
ASYMPTOTIC-GROUP ANALYSIS OF
ALGEBRAIC EQUATIONS

A. D. SHAMROVSKII, I. V. ANDRIANOV, AND J. AWREJCEWICZ

Received 15 June 2004

Both the method of asymptotic analysis and the theory of extension group are applied to
study the Descates equation. The proposed algorithm allows to obtain various variants of
simplification and can be easily generalized to their algebraic and differential equations.

1. Introduction

First published in 1680, though applied for the first time eleven years earlier, the approach
that exploits logarithms of initial values instead of the values themselves is due to Newton
(the reader is encouraged to follow the history of the problem described in [7]). The ap-
proach is still of crucial importance as it enables transformation of a previously defined
nonlinear problem using the initial coordinates to a linear problem applying the logarith-
mic coordinates. Further development of the idea following this direction is called power
geometry (cf. [6, 7, 8]).

Recently, a very active development of two new and theoretically coupled branches
of asymptotical analysis has been observed: power geometry [6, 7, 8] and idempotent
analysis [9, 10]. Power geometry focuses on investigations of nonlinear problems using
logarithmic coordinates instead of classical ones, owing to which many of the original
nonlinear properties become linear in new logarithmic coordinates. Power geometry al-
gorithms that implement those linear relations lead to simplification of equations and
isolation of their singularities, and to determination of the first approximations of the
singularities. Application of power geometry methods makes it possible not only to find
solutions that may take the form of their asymptotics but also to use other approaches to
arrive at these asymptotics.

The idempotent analysis is oriented mainly towards introduction of a new summation
[9, 10] of the form

u⊕h v = h ln
[

exp
(
u

h

)
+ exp

(
v

h

)]
, (1.1)

u⊗ v = u + v and u⊕h v = max{u,v} for h→ 0; moreover, set A defined by the map
x→ u= h lnx of a halving of positive numbers; R+ also becomes a halving in relation to
the introduced operations with zero 0=−∞ and unity l = 0. The semiring is an identical
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one, that is, u⊕u= u for all its elements, which provides a wide applicability spectrum for
the idempotent analysis. On the other hand, a simplification similar to that of the initial
equations is realized within a frame of the asymptotic-group analysis [11, 12]. The ideas
discussed in this paper are clarified via a simple example described in Sections 2–10 of
the paper. The example of the Folium of Descartes, whose analysis was already attempted
in [7] but unfortunately not brought to completion there, has been chosen as a model-
ing problem for the purpose of the present paper and this time has been fully analyzed.
Besides, in Section 11 of the paper, a possibility of application of Padé approximations is
considered [1].

Real behavior modeling via computers is frequently realized through either algebraic
or differential equations. Both analytical and numerical approaches or either one can be
applied. It is worth noticing that from the mathematical point of view both methods
mentioned here supplement each other yielding a full picture of an investigated system.
A special role, however, is played by asymptotical methods, targeted at investigation of
algebraic and differential equations, not only because they are the most powerful among
all known analytical approaches but also because in many cases they are matched with
various numerical approaches [11, 12].

We now discuss briefly some problems often met in engineering and associated with
either algebraic or algebraic/differential equations.

All problems oriented on investigations of equilibria of nonlinear dynamical systems
governed by ODEs are reduced to a study of algebraic equations.

There are many problems in mechanics when a considered dynamical object is subject
to unilateral constraints. In this case, the dynamics of the system under consideration
is governed by ODEs, whereas potential rigid barriers serve as motion limitations and
their influence on motion behavior is represented by algebraic equations (inequalities).
A reader is encouraged to follow, for instance, some recent works devoted to dynamics of
a triple pendulum with rigid barriers [3, 4, 5].

There is also a vast field of problems related to analysis of continuous mechanical sys-
tems, like rods, beams, plates, and shells. The corresponding nonlinear PDEs are reduced
through an application of finite difference methods to a set of ODEs and algebraic equa-
tions. It has been shown that this approximation to the original problems possesses many
advantages in comparison to classical approaches (see, e.g., monograph [2] and the ref-
erences therein).

However, in spite of the challenging development of asymptotic methods, they still ex-
hibit certain disadvantages, the most significant of which lies in their strong dependence
on researchers’ intuition.

The aim of the study presented here is to remove this drawback by means of a synthe-
sis of classical, asymptotical, and group theory methods and to arrive at an explicit and
intuition-independent algorithm for investigation of complex systems.

2. Extension group associated with an algebraic equation

Consider the following Descartes equation:

ax3 + by3− cxy = 0, (2.1)
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where x and y are rectangular coordinates, and a, b, c are arbitrary coefficients. We focus
the attention on the relative magnitude of equation terms, and, in particular, on the role
played by coefficients a, b, and c. Note that the latter is not explicitly clear, as, for example,
the fact that a coefficient, say a, is large does not imply that the associated term is also
large, since it includes x and/or y.

In order to solve the problem, the transformations (extensions) that allow (2.1) to
remain in the same form should be established. For this purpose, an arbitrary quantity
δ �= 1 is introduced and the following transformations are defined:

x = δβ1x∗, y = δβ2 y∗, a= δβ3a∗, b = δβ4b∗, c = δβ5c∗. (2.2)

On substituting (2.2) into (2.1), the following equation is obtained:

δ3β1+β3a∗
(
x∗
)3

+ δ3β2+β4b∗
(
y∗
)3− δβ1+β2+β5x∗y∗c∗ = 0. (2.3)

Equation (2.1) either can be transformed with respect to (2.2) or it is invariant with
respect to these transformations when the exponents standing by all coefficients are the
same, that is,

3β1 +β3 = 3β2 +β4 +β1 +β2 +β5. (2.4)

Note that there are two equations and five unknowns. We describe β3 and β4 by other
quantities:

