

)
/h2 j

)
h̃2 j

+

(
k
i, j,k+0,5
3

(
vi, j,k+1− vi, j,k

)
/h3k+1− k

i, j,k−0,5
3

(
vi, j,k − vi, j,k−1

)
/h3k

)
h̃3k

=−ϕi, j,k − g−1

h̃1i
.

(3.24)

Difference equations at other parallelepiped wall nodes are constructed analogously.
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(3) Mesh nodes belong to the parallelepiped

i= j = 0, 1 � k �N3− 1. (3.25)

By proceeding in a way similar to that applied in the previous case, the following differ-
ence equation is obtained:

(
k
i+0,5, j,k
1

(
vi+1, j,k − vi, j,k

)
h1i+1

−æ−1vi, j,k

)
h̃1i

+

(
k
i, j+0,5k
2

(
vi, j+1,k − vi, j,k

)
/h2 j+1−æ−2vi, j,k

)
h̃2 j

+

(
k
i, j,k+0,5
3

(
vi, j,k+1− vi, j,k

)
/h3k+1− k

i, j,k−0,5
3

(
vi, j,k − vi, j,k−1

)
/h3k

)
h̃3k

=−ϕi, j,k − g−1

h̃1i
− g−2

h̃2 j
.

(3.26)

(4) A node of the mash coincides with the parallelepiped vertex

i= 0,N1, j = 0,N2, k = 0,N3. (3.27)

Proceeding again as in the previous case, one arrives at the following corresponding equa-
tions: for i= j = k = 0,

(
k
i+0,5, j,k
1

(
vi+1, j,k − vi, j,k

)
/h1i+1−æ−1vi, j,k

)
h̃1i

+

(
k
i, j+0,5,k
2

(
vi, j+1,k − vi, j,k

)
/h2 j+1−æ−2vi, j,k

)
h̃2 j

+

(
k
i, j,k+0,5
3

(
vi, j,k+1− vi, j,k

)
/h3k+1−æ−3vi, j,k

)
h̃3k

=−ϕi, j,k − g−1

h̃1i
− g−2

h̃2 j
− g−3

h̃3k
;

(3.28)

for i=N1, j =N2, and k =N3,

(−æ−1vi, j,k − k
i−0,5, j,k
1

(
vi, j,k − vi−1, j,k

)
/h1i)

h̃1i

+

(−æ−2vi, j,k − k
i, j−0.5,k
2

(
vi, j,k − vi, j−1,k

)
/h2 j)

h̃2 j

+

(−æ−3vi, j,k − k
i, j,k−0,5
3

(
vi, j,k − vi, j,k−1

)
/h3k

)
h̃3k

=−ϕi, j,k − g+1

h̃1i
− g+2

h̃2 j
− g+3

h̃3k
.

(3.29)
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Thus, all possible cases occurring while formulating the difference equations on the mesh
with variable step for the third boundary value problem have been discussed.

We discuss briefly the peculiarities involved in the formulation of difference equations
in the case when the following Dirichlet conditions are given on some parallelepiped
walls:

v(x)|xα=0,Iα = vu(x), (3.30)

where vu(x) is the given function.
One of the possible ways to include a condition of such a type is to formulate the

following corresponding equation associated with nodes:

vi, j,k = vu. (3.31)

The latter one allows for construction of both an algorithm and computer programs uni-
versal with respect to the boundary condition type. Indeed, the drawback of the approach
is associated with conservation of the order of the difference equation system.

Furthermore, if it is known a priori that the solution to problem (3.13), (3.14) pos-
sesses one, two, or three plane symmetries xα = lα/2, then these conditions are recom-
mended to be included while difference equations are being formulated, since they essen-
tially decrease the order of the investigated system.

If the solution is symmetric with respect to, say, the plane x1 = 
1/2, then we take

h̃1N1 = h1N1 , k
N1+0,5, j,k
1 = k

N1−0,5, j,k
1 . (3.32)

In what follows, in the difference equations formulated for the nodes of the plane xα =

α/2, accounting for the symmetry property

v
(

1

2
+h1N1 ,x2,x3

)
= v

(

1

2
−h1N1 ,x2,x3

)
, (3.33)

the coefficient standing by the unknown vi−1, j,k is doubled. The wall node is treated as an
internal one in this case.

The solution to the boundary value problem (3.13), (3.14) consists of two steps: for-
mulation of the system of difference equations with a band-type compressed matrix hav-
ing a regular structure (in the operating storage, only nonlinear matrix diagonals are con-
served), and solution to the obtained system using the elimination method for equations
[3].