β3 = β5− 2β1 +β2, β4 = β5 +β1− 2β2. (2.5)

Quantities β1, β2, and β5 are arbitrary and may take arbitrary values, whereas β3 and
β4 are expressed through them. There exist three fundamental solutions to (2.4):

(1)

β1 = γ1 �= 0, β2 = 0, β5 = 0=⇒ β3 =−2γ1, β4 = γ1, (2.6)

which is associated with the transformation

x = δγ1x∗, y = y∗, a= δ−2γ1a∗, b = δγ1b∗, c = c∗; (2.7)

(2)

β2 = γ2, β1 = 0, β5 = 0=⇒ β3 = γ2, β4 =−2γ2, (2.8)

whose associated transformation reads

x = x∗, y = δγ2 y∗, a= δγ2a∗, b = δ−2γ2b∗, c = c∗; (2.9)

(3)

β5 = γ3, β1 = 0, β2 = 0=⇒ β3 = γ3, β4 = γ3, (2.10)
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with the following associated transformation:

x = x∗, y = y∗, a= δγ3a∗, b = δγ3b∗, c = δγ3c∗. (2.11)

In other words, (2.1) is invariant with respect to the three-parameter group of exten-
sions, defined by relations (2.7), (2.9), and (2.11). Occurrence of these admitted trans-
formations defines a criterion for the relative equation simplicity and, as will be shown
further, may bring the right reduction for input equations.

3. Extension group invariants

Note that in all transformations in the group of extensions that have been found, there are
five quantities taking part. Any combination of these quantities that does not change in
transformations is referred to as the group-invariant property. We find these invariants in
the considered case. To this aim, from transformations (2.7), (2.9), and (2.11), parameters
of transformations γ1, γ2, γ3 should be excluded.

The first method. The superposition of transformations (2.7), (2.9), (2.11) yields

x = δγ1x∗, y = δγ2 y∗, a= δ−2γ1+γ2+γ3a∗, b = δγ1−2γ2+γ3b∗, c = δγ3c∗,
(3.1)

and hence

δγ3 = c

c∗
=⇒ x

x∗
= δγ1 ,

y

y∗
= δγ2 ,

a

a∗
= δ−2γ1+γ2

c

c∗
,

b

b∗
= δγ1−2γ2

c

c∗
.

(3.2)

On the other hand,

δγ2 = ac∗

a∗c
δ2γ1 =⇒ x

x∗
= δγ1 ,

y

y∗
= ac∗

a∗c
δ2γ1 ,

b

b∗
=
(
a∗
)2
c3

a2
(
c∗
)3 δ

−3γ1 , (3.3)

and finally

δγ1 =
(
a∗
)2/3(

b∗
)1/3

c

a2/3b1/3c∗
=⇒ x

x∗
=
(
a∗
)2/3(

b∗
)1/3

c

a2/3b1/3c∗
,

y

y∗
=
(
a∗
)1/3(

b∗
)2/3

c

a1/3b2/3c∗
. (3.4)

To conclude, invariants are defined in the following way:

X = x
a2/3b1/3

c
= x∗

(
a∗
)2/3(

b∗
)1/3

c∗
, Y = y

a1/3b2/3

c
= y∗

(
a∗
)1/3(

b∗
)2/3

c∗
. (3.5)
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The second method. Transformations (2.1) are given the form

x

x∗
= δγ1 ,

y

y∗
= δγ2 ,

a

a∗
= δ−2γ1+γ2+γ3 ,

b

b∗
= δγ1−2γ2+γ3 ,

c

c∗
= δγ3 .

(3.6)

In an analogous way, transformations (2.2) take the form

x

x∗
= δβ1 ,

y

y∗
= δβ2 ,

a

a∗
= δβ3 ,

b

b∗
= δβ4 ,

c

c∗
= δβ5 , (3.7)

with arbitrary values β1, . . . ,β5. It is assumed, owing to (3.7), that these values give rela-
tions of nontransformed and transformed quantities occurring in (2.1). Comparing (3.6)
and (3.7), one arrives at

δβ1 = δγ1 , δβ2 = δγ2 , δβ3 = δ−2γ1+γ2+γ3 , δβ4 = δγ1−2γ2+γ3 , δβ5 = δγ3 ,
(3.8)

and hence

β1 = γ1, β2 = γ2, β3 =−2γ1 + γ2 + γ3, β5 = γ3. (3.9)

The obtained equations can be treated as equations with respect to quantities γ1, γ2,
and γ3. In this case, one may find these quantities from three arbitrary equalities in (3.8)
and then put the obtained result into the two remaining equalities. In particular, this
procedure corresponds to the case of removing γ1, γ2, and γ3 in the first method. Namely,
to repeat the earlier procedure, the following system of three equations should be solved:

−2γ1 + γ2 + γ3 = β3, γ1− 2γ2 + γ3 = β4, γ3 = β5. (3.10)

The above operation corresponds to the description of γ1, γ2, γ3 in terms of constants
a, b, c. The solution to (3.10) yields

γ1 =−2
3
β3− 1

3
β4 +β5, γ2 =−1

3
β3− 2

3
β4 +β5, γ3 = β5. (3.11)

Using the results in the first two equalities of (3.8), one receives

β1 +
2
3
β3 +

1
3
β4−β5 = 0, β2 +

1
3
β3 +

2
3
β4−β5 = 0, (3.12)

and hence

δβ1+(2/3)β3+(1/3)β4−β5 = 1, δβ2+(1/3)β3+(2/3)β4−β5 = 1. (3.13)
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Returning to (3.7), powers of δ are substituted by the corresponding fractions, that is,

x

x∗

(
a

a∗

)2/3( b

b∗

)1/3 c∗

c
= 1,

y

y∗

(
a

a∗

)1/3( b

b∗

)2/3 c∗

c
= 1. (3.14)

It is worth noticing that again quantities (3.4) remain invariant.
Although the two methods of determination of invariants are equivalent, the second

one has an advantage of being easier in programming. The problem is actually reduced to
comparison of exponents in transformations (2.2) and (3.1), which directly yields (3.9).
Then three arbitrarily chosen equations (3.10) are solved and relations (3.12) are ob-
tained.

4. Formulation of initial equation by invariants

Applying all three transformations (2.9), (2.8), and (2.11) to (2.1), one arrives at

δγ1+γ2+γ3
[
a∗
(
x∗
)3

+ b∗
(
y∗
)3− c∗x∗y∗

]= 0. (4.1)

Taking into account (3.10) and (3.6), the following relation is obtained:

δγ1+γ2+γ3 = δ−β3−β4−3β5 = c3

ab

a∗b∗(
c∗
)3 . (4.2)

Consequently, the effect common to the three transformations is equivalent to the
occurrence of general multiplier (4.2). From (4.1), one gets

(
a∗
)2
b∗(

c∗
)3

(
x∗
)3

+
a∗
(
b∗
)2

(
c∗
)3

(
y∗
)3− a∗b∗(

c∗
)2 x

∗y∗ = 0. (4.3)

It is worth noticing that the first (second) term of (4.3) represents the third power of
invariant X(Y), whereas the third term represents multiplication of the mentioned two
invariants. Therefore, instead of (4.3), one obtains

X3 +Y 3−XY = 0. (4.4)

Note that such a transition to invariants can also be expressed explicitly, that is, by
computing

x = X
c

a2/3b1/3
, y = Y

c

a1/3b2/3
(4.5)

from (3.4), and substituting (4.5) into (2.1). The reduction by means of the general mul-
tiplier c3/(ab) yields (4.4).

Concluding, the investigation of the transformation group from initial equation (2.1)
has revealed the possibility of unification of five quantities as well as two combinations
(3.4)—invariants of the admitted group. Consequently, while exhibiting the dependence
between invariants (4.4), the equation becomes essentially simpler in its form.
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Figure 5.1. Newton’s triangle for the initial equation.

5. Asymptotic-group analysis

In reply to the question addressed earlier on how coefficients of equation terms in (2.1)
influence weights of those terms, it has been shown that these coefficients should be con-
sidered as components of invariants (3.4) rather than separate quantities if their role is to
be of any importance.

It has also been demonstrated that the group properties of (2.1) enable the reduc-
tion in the number of occurring quantities from five to two. In this way, (4.4) is derived.
The capabilities of the group properties become exhausted; (4.4) cannot be subject to
any extension (scaling) transformations, except for the trivial identity. However, further
simplification of the obtained equation can be achieved by the application of the group
approximated properties.

Equation (4.4) consists of three terms whose weights vary depending on the condi-
tions. Thus, for instance, for large (resp., small) values of terms X and Y , large (resp.,
small) exponents prevail. Investigations of relative weights of terms of similar equations
were carried out already by Newton who made use of the Newton polygon. We construct
the polygon for the case under consideration. Denote exponents of X by m and let n
stand for the exponent of Y . For the first term in (4.4), m= 0, n= 0; for the second term,
m= 0, n= 3; for the third one, m= 1, n= 1. By linking the points with the corresponding
coordinates marked by m, n on the plane, the triangle shown in Figure 5.1 is obtained.

Each side of this triangle corresponds to two terms from (4.4). Consideration of two of
the terms with the omission of the third one leads to a simplified equation. Consequently,
the three triangle sides correspond to three simplification cases.

However, a more suitable and updated way to determine simplified equations is of-
fered by the application of the asymptotical analysis. Usually, within this method, relative
weights of the terms are investigated via introduction of an arbitrary real small param-
eter, that is, a small coefficient standing by one or a few of the terms. In (4.4), however,
coefficients at all terms are equal (in modulus) to one, that is, a real small parameter does
not exist.
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Therefore a formal small parameter δ < 1 is introduced. We define the following
transformations:

X = δα1X∗, Y = δα2Y∗. (5.1)

It is assumed that the transformations yield quantities of order one:

X∗ ∼ 1, Y∗ ∼ 1, (5.2)

which are equivalent to the following relations:

X ∼ δα1 , Y ∼ δα2 . (5.3)

Thus the weights of quantities X and Y are now defined by parameters α1, α2. Pos-
itive (resp., negative) values of the parameters are associated with small (resp., large)
quantities.

On applying transformations (5.1), (4.4) takes the following form:

δ3α1
(
X∗
)3

+ δ3α2
(
Y∗
)3− δα1+α2X∗Y∗ = 0. (5.4)

Owing to relations (5.2), the weights of terms in (5.4) (and also in (4.4)) are fully
defined by the multipliers in the form of certain powers of δ occurring as the result of
the transformations. On the other hand, the weights of these multipliers are defined via
exponents. Below, the multipliers under discussion are written in the same order as the
equation terms:

3α1,3α2,α1 +α2. (5.5)

All three exponents of (5.5) can be simultaneously equal only if α1 = α2 = 0. In fact,
this property agrees with our earlier observation that (4.4) allows only the identity trans-
formation to be applied.

Consider now the case when only two exponents given in (5.5) are equal. It is also
required that two equal exponents be smaller than the third one (smaller exponents cor-
respond to large weights of terms, and vice versa). The following three cases should be
taken into consideration:

3α1 = 3α2 < α1 +α2 =⇒ α1 = α2 < 0,

3α1 = α1 +α2 < 3α2 =⇒ 2α1 = α2 > 0,

3α2 = α1 +α2 < 3α1 =⇒ α1 = 2α2 > 0.