We discuss the computations of the first stage. In order to identify a particular prob-
lem, the following items are required: node numbers Nα with respect to each direction
xα, α = 1,2,3; packets of steps of the mesh h1i, h2 j , h3k; formulas for kα(x), g±α(x), ϕ(x)
computations, and vu(x) (if necessary); values of symmetry indicators IS, JS, KS; packet
of six elements to formulate the type of the boundary condition on each of the six paral-
lelepiped walls; and values of χ±α(x).

Having this information, the operator coefficients k
i, j,k
1 , k

i−0,5, j,k
1 are computed and the

matrix of difference equations is formulated due to formulas (3.21)–(3.29). Analogous
operations are carried out with k2(x), k3(x).
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In what follows, the matrix of coefficients of the difference equations, which corre-
sponds to the third boundary value problem, is obtained. Then free terms of the system
of equations are computed, and (if necessary) the equations involving the Dirichlet con-
ditions are formulated.

Recall that when solving numerically the boundary value problems, the reality estima-
tion of the computer-yielded results is in the focus of attention. Therefore, the correct
derivation of appropriate relations together with suitable formulation of the variational
problem should be emphasized, and then an application of the exact method of solution
to the system of difference equations with double precision should be carried out.

During analysis, a series of computations to verify the mentioned reliability has been
carried out.

(1) Model problem. The possibilities of both the developed algorithm and the system
subroutines are checked through solution to problem (3.13), (3.14), with

k1 = 1 +
2

3c
(
x̃1 + x̃2 + x̃3

) ,

k2 = 1 +
2

3c
(
3/4− x̃1− x̃2− x̃3

) ,

k3 = 1 +
2

3c
(
1/2− x̃1− x̃2 + x̃3

) ,

(3.34)

where

x̃α =
(
xα− 1

2

)2

, α= 1,2,3. (3.35)

The exact solution reads

vu(x)=
(
1/2− x̃1− x̃2

)
x2

3

2
, (3.36)

and hence

ϕ(x)=−x2
3

(
2 +

4
3c
(
3/8 + x̃1− x̃2

))

+
(

1
2
− x̃1− x̃2

)(
1 +

2
3c
(
1/2− x̃1− x̃2 + x̃3 + 2x3

(
x3− 1/2

))),

g−2
(
x1,0,x3

)=−3
4
− x̃1 +

2
3c
(
1/2− x̃1− x2

)
x2

3/2
,

g−3
(
x1,0,x3

)= 0,

g+3
(
x1,x2,1

)= (1
2
− x̃1− x̃2

)(
3
2

+
3

2c
(
3/4− x̃1− x̃2

))

(3.37)

assuming that æ±α(x)= 1.
We introduce the Dirichlet condition on the wall x1 = 0. The symmetry of solution is

taken into account with respect to the plane x1 = 1/2, x2 = 1/2. The solution is defined in
the space Ḡ= {0 � xα � 1, α= 1,2,3}.



398 On the economical solution of algebraic equations

Table 3.1. Numerical solution of the model problems at point: x1 = 0.5, x2 = 0.5, x3 = x3k .

Mesh Exact

k x3k 3× 3× 5 5× 5× 5 9× 9× 9 solution

1 0 0 0 0 0

2 0.25 0.0112 0.0120 0.0147 0.0156

3 0.5 0.504 0.0523 0.0599 0.0625

4 0.75 0.120 0.122 0.136 0.141

5 1.0 0.223 0.0224 0.243 0.250

Table 3.2. Numerical solution of the model problems at point: x1k = x2k = x3k .

Mesh Exact

k x3k 3× 3× 3 5× 5× 5 9× 9× 5 solution

1 0 0 0 0 0

2 0.25 — 0.0038 0.0060 0.0068

3 0.5 0.378 0.0375 0.0444 0.0469

4 0.75 — 0.114 0.127 0.132

In Table 3.1, the results of the solution to this problem for c = 2048 are reported for
the mesh with a constant step. An analysis of the given results yields the conclusion that
during the change of the mesh step, the approximated solution converges to the exact
one. Variation of the operator coefficients in the considered case is high, that is,

1 � kα(x) � 1024, α= 1,2,3. (3.38)

Notice that for c = 0, the numerical solution with accuracy greater than five meaning-
ful digits overlaps with the exact solution.