(5.6)

These three cases are represented by the three radii on the α1, α2 plane (see Figure 5.2),
which in turn correspond to the Newton triangle sides (see Figure 5.1). The radii are
orthogonal to triangle sides and directed into the triangle inside.

We focus on each of the radii in more detail.
The first of the cases in (5.6) corresponds to the following form of (5.5):

3α1,3α1,2α1, α1 < 0. (5.7)
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α2

α1

3α
1
=
α 1

+
α 2

<
3α

2

3α2
= α1

+ α2
< 3α1

3α
1
= 3α

2
<
α 1

+
α 2

0

Figure 5.2. Three radii on the α1, α2 plane.

We choose the smallest in modulo value α1 for which all components of (5.7) are
rational, that is, the value α1 =−1. This gives

α1 =−1, α2 =−1 (5.8)

and (5.5) assumes the form

−3,−3,−2. (5.9)

The values of α1, α2 given in (5.8) are associated with the following asymptotic esti-
mations:

X ∼ δ−1 > 1, Y ∼ δ−1 > 1. (5.10)

(5.9) corresponds to the simplified equation

(
X∗
)3

+
(
Y∗
)3 = 0. (5.11)

In this equation, the terms resulting from transformations (5.1) remain and corre-
spond to the same (smallest) powers of δ. This corresponds to asymptotical estimation
(5.10) and also exhibits an important property. Namely, the simplified equation (5.11)
is invariant with respect to transformations (5.1) with exponents (5.8), that is, to the
transformations

X = δ−1X∗, Y = δ−1Y∗. (5.12)

This invariance makes it possible to return from the transformed quantities to the
initial ones keeping the form of the simplified equation:

X3 +Y 3 = 0. (5.13)
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0.5

−0.5

0−0.5 0.5

(17)

(27)

(37)

X

Y

Figure 5.3. First approximation results for the initial equation.

Consequently, the simplified equation (5.13) can be subjected to extension group
(5.12) operations. Note the lack of this property with respect to initial equation (2.11).
Occurrence of such an additional extension group can be treated as a criterion for a real
simplification, that is, (5.13) is more simplified than (2.11). In particular, again (as in the
case of (2.1)) the number of terms occurring in the equation can be decreased. For this
purpose, again, invariants may be obtained. In the case under discussion there is only one
invariant

z = Y

X
, (5.14)

hence

Y = zX , (5.15)

and, finally, (5.13) yields

1 + z3 = 0. (5.16)

Observe that, practically, the simplified equation includes only one quantity z. Solving
it, one obtains

z =−1=⇒ Y =−X. (5.17)

Equation (5.17) defines the asymptotical direction of infinity (Figure 5.3).
It is worth noticing that the simplification procedure carried out here bases on asymp-

totical estimations (5.12). The obtained result (5.17) shows that the estimations are auto-
matically satisfied for large values of X . Note thatX plays the role of a real large parameter.
As the transition to invariant (5.14) matches two quantities X and Y , only one of them
may be estimated, and thus the estimation of the second one is performed automatically.
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The second case in (5.6) is represented by (5.5) of the form

3α1,6α1,3α1, α1 < 0. (5.18)

Choosing

α1 = 1
3

, α2 = 2
3

, (5.19)

the following integer components of (5.5) are obtained:

1,2,1. (5.20)

The values of parameters (5.19) correspond to the asymptotical estimations

X ∼ δ1/3 < 1, Y ∼ δ2/3 < 1, (5.21)

that is, small X and Y of a smaller order.
The simplified equation reads

X3 +XY = 0. (5.22)

It is invariant with respect to the transformations

X = δ1/3X∗, Y = δ2/3Y∗. (5.23)

The obtained invariance allows transition from the transformed quantities to the ini-
tial ones. There is only one invariant of transformations (5.23), which reads

z = Y

X2
. (5.24)

Introducing

Y = zX2 (5.25)

and substituting it into (5.22), the following equation, with respect to invariants, is ob-
tained:

1− z = 0, (5.26)

which means that, again, an equation possessing only one quantity is found. This results
in

z = 1=⇒ Y = X2. (5.27)

The corresponding parabolic graph is shown in Figure 5.3.
Estimation (5.21) is carried out automatically for small values of X , which plays here

the role of a real small parameter.
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The third case in (5.6) yields (5.5) of the form

6α2,3α2,3α2, α2 > 0. (5.28)

Choosing

α1 = 2
3

, α2 = 1
3

, (5.29)

the following is obtained:

2,1,1. (5.30)

The asymptotical estimations follow:

X ∼ δ2/3 < 1, Y ∼ δ1/3 < 1, (5.31)

and the simplified equation reads

Y 3−YX = 0. (5.32)

The allowed group has the form

X = δ2/3X∗, Y = δ1/3Y∗, (5.33)

and the associated invariant is of the form

z = X

Y 2
, (5.34)

which yields

X = zY 2. (5.35)

The equation with respect to the invariant

1− z = 0 (5.36)

gives the solution

z = 1=⇒ X = Y 2. (5.37)

Asymptotical estimations (5.31) are satisfied automatically for small values of Y which
plays the role of a real small parameter.

6. Rotation of coordinates

The results obtained in the previous section shed some light on a curve governed by
(4.4). In order to acquire a deeper insight, we concentrate on the following observations.
The graphs shown in Figure 5.3 exhibit a symmetry axis, which is the bisectrix between
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0
0 1 32 m

n

Figure 6.1. Newton’s polygon for the equation with rotated axes.

axes X and Y . In what follows, axes rotation by π/4 is performed, and one of the coordi-
nates becomes the symmetry axis. To achieve the other, the following transformations are
introduced:

X = ucos
π

4
+ v sin

π

4
= 1√

2
(u+ v),

Y =−usin
π

4
+ v cos

π

4
= 1√

2
(−u+ v).