(2) Problem without a source. The convergence of the solution to the problem without
a source (owing to the decreasing mesh step) is testified through the results included in
Table 3.2. The following parameters are taken:

k1 = k2 = k3 = 207, ϕ(x)= 0, (3.39)

and the following boundary conditions are applied:

v
(
0,x2,x3

)= 0, v,x2

(
x1,0,x3

)= 0,

k3v,x3

(
x1,x2,0

)= 10(v− 100), k3v,x3

(
x1,x2, l3

)= 10v.
(3.40)

The following symmetry solution with respect to the planes is taken into account:

x1 = l1
2

, x2 = l2
2

; l1 = l2 = 1m, l3 = 0.02m. (3.41)
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Table 3.3. Numerical solution to the problem without source.

Mesh
Recipes

k x1k 5× 5× 5 9× 9× 5

1 0 0 0 —

2 0.125 9.17 9.2 x1k = x2k

3 0.25 15.3 15.3 x3 = 
3

4 0.375 18.8 18.8 —

5 0.5 19.9 20.0 —

Owing to the analysis of the results reported in Table 3.3, it is clear that without sources,
the numerical solution is obtained with an efficient accuracy on the mesh 5× 5.

(3) Problem with a point source. The convergence of the solution to the problem with
a point source obtained during the decrease of the mesh step is considered on the basis of
the following problem:

k1 = k2 = k3 = 1, ϕ(x)=



4 · 106, for x1 = x2 = 
1

2
, x3 = 
3,

0, otherwise,
(3.42)

where the attached boundary conditions are as follows:

v
(
0,x2,x3

)= 0, v,x2

(
x1,0,x3

)= 10v,

v,x3

(
x1,x2,0

)= 0, v,x3

(
x1,x2, l3

)= 0;


1 = 
2 = 1, 
3 = 0.02.

(3.43)

The following symmetry condition with respect to the planes

x1 = 
1

2
, x2 = 
2

2
(3.44)

is applied.
In Tables 3.4 and 3.5, the results of the solution to this problem on four meshes, 3×

3× 5, 5× 5× 5, 9× 9× 5, and 17× 17× 5, are given. For the three partitions, the mesh
step (in the vicinity of the node with the source) is taken to be constant and equal to the
step of partition 17× 17× 5. In all four cases, the constant volume power is achieved. The
changeable step allows application of the mentioned actions in a relatively simple manner
by introduction of additional nodes with respect to x1, x2 in the first three cases, that is,
the solution is obtained for the shells 4× 4× 5, 6× 6× 5, and 10× 10× 5.

Owing to the given results, stable convergence is achieved during the mesh step varia-
tion. Maximal differences are observed at the node with the source, but the difference is
less than 1% for two neighboring partitions.
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Table 3.4. Numerical results of the problem with point source.

Mesh
Recipes

k k3k 3× 3× 5 5× 5× 5 9× 9× 5 17× 17× 5

1 0 264.5 300.9 321.0 324.3 —

2 0.25 269.5 305.7 325.9 329.2 x1 = 0.5

3 0.5 284.4 320.6 340.9 344.2 x2 = 0.5

4 0.75 310.9 347.2 367.5 370.8 —

5 1 351.7 388.0 408.3 411.6 —

Table 3.5. Numerical results of the problem with point source.

Mesh
Recipes

k k1k 3× 3× 5 5× 5× 5 9× 9× 5 17× 17× 5

1 0 0 0 0 0 —

2 0.25 — 12.05 12.25 12.31 x2k = x1k

3 0.5 36.6 38.9 39.6 39.8 x3k = 
3

4 0.75 — 90.0 92.0 92.5 —

(4) Comparison of solutions obtained through various methods. Finally, we present
the results of computation through the finite difference method for two problems for
which both analytical and boundary value solutions are known.

In Table 3.6, the results of the solution to the first boundary value problem for the
Laplace equation for the cube with ribs of unit length are reported.

The boundary conditions are as follows:

v
(− 0.5,x2x3

)= 2, v
(
0.5,x2,x3

)= 1,

v
(
x1,−0.5,x3

)= 0, v
(
x1,0.5,x3

)= 0,

v
(
x1,x2,−0.5

)= 0, v
(
x1,x2,0.5

)= 0.

(3.45)

In Table 3.7, the results of the solution to the Laplace equation with a hybrid
boundary condition for the rectangular parallelepiped are reported. The boundary con-
ditions are

v
(− 0,5,x2,x3

)= 10,
(
v,x1 + 5v

)∣∣
x1=0,5 = 0,(

v,x2 + 5v
)∣∣

x2=±1 = 0,
(
v,x3

+ 5v
)∣∣

x3=±1 = 0.
(3.46)

Notice that when numerical solutions are constructed, the symmetry with respect to two
planes, x2 = 0, x3 = 0, is taken into account.

The reported results show that the solution obtained through the finite difference
method during the mesh step decrease converges to the analytical solution, and its er-
ror is small for the appropriate partition.
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Table 3.6. Solution to the first boundary value problem for Laplace equation.

Boundary element method Finite difference method Analytical

x1k N = 12 N = 24 5× 3× 3 9× 5× 5 17× 9× 9 solution

−0.375 1.637 1.472 — 1.413 1.426 1.430

−0.250 1.044 0.979 0.926 0.953 0.963 0.967

−0.125 0.678 0.661 — 0.653 0.657 0.659

0 0.5 0.5 0.5 0.5 0.5 0.5

0.125 0.478 0.472 — 0.471 0.472 0.472

0.250 0.597 0.566 0.545 0.555 0.558 0.560

0.375 0.770 0.770 — 0.740 0.746 0.748

Table 3.7. Solution of the Laplace equation with hybrid boundary conditions (x3k = x2k).

Boundary element
method Finite element method

Analytical
solution

x1k x2k N = 24 N = 48 5× 3× 3 9× 5× 5 17× 9× 9

−0.25 0 7.387 7.282 7.155 7.234 7.257 7.259

0 0 4.827 4.84 4.724 4.804 4.829 4.837

0 0.5 3.745 3.843 3.821 3.835 3.841 3.843

0.25 0 2.816 2.843 2.778 2.825 2.839 2.844

0.25 0.25 2.612 2.658 — 2.645 2.655 2.658

0.25 0 2.0 2.073 2.105 2.094 2.091 2.089

0.25 0.75 1.050 1.144 — 1.202 1.186 1.180

The results of the numerical experiments yield the conclusion that our proposed
method and the associated subroutines allow efficient numerical solution of three-dimen-
sional boundary problems for the stationary heat transfer equation without any essential
limitations. The same conclusion holds when the problems of plates and shells are con-
sidered.

4. Computation of geometrically nonlinear nonhomogenous shallow shells
with mixed boundary condition along their sides

One of the important computation problems connected with shallow nonhomogeneous
and geometrically nonlinear shells concerns conditions of the boundary value problems
variations along a supporting side.

In order to derive appropriate relations, a system consisting of two identical shells
stiffened by ribs along two sides linked by a hinge is considered (see Figure 4.1).

The shell material is assumed to be isotropic but nonhomogeneous, that is, shear mod-
ulus G and Poisson coefficient µ are functions of point coordinates x = (x1,x2,x3), or,
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x2

x1
x3

Figure 4.1. Investigated shell.

according to the theory of small elastic-plastic deformations, they depend on the stress-
strain material state at the considered point.

We introduce the following notation: x1, x2, x3—rectangular system of coordinates
(Figure 4.1); α, b, h—shell dimension and thickness, respectively; k1, k2—curvatures; u,
v, w—components of displacements of mean surface point; q—transversal load intensity.

Following the Kirchhoff-Love hypothesis, the components of shell and rib deforma-
tion read

eii = εii + χiix3 (i= 1,2), e12 = ε12 + χ12x3, (4.1)

where

ε11 = u,x1 − k1w+
w2

,x1

2
,

ε22 = v,x2 − k2w+
w2

,x2

2
, ε12 =U,x2 + v,x1 +w,x1w,x2 ,

(4.2)

ε11, ε22, ε12—length and stream deformations of the mean surface;

χ11 =−wx1x1 , χ22 =−wx2x2 , χ12 =−wx1x2 , (4.3)

where χ11, χ22, χ12 are variations of curvature and torsion.
In accordance with the Hook principle for a flat-strain state and (4.1), the coupling

between stressed σik and deformation eik is presented in the following form:

σ11 = 2G
1− v

[
ε11 + χ11x3 +µ

(
ε22 + χ22x3

)]
(1←→ 2),

σ12 =G
(
ε12 + 2χ12x3

)
,

(4.4)

where, here and further, (x←→ y) denotes the change of index x to y.