(6.1)

Substitution of X and Y in (4.4) by (6.1) gives

√
2
(
3u2v+ v3)+u2− v2 = 0. (6.2)

The investigation to be carried out for (6.2) is similar to that for (4.4). Denoting
by m(n) the exponent with respect to u(v), the Newton polygon is constructed (see
Figure 6.1). Its analysis shows that the four terms of (6.2) can be matched into pairs only
in four ways, although the number of possibilities is six. The Newton polygon, composed
of the mesh of convex points, representing exponents of mono-terms occurring in (6.2),
clearly explains this conclusion.

Similarly to the previous case, however, we apply a more suitable and challenging ap-
proach to estimate the weights of the terms of (6.2) representing an extensional mapping.

The following transformations are introduced:

u= δα1u∗, v = δα2v∗, (6.3)

and it is required that the following relations be satisfied:

u∗ ∼ 1, v∗ ∼ 1. (6.4)

As a result of transformations (6.3), the terms of (6.2) are accompanied by multipliers
δ. Owing to relation (6.4), these multipliers describe fully the weights of the equation
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α2

α2 = 0, α1 < 0 α2 = 0, α1 > 0

0 α1

α 1
= α

2
<

0

α 1
= α

2
>

0

Figure 6.2. Radii on the plane α1, α2 for the equation with rotated axes.

terms. Presentation of the transformed equation being neglected, only the following re-
sult with the exponents is reported:

2α1 +α2,3α2,2α1,2α2. (6.5)

Consider now pair equalities composed by the components in (6.5):

2α1 +α2 = 3α2, 2α1 +α2 < 2α1, 2α1 +α2 < 2α2 =⇒ α1 = α2 < 0,

2α1 +α2 = 2α1, 2α1 +α2 < 3α2, 2α1 +α2 < 2α2 =⇒ α2 = 0, α1 < 0,

2α1 +α2 = 2α2, 2α1 +α2 < 3α2, 2α1 +α2 < 2α1 =⇒ α2 = 2α1, α1 > 0, α1 < 0,

3α2 = 2α1, 3α2 < 2α1 +α2, 3α2 < 2α2 =⇒ 3α2 = 2α1, α1 > 0, α1 < 0,

3α2 = 2α2, 3α2 < 2α1 +α2, 3α2 < 2α1 =⇒ α2 = 0, α1 > 0,

2α1 = 2α2, 2α1 < 2α1 +α2, 2α1 < 3α2 α1 = α2 > 0.

(6.6)

The third and fourth cases are omitted since they include contradictory inequalities.
The remaining four cases yield radii on the plane α1, α2 as shown in Figure 6.2. These
radii are perpendicular to the polygon sides and go into its inside.

The following four cases are more deeply analyzed.
For the first case in (6.6), (6.5) takes the form

3α1,3α1,2α1,2α1, α1 < 0. (6.7)

On choosing

α1 = α2 =−1, (6.8)
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the resulting form is

−3,−3,−2,−2. (6.9)

Asymptotical estimations are as follows:

u∼ δ−1 > 1, v ∼ δ−1 > 1, (6.10)

and the simplified equation reads

3u2v+ v3 = 0. (6.11)

Since this equation does not possess real solutions satisfying asymptotical estimations
(6.10), this case will not be further considered.

For the second case in (6.6), (6.5) reads

2α1,0,2α1,0, α1 < 0. (6.12)

By choosing

α1 =−0.5, α2 = 0, (6.13)

the following final form is obtained:

−1,0,−1,0. (6.14)

Asymptotical estimations are as follows:

u∼ δ−0.5 > 1, v ∼ 1, (6.15)

and the simplified equation has the form

3
√

2u2v+u2 = 0. (6.16)

Transformations via extension assume the form

u= δ−0.5u∗, v = v∗. (6.17)

Here v is an invariant quantity. Through reduction by a nonzero value u, the following
equation (with respect to the invariant) is reached:

3
√

2v+ 1= 0, (6.18)

with the corresponding solution

v =− 1
3
√

2
. (6.19)
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Figure 6.3. First approximation results for the equation with rotated axes.

The last equation represents an asymptote (Figure 6.3). It is worth reminding that due
to the application of initial axes X , Y performed before, the direction of the asymptotic
became known, which has now been completed by determination of its final position.

Owing to (6.19), asymptotic estimations (6.15) are satisfied automatically and for large
values of u, which plays the role of a real large parameter here.

For the fifth case in (6.6), (6.5) is

2α1,0,2α1,0, α1 > 0. (6.20)

The choice of

α1 = 0.5, α2 = 0 (6.21)

results in

1,0,1,0. (6.22)

The asymptotical estimations are of the form

u∼ δ0.5 < 1, v ∼ 1, (6.23)

and the simplified equation reads
√

2v3− v2 = 0. (6.24)

Extension transformations take the form

u= δ0.5u∗, v = v∗. (6.25)

Quantity v is invariant, and the equation with respect to it, which reads
√

2v− 1= 0, (6.26)
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has the following solution:

v = 1√
2
. (6.27)

In Figure 6.3, the point where the curve intersects axis v is marked. Equation (6.22)
can be said to describe a tangent to the curve at the corresponding point.

Asymptotical estimations (6.23) are automatically realized (see (6.27)) for small values
of u that plays the role of a real small parameter.