Jan Awrejcewicz et al. 403

Integration of (4.4) with respect to x3 yields the following expressions for forces and
movements:

T11 = c00ε11 + c10ε22 + c01χ11 + c11χ22, (4.5)

T22 = c00ε11 + c00ε22 + c11χ11 + c01χ22, (4.6)

T12 = 0.5
(
c00− c10

)
ε12 +

(
c01− c11

)
χ12, (4.7)

M11 = c01ε11 + c11ε22 + c02χ11 + c12χ22, (4.8)

M22 = c11ε11 + c01ε22 + c12χ11 + c02χ22, (4.9)

M12 = 0.5
(
c01− c11

)
ε12 +

(
c02− c12

)
χ12, (4.10)

where

cik
(
x1,x2

)=
∫ h/2

−h/2
2G(x)µi(x)xk3

1−µ(x)
dx3 (i= 0,1; k = 0,1,2). (4.11)

The deformation energy of the considered system reads

∃ = 0.5
[∫ 0

−α

∫ b

0
Adx1dx2 +

∫ α

0

∫ b

0
Adx1dx2 +

∫ 0

−α

(
H−1 +P−1

)∣∣
x2=0dx1

+
∫ α

0

(
H+

1 +P+
1

)∣∣
x2=0dx1 +

∫ b

0

(
H−2 +H+

2 +P
)∣∣

x1=0dx2

]
,

(4.12)

where

A= T11ε11 +T22ε22 +T12ε12 +M11χ11 +M22χ22 + 2M12χ12,

H±1 =D±1 ε
2
11 +A±1 w

2
,x1x1

+B±1 v
2
,x1x1

+C±1 w
2
,x1x2

,

H±2 =D±2 ε
2
22 +A±2 w

2
,x2x2

+B±2 u
2
,x2x2

+C±2 w
2
,x1x2

,

P±1 = α±1 w
2
,x2

+β±1 w
2, P = α[w,x1 ]2 +βw2;

(4.13)

D±1 , A±1 , B±1 , C±1 —rib stiffness on elongation (compressing), bending in a vertical plane,
bending in a horizontal plane, and torsion, respectively; α±1 , α—stiffness of hinge rib-
shell, rib-rib interaction, respectively, β±1 , β—elasticity of support under the rib; [w,x1 ]—
jump of derivative w,x1 on the line x1 = 0.

We introduce the following functional:

I(u,v,w)= ∃−
∫ 0

−α

∫ b

0
qwdx1dx2−

∫ α

0

∫ b

0
qwdx1dx2. (4.14)
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Variating (4.14) with respect to u, v, w and carrying out transformations with the help of
integration by parts, one gets

δI =
∫ 0

−α

∫ b

0
Ãdx1dx2 +

∫ α

0

∫ b

0
Ãdx1dx2

+
∫ 0

−α

(
R1|x2=0,b +

(
S−1 +β−1 wδw+α−1 w,x2δw,x2

)∣∣
x2=0

)
dx1

+
∫ α

0

(
R1|x2=0,b +

(
S+

1 +β+
1wδw+α+

1w,x2δw,x2

)∣∣
x2=0

)
dx1

+
∫ b

0

(
R2|x1=−α,0 +R2|x1=0,α +

(
S−2 + S+

2 +α
[
w,x1

]
δ
[
w,x1

]
+βwδw

)∣∣
x1=0

)
dx2

+Q−1
∥∥x1=−α,0

x2=0
+
(
Q+

2 +Q−2
)∥∥ x1=0

x2=0,b
+Q+

1

∥∥x1=0,α
x2=b

− 2M12δw
∥∥x1=−α,0

x2=0,b
− 2M12δw

∥∥x1=0,α
x2=0,b

= 0,

(4.15)

where

Ã=−(T11,x1 +T12,x2

)
δu− (T12,x1 +T22,x2

)
δv

− (M11,x1x1 +M22,x2x2 + 2M12,x1x2 + k1T11 + k2T22

+
(
T11w,x1 +T12w,x2

)
,x1

+
(
T12w,x1 +T22w,x2

)
,x2
− q

)
δw,

R1 = T12δu+T22δv+
(
M22,x2 + 2M12,x1 +T22w,x2

)
δw−M22δw,x2 ,

S±1 =−
(
D±1 ε11

)
,x1
δu+

(
B±1 v,x1x1

)
,x1x1

δv+
(− k1D

±
1 ε11

)− (D±1 ε11w,x1

)
+
(
A±1 w,x1x1

)
δw− (C±1 w,x1x2

)
δwx2 ,

Q±1 =D±1 ε11δ−
(
B±1 v,x1x1

)
,x1
δv+

(
B±1 v,x1x1

)
δv,x1

+
(
D±1 ε11w,x1 −

(
A±1 w,x1x1

)
,x1

)
δw+A±1 w,x1x1δw,x1 +C±1 w,x1x2δw,x2(

1←→ 2, u←→ v, x1←→ x2
)
.

(4.16)

We consider some of the relations that follow from the previous considerations.
Differential equations governing the equilibrium state of a nonhomogeneous shell

with respect to displacements are obtained by comparison to zero of the coefficients
standing by variations of u, v, w in doubled integral (4.15), and by taking into account
relations (4.2), (4.6), and (4.9).

However, they are not explicitly given owing to their complexity. Boundary conditions
for the side x2 = 0 follow from the examinations of the under-integral expressions. If the
displacements on the contour are not given, then the boundary conditions are defined by
comparison to zero of the coefficients standing by variations of u, v, w, w,x2 .
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Conditions for the coupling of solutions on the line x1 = 0 are derived from the fol-
lowing expression:

R2|x1=−0−R2|x1=0 +
(
S−2 + S+

2 +α
[
w,x1

]
δ
[
w,x1

]
+βwδw

)|x1=0

= (− [T11
]

+
(
B2u,x2x2

)
,x2x2

)
δu+

(− [T12
]−D2ε22

)
δv

+
(− [T13

]−D2k2ε22−
(
D2ε22w,x2

)
,x2

+
(
A2w,x2x2

)
,x2x2

+βw
)
δw

+
(−M−

11−
(
C−2 w

−
,x1x2

)
,x2
−α

[
w,x1

])
δw−,x1

+
(
M+

11−
(
C+

2 w
+
,x1x2

)
,x2

+α
[
w,x1

])
δw+

,x1
= 0,

(4.17)

where [
T1i
]= T1i

∣∣
x1=0−T1i

∣∣
x1=−0 (i= 1,2,3),

T13 =M11,x1 + 2M12,x2 +T11w,x1 , B2 = B−2 +B+
2 ,

D2 =D−2 +D+
2 , A2 = A−2 +A+

2 .

(4.18)

This means that the following conditions should be satisfied on the line of the solution
coupling:

[
T11

]= (B2u,x2x2

)
,x2x2

,
[
T12

]=−D2ε22,[
T13

]=−D2k2ε22−
(
D2ε22w,x2

)
,x2

+
(
A2w,x2x2

)
,x2x2

+βw,[
M11

]= (C+
2 w,x1x2

)
,x2

+
(
C−2 w

−
,x1x2

)
,x2

,

α
[
w,x1

]=−M+
11−M−

11 +
(
C+

2 w,x1x2

)
,x2

+
(
C−2 w,x1x2

)
,x2

,

(4.19)

as well as the conditions on the continuity of displacements [u]= [v]= [w]= 0. Taking
k2 = ε22 = u = v = T11w,x1 = 0 in (4.19), the conditions for the solution coupling for a
plate are obtained [5].

We determine agreement conditions in the shell angle x1 = 0, x2 = 0. For this purpose,
the forms related to an angle are considered in (4.15), that is,

(−Q+
1 −Q+

2 − 2M12δw
)∥∥x1=0

x2=0

= (−D+
1 ε11 +

(
B+

2 u,x2x2

)
,x2

)
δu+

((
B+

1 v,x1x1

)
,x1
−D+

2 ε22
)
δv

+
(− 2M12−D+

1 ε11w,x1 +
(
A+

1w,x1x1

)
,x1
−D+

2 ε22w,x2 +
(
A+

2w,x2x2

)
,x2

)
δw

−B+
1 v,x1x1δv,x1 −B+

2 u,x2x2δu,x2 −
(
A+

1w,x1x1C
+
2 w,x1x2

)
δw,x1

− (A+
2wx2x2 +C+

1 w,x1x2

)
δw,x2 = 0.

(4.20)

One may derive now, for instance, the following compatibility conditions in the angle:

−D+
1 ε11 +

(
B+

2 u,x2x2

)
,x2
= 0, −D+

2 ε22 + (B+
1 v,x1x1

)
,x1
= 0,

−2M−
12 +

(
A+

1w,x1x1

)
,x1

+
(
A+

2w,x2x2

)
,x2
−D+

1 ε11w,x1 −D+
2 ε22w,x2 = 0;

B+
1 v,x1x1 = 0, B+

2 u,x2x2 = 0,

A+
1w,x1x1 +C+

2 w,x1x2 = 0, A+
2w,x2x2 +C+

1 w,x1x2 = 0.

(4.21)



406 On the economical solution of algebraic equations

Notice that if the ribs are excluded, then only one compatibility condition M12 = 0
remains.