For the sixth case, the considered sequence reads

3α1,3α1,2α1,2α1, α1 > 0. (6.28)

Assuming

α1 = α2 = 1, (6.29)

one obtains

3,3,2,2. (6.30)

The asymptotical estimations are

u∼ δ1 < 1, v ∼ δ1 < 1, (6.31)

and the simplified equation reads

u2− v2 = 0. (6.32)

The associated transformations are

u= δu∗, v = δv∗, (6.33)

and the invariant is

z = v

u
. (6.34)

Hence

v = zu (6.35)

and, when put into (6.32), it yields

1− z2 = 0. (6.36)

The obtained equation possesses two solutions, the first of which is

z = 1=⇒ v = u, (6.37)
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Figure 6.4. The best first approximation results within two investigated variants.

whereas the second one is

z =−1=⇒ v =−u. (6.38)

The corresponding lines are shown in Figure 6.3. Asymptotical estimations (6.31) are
satisfied automatically (see (6.37) or (6.38)) and for small values of u, which plays the
role of a real small parameter.

The comparison of Figures 6.3 and 5.3 admits the conclusion that the new coordinate
system makes it possible to define the asymptotic position and to find the intersection
with axis v. At present, however, the neighborhood of the origin is described by tan-
gents to the curve only, whereas earlier deeper results were obtained (formulas (5.27) and
(5.37)).

Matching two cases, one obtains the picture shown in Figure 6.4.
In conclusion, the investigation of the simplified variants of the equations in two dif-

ferent coordinate systems has provided an efficient amount of information on the curve
under analysis, showing it to be a loop with asymptotically linear branches in infinity.

7. Combined equation system

The investigation results with respect to XY and uv have exhibited advantages and disad-
vantages of each of the considered coordinates. Observe that various parts of the curve are
best investigated by various equations, which is evidently inconvenient. In what follows,
two systems of coordinates will be matched in order to improve the analysis. Transfor-
mation of coordinates (6.1) is applied only to the first two terms of (4.4), leaving the last
term unchanged. As a result, the following system, composed of three equations with four
unknowns X , Y , u, v, is obtained:

3u2v+ v3−√2XY = 0,

X = u+ v√
2

, Y =−u+ v√
2
.

(7.1)
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Analogously to the cases already discussed, the following transformations are intro-
duced to estimate the weights of terms in (7.1):

X = δα1X∗, Y = δα2Y∗, u= δα3u∗, v = δα4v∗, (7.2)

with the assumption that the relations to be satisfied are

X∗ ∼ 1, Y∗ ∼ 1, u∗ ∼ 1, v∗ ∼ 1. (7.3)

On substituting (7.2) into (7.1), by all terms, there occur coefficients as power of δ.
Owing to (7.3), these coefficients fully define the weights of the terms. The following
shows the exponents of δ arranged in the order corresponding to the position of the
terms in (7.1):

2α3 +α4,3α4,α1 +α2, α1,α3,α4, α2,α3,α4. (7.4)

Searching for different simplification variants of (7.1), we try finding α1, . . . ,α4 in a
formal way. Simultaneous equality of all exponents in the intervals of each row of (7.4)
for exponents α1, . . . ,α4 different form zero is impossible.

If at least one of quantities α1, . . . ,α4 is different from zero, then not all exponents of
each row in (7.4) will be the same. Smaller values of exponents are associated with large
values of the corresponding terms of the equations and vice versa. Following the previ-
ous steps, α1, . . . ,α4 are sought using the minimal simplification criterion. As the group
approach, applied earlier for the case of two parameters, is not suitable in the case under
investigation, the analytical approach will be used here. In what follows, the exponents
in each row of (7.4) are compared by means of different methods. It is also required that
the equal exponents should not exceed the third exponent for a given row. As a result, the
following system of algebraic equations and inequalities is obtained:

2α3 +α4 = 3α4 ≤ α1 +α2,

2α3 +α4 = α1 +α2 ≤ 3α4,

3α4 = α1 +α2 ≤ 2α3 +α4,

α1 = α3 ≤ α4,

α1 = α4 ≤ α3,

α3 = α4 ≤ α1,

α2 = α3 ≤ α4,

α2 = α4 ≤ α3,

α3 = α4 ≤ α2.

(7.5)

Minimal simplification of (7.1) is associated with the cases when, in the simplified
equations, a maximal number of terms remain (and the number of neglected terms is
possibly small). That means that in order to find four quantities α1, . . . ,α4, the largest
possible number of equations out of the nine equations in (7.5) should be considered,
which corresponds to the largest number of the terms that are taken into account.
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Since all (7.5) are homogeneous, the maximal number of linearly independent equa-
tions that can be used to reach a nonzero solution is equal to three. On choosing three
linearly independent equations, a solution with the sign defined by inequalities and accu-
racy up to an arbitrary multiplier is obtained. A procedure concerning various variants
of the minimal simplification search is reduced to a choice involving all possible sets of
three equations with their solutions, formed from nine equations (7.5). Although the to-
tal number of such sets equals C3

9 = 84, the actual number of different variants is equal to
eight. There are a few obvious reasons for this. First of all, in many cases, various three
equation sets give the same solutions. Moreover, some of the sets include linearly depen-
dent equations, while some others do not satisfy the required inequalities. We consider
the solutions satisfying all the mentioned requirements. Since these solutions are found
with accuracy up to a possible real multiplier, the smallest digital values of quantities
α1, . . . ,α4 yield integer values of the components included in (7.4):

(1)

α1 = 1, α2 = 2, α3 = 1, α4 = 1. (7.6)

This case corresponds to the following estimations of weights of the variables:

Y < X ∼ u∼ v < 1. (7.7)

(7.4) for these values of exponents is of the form

3,3,3, 1,1,1, 2,1,1. (7.8)

When the first term in the third equation is neglected, the following simplified equa-
tions are obtained:

3u2v+ v3−√2XY = 0,

X = u+ v√
2

, 0=−u+ v.
(7.9)

This system of equations is invariant with respect to the transformations

X = δX∗, Y = δ2Y∗, u= δu∗, v = δv∗. (7.10)

The invariants of transformations (7.10) are as follows:

z1 = Y

X2
, z2 = u

X
, z3 = v

X
. (7.11)

In the transition to invariants, (7.9) acquire the form

3
(
z2
)2
z3 +

(
z3
)3−√2z1 = 0; 1= z2 + z3√

2
, 0=−z2 + z3. (7.12)
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Therefore, for simplified equations (7.9), occurrence of an additional one-parameter
extension group, not present in exact equations (7.1), is the simplification criterion and
allows transition from four quantities X , Y , u, v to three quantities z1, z2, z3.

Equation (7.12) has the following solution:

z1 = 1, z2 = z3 = 1√
2

, Y = X2. (7.13)

(2)

α1 = 2, α2 = 1, α3 = 1, α4 = 1. (7.14)

This case is associated with the following weights of variables:

X < Y ∼ u∼ v < 1. (7.15)

(7.4) takes the form

3,3,3, 2,1,1, 1,1,1. (7.16)

The simplified equations read

3u2v+ v3−√2XY = 0,

0= u+ v, Y =−u+ v√
2
.

(7.17)

The extension group is

X = δ2X∗, Y = δY∗, u= δu∗, v = δv∗, (7.18)

and the invariants are of the form

z1 = X

Y 2
, z2 = u

Y
, z3 = v

Y
. (7.19)

Expressed in terms of the invariants, the equations are as follows:

3
(
z2
)2
z3 +

(
z3
)3−√2z1 = 0, z2 + z3 = 0, 1=−z2 + z3√

2
, (7.20)

and have the following solutions:

z1 = 1, z3 =−z2 = 1√
2

, X = Y 2. (7.21)

(3)

α1 = 0, α2 = 0, α3 = 1, α4 = 0. (7.22)
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In this case, the weights of the variables are

u < X ∼ Y ∼ v ∼ 1 (7.23)

and (7.4) reads

2,0,0, 0,1,0, 0,1,0. (7.24)

The simplified equations are

v3−√2XY = 0; X = v√
2

; Y = v√
2

, (7.25)

and a supplemented subgroup has the form

X = X∗, Y = Y∗, u= δu∗, v = v∗. (7.26)

Its invariants are X , Y , and v since (7.25) are already written in the form of invariants.
Their solution yields

X = Y = 1
2

, v = 1√
2
. (7.27)

(The variant v = 0 is not considered since it defined estimation (7.23).)

(4)

α1 =−1, α2 =−1, α3 =−1, α4 = 0. (7.28)

In this case, the weights of the variables are

X ∼ Y ∼ u > v ∼ 1. (7.29)

(7.4) reads

−2,0,−2, −1,−1,0, −1,−1,0. (7.30)

The simplified equations are of the form

3u2v−√2XY = 0, X = u√
2

, Y =− u√
2

, (7.31)

and a supplemented subgroup is

X = δ−1x∗, Y = δ−1y∗, u= δ−1u∗, v = v∗. (7.32)

The invariants are

z1 = Y

u
, z2 = Y

u
, z3 = v, (7.33)
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and the equations expressed in the invariants read

3v−√2z1z2 = 0, z1 = 1√
2

, z2 =− 1√
2
. (7.34)

The solutions are

z1 =−z2 = 1√
2

, v =− 1
3
√

2
. (7.35)

Note that all the solutions obtained now have already been obtained before but with
the use of a different system of equations; here they are determined under one unique
approach.

Only four out of the eight choices of parameters α1, . . . ,α2 have been discussed so far.
Attained formally, the choices correspond to the minimal simplification of (7.1). We con-
sider now the remaining four possibilities.

(5)

α1 = 1, α2 = 1, α3 = 1, α4 = 1, X ∼ Y ∼ u∼ v < 1,

3,3,2, XY = 0,

1,1,1, X = u+ v√
2

,

1,1,1, Y =−u+ v√
2
.

(7.36)

First of all, simplified equations (7.36) possess two solutions: X = 0 and Y = 0. So-
lution Y = 0 reduces the problem to case (1) and to (7.9) in the second approximation.
Solution X = 0 reduces the problem to case (2) and to (7.17). Thus, the fifth case yields
the results studied earlier assuming a less suitable form, and requiring, in addition, the
application of the successive approximation procedure.

(6)

α1 =−1, α2 =−1, α3 =−1, α4 =−1, X ∼ Y ∼ u∼ v > 1,

−3,−3,−2, 3u2v+ v3 = 0,

−1,−1,−1, X = u+ v√
2

,

−1,−1,−1, Y =−u+ v√
2
.

(7.37)

The first equation in (7.37) possesses only one real solution v = 0, but it does not
satisfy the asymptotic estimations. No more real solutions either to this equation or to
the whole system exist.
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(7)

α1 =−1, α2 =−2, α3 =−1, α4 =−1, Y > X ∼ u∼ v > 1,

−3,−3,−3, 3u2v+ v3−√2XY = 0,

−1,−1,−1, X = u+ v√
2

,

−2,−1,−1, Y = 0.

(7.38)

The first equation in (7.38), with the third one taken into account, coincides with the
first equation in (7.37). Consequently, all the earlier results hold.

(8)

α1 =−2, α2 =−1, α3 =−1, α4 =−1, X > Y ∼ u∼ v > 1,

−3,−3,−3, 3u2v+ v3−√2XY = 0,

−2,−1,−1, X = 0,

−1,−1,−1, Y =−u+ v√
2
.

(7.39)

This is again a particular case of variant (6).
To conclude, the last four variants studied do not provide any additional information

in comparison to the first four cases.