We derive compatibility conditions for the point x1 = 0, where the change of boundary
conditions occurs. They are obtained from the terms of (4.15) with respect to the point
x1 = 0, x2 = 0, and the coefficients with index 2 are equal to zero (homogeneous shell):

(
Q−1 −Q+

1

)∥∥ x=0
x2=0

= (D−1 ε−11−D+
1 ε

+
11

)
δu+

((
B+

1 v
+
,x1x1

)
,x1
− (B−1 v−,x1x1

)
,x1

)
δv

+
(−D+

1 ε
+
11w

+
,x1

+D−1 ε
−
11w

−
,x1

+
(
A+

1w
+
,x1x1

)
,x1
− (A−1 w,x1x1

)
,x1

)
δw

+B−1 v
−
,x1x1

δv−,x1
−B+

1 v
+
,x1x1

δv+
,x1

+
(
C−1 w

−
,x1x2
−C+

1 w,x1x2

)
δw,x2

+A−1 w
−
,x1x1

δw−,x1
−A+

1w
+
,x1x1

δw+
,x1
= 0.

(4.22)

As an example, we consider the compatibility condition for a hinged support of the
shell side x2 = 0 with different stiffness:

D−1 ε11−D+
1 ε

+
11 = 0,

(
B+

1 v
+
,x1x1

)
,x1
− (B−1 v−,x1x1

)
,x1
= 0,

B+
1 v

+
,x1x1
= 0, C−1 w

−
,x1x2
−C+

1 w
+
,x1x2
= 0.

(4.23)

Owing to relations (4.22), (4.23), the necessity of application of the compatibility con-
dition appears only for the shells supported by ribs.

We introduce the following force function:

F,x2x2 = T11, F,z1x2 =−T12, F,x1x1 = T22, (4.24)

and we derive the equations in a hybrid form with respect to force F and deflection w.
For this purpose, the deformation continuity equation and the third equation of (4.15)

are applied to yield

ε11,x2x2 + ε22,x1x1 − ε12,x1x2 +∇2
kw+ 0,5L(w,w)= 0,

M11,x1x1 +M22,x2x2 + 2M12,x1x2 +∇2
kF +L(w,F)− q = 0.

(4.25)

By solving (4.6) with respect to εik, one gets

ε11 =AF,x2x2 +A∗F,x1x1 +Bw,x1x1 = B∗w,x2x2 ,

ε22 = A∗F ,x2x2 +AF,x1x1 +B∗w,x1x1 +Bw,x2x2 , ε12 =−4A2F,x1x2 + 4B2w,x1x2 ,
(4.26)

where

A= A1 +A2, A∗= A1−A2, B = B1 +B2, B∗= B1−B2,

A1 = 0.5
c00 + c10

, A2 = 0.5
c00− c10

,

B1 =
(
c01 + c11

)
A1, B2 =

(
c01− c11

)
A2.

(4.27)



Jan Awrejcewicz et al. 407

Taking into account (4.27) in (4.9), one obtains

M11 = BF,x2x2 +B∗F,x1x1 −Cw,x1x1 −C∗w,x2x2 ,

M22 = B∗F ,x2x2 +BF,x1x1 −C∗w,x1x1 −Cw,x2x2 ,

M12 =−2B2F,x1x2 − (C−C∗)w,x1x2 ,
(4.28)

where

C = c02−B∗1 −B∗2 , C∗ = c12−B∗1 −B∗2 ,

B∗1 =
(
c01 + c11

)
B1, B∗2 =

(
c01− c11

)
B2.

(4.29)

Equations (4.25) with an account of (4.27), (4.28) read

(
A∗F,x1x1 +AF,x2x2 +Bw,x1x1 +B∗w,x2x2

)
,x2x2

+
(
AF,x1x1 +A∗F,x2x2 +B∗w,x1x1 +Bw,x2x2

)
,x1x1

− (− 4A2F,x1x2 + 4B2w,x1x2

)
,x1x2

+∇2
kw+ 0.5 L(w,w)= 0;(

BF,x1x1 +B∗F,x2x2 −C∗w,x1x1 −Cw,x2x2

)
,x2x2

+
(
B∗F,x1x1 +BF,x2x2 −Cw,x1x1 −C∗ω,x2x2

)
,x1x1

− 2
(− 2B2F,x1x2 − (C−C∗)w,x1x2

)
,x1x2

+∇2
kF +L(w,F)− q = 0.

(4.30)

In what follows, the algorithm for solving the stability problem of physically nonlinear
flexible shallow shells with mixed boundary conditions and without ribs is discussed.
Step 1. In the space occupied by the shell, a rectangular mash with equal step {x1i,x2 j ,x3k}
is introduced. Assuming in the beginning that the shell is unloaded, modulus Gijk of the
shell nodes is introduced.
Step 2. At the nodes of mesh surface x3 = 0, coefficients Cαβ (4.11) are computed. Then,
substituting the partial derivatives by difference expressions with error Q(h2

x1
+ h2

x2
), in-

stead of the system of equations (4.30), the system of nonlinear algebraic equations with
respect to wij , Fi j , that is, deflection and stress functions formulated at nodes of the mean
surface, is obtained. Boundary conditions are considered while out-contour nodes are
being eliminated from the equations system. If the mesh node overlaps with the point
where the boundary conditions change, for instance, in the case of hinge clamping, then
the clamping is understood as the value of derivative with respect to a normal solution
to a system of algebraic equations for a given load q(x1x2) defined with the help of the
Newton or differentiation along the parameter methods [7], and then the elimination
method is applied.
Step 3. New values of Gijk and µi jk are computed at the mesh nodes in accordance with
the theory of small elastic-plastic deformation [1, 4]. Modulus of elongation and modulus
of volume deformation K are found using formulas of the theory of small elastic-plastic
deformation

E = 9KG
3K +G

, µ= 1
2

3K − 2G
3K +G

. (4.31)
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Notice that in this theory, it is assumed that K does not depend on the deformable state
at a point since in the case of a body which is nonhomogeneous before deformation,
K = K(x1,x2,x3), and for a body homogeneous before deformation, K = K0 = const.

The shear modulus is defined through the formula

G= 1
3
σi
(
ei
)

ei(x)
, (4.32)

and G is called the cutting modulus. In order to compute the shell, dependence σi(ei)
should be explicitly given (intensity of stress σi versus strain (ei)).

Some of the diagrams σi(ei) are reported in [4]. Then the procedure goes back to
Step 2.

The computations are repeated until the obtained solution overlaps with the previous
one keeping the assumed accuracy.
Step 4. The load q = q+hq is increased and the computations start at Step 2.

As a result, dependence q(w) yielding the critical values is obtained.
On a basis of the introduced algorithm, the program in Fortran has been developed.
As an example, a square shell made of aluminium and with parameters k1 = k2 = 18,

λ= a/h= 50, and q = const [4] has been considered.
We apply the Mises flow condition (σi = σs) and the dependence σi(ei) taken in the

form

σi = σS

(
1− exp

−ei
eS

)
, (4.33)

where es = σs/3σ0 is the artificial intensity of the flow deformation.
The problem is considered symmetric with respect to x1, x2 for four types of the

boundary conditions, namely,

(1) hinged support on the contour;
(2) hinged support in an angle, and clamping in the middle of the side over the in-

terval 1/4a;
(3) clamping in an angle, and hinged support in the middle of the side over the in-

terval 1/4a;
(4) clamping along a contour.

The stress function on the side x2 = 0 is F,x1x1 = 0, F,x1x2 = 0, whereas for the deflection,
w = 0, wx2 = 0 or M22 = 0.

Consider a few computational results. In Figure 4.2, dependencies of load versus cen-
ter deflection represented by curves 1–4 corresponding to the considered boundary con-
ditions are reported. Analyzing the behavior of the curves, one may conclude that the
value of the upper critical load depends essentially on the position of the clamped part.
Figure 4.3 shows influence of the boundary conditions on the distribution of plasticity
zones on the upper shell surface x3 = −h/2 for the loads corresponding to deflection
w = 0,4 in the shell center. The largely developed plasticity zones are achieved for hinged
support. Owing to clamping of the shell point in the middle of its side, the plastic zones
are sharply decreased and their position is subject to change. The minimal areas of the
plasticity zones are achieved in the case of clamping along the whole length.
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Figure 4.2. Load versus shell center deflection (see text for more details).
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Figure 4.3. Influence of boundary conditions on plasticity zone distribution (see text for more de-
tails).
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Figure 4.4. Moment M11 versus x2 on shell side x1 = 0 (see text).

Figure 4.4 displays graphs of moments M on the side x1 = 0 for the following cases:
2—solid curve; 3—dashed curve; 4—dash-dotted curve.
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Deflection in the shell center achieved in all cases is w = 0.4. In Figures 4.2 and 4.3,
digits 1–4 should be considered simultaneously. For the given computational model, con-
trary to [8], a jump of the moments is observed, which is close to real observations.

The results of Section 4 make the elimination method for equations effective and also
for solving the complicated PDEs like nonlinear equations governing elastic-plastic prob-
lems of shells with finite deflections. Here, on each loading step, one has to solve many
times a large SLAE, which, without any doubt, exerts significant impact on the chosen
computational algorithm.
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