8. Procedures of successive approximations

In order to improve the results obtained earlier, a procedure of successive approximations
will be applied. Considering (4.4), X and Y are presented in the form

X = X1 +X2, Y = Y1 +Y2. (8.1)

We introduce the transformations

X1 = δα1X∗1 , X2 = δα1+1X∗2 , Y1 = δα2Y∗1 , Y2 = δα2+1Y∗2 , (8.2)

and require satisfaction of the following relations:

X∗1 ∼ 1, X∗2 ∼ 1, Y∗1 ∼ 1, Y∗2 ∼ 1. (8.3)

From (7.1), one obtains

X = δα1X∗1 + δα1+1X∗2 , Y = δα2Y∗1 + δα2+1Y∗2 . (8.4)

Observe that, in accordance with (7.3), the second terms in the expressions for X and
Y are of one order lower than the first terms.

Substituting (8.4) into (4.4), one arrives at

(
δα1X∗1 + δα1+1X∗2

)3
+
(
δα2Y∗1 + δα2+1Y∗2

)3− (δα1X∗1 + δα1+1X∗2
)(
δα2Y∗1 + δα2+1Y∗2

)= 0.
(8.5)
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Further investigation is carried out for fixed values of α1 and α2. The values of α1, α2,
that earlier led to the smallest simplification of (4.4), are applied, and the study focuses
on the cases that provided the best results on axes X , Y .

(i) α1 = 1/3, α2 = 2/3. Equation (8.5) has the form

(
δ1/3X∗1 + δ4/3X∗2

)3
+
(
δ2/3Y∗1 + δ5/3Y∗2

)3− (δ1/3X∗1 + δ4/3X∗2
)(
δ2/3Y∗1 + δ5/3Y∗2

)= 0.
(8.6)

Performing the operations of involution and multiplication and leaving only the terms
with δ and δ2, one arrives at

δ
(
X∗1
)3

+ 3δ2(X∗1 )2
X∗2 + δ2(Y∗1 )3− δX∗1 Y

∗
1 − δ2X∗1 Y

∗
2 − δ2X∗2 Y

∗
1 = 0. (8.7)

The following splitting with respect to δ is introduced:

δ :
(
X∗1
)3−X∗1 Y

∗
1 = 0,

δ2 : 3
(
X∗1
)2
X∗2 +

(
Y∗1
)3−X∗1 Y

∗
2 −X∗2 Y

∗
1 = 0.

(8.8)

In each equation in (8.8), the splitting procedure has kept the terms resulting from
transformation (8.2). Thus, (8.8) are invariant with respect to transformations (8.2) that,
for the considered values of α1, α2, have the form

X1 = δ1/3X∗1 , X2 = δ4/3X∗2 , Y1 = δ2/3Y∗1 , Y2 = δ5/3Y∗2 . (8.9)

The invariance makes it possible to return, through (8.8), from the transformed vari-
ables to the initial ones:

X3
1 −X1Y1 = 0,(

3X2
1 −Y1

)
X2−X1Y2 +Y 3

1 = 0.
(8.10)

Thus, as a result of application of successive approximations, the equation system
(8.10), invariant with respect to transformations (8.9), is obtained. The associated in-
variants read

z1 = Y1

X2
1

, z2 = X2

X4
1

, z3 = Y2

X5
1

, (8.11)

and hence

Y1 = z1X
2
1 , X2 = z2X

4
1 , Y2 = z3X

5
1 . (8.12)

We recall here the discussion concerning initial equation (4.4) that does not include
any small parameters and all estimations of the equation term weights are carried out
only with the use of the weights of quantities X and Y . A certain analogy can be drawn
between that problem and the procedure of successive approximations that begins from
summation (8.1). No small parameters occur in the summation. However, the second
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Figure 8.1. Variants of two approximation results for a zone in the origin vicinity.

term in each sum should be of one order lower than the first one, which follows directly
from the asymptotical estimations obtained from (8.9) and (8.3) (for δ < 1):

X1 < 1, X2 ∼ X4
1 , Y1 ∼ X2

1 , Y2 ∼ X5
1 . (8.13)

These estimations are automatically satisfied with respect to (8.12) for small values
of X1.

Substituting (8.12) into (8.10), the following equations with respect to invariants are
obtained:

1− z1 = 0,(
3− z1

)
z2− z3 + z3

1 = 0.
(8.14)

Solving the first equation of (8.14), one obtains

z1 = 1=⇒ Y1 = X2
1 , (8.15)

and hence the second equation reads

2z2− z3 + 1= 0. (8.16)

To solve this equation with two unknowns, express z3 through z2 to receive

z3 = 2z2 + 1=⇒ X2 = z2X
4
1 , Y2 =

(
2z2 + 1

)
X5

1 . (8.17)

An application of the results of two approximations yields an equation that describes
the curve parametrically by means of parameter X1, and the shape of the curve depends
on z2. In Figure 8.1, the curve governed by (4.4) is determined by the first approximation
(two parabolas denoted by 1), by two curves constructed with respect to (8.17) for z2 = 0,
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and by two curves for z2 = −0.7. Note that the curve corresponding to z2 = 0 approxi-
mates the considered curve better that the parabola. However, it is unable to approximate
the loop “bending” since, for z2 = 0, quantity X1 overlaps with X , and the improved de-
pendence Y = Y(X) is obtained. The latter gives a unique value of Y for each value of
X . For z2 = −0.7, parametric equations (8.17) allow a description of the loop bending
yielding much more suitable results:

Y = Y1 + z2Y
4
1 , X = Y 2

1 +
(
2z2 + 1

)
Y 5

1 . (8.18)

The corresponding curves are presented in Figure 8.1. Two variants of successive ap-
proximations using (4.4) are considered taking into account those simplification cases
that yielded better results in comparison to (6.2). We now consider the cases that are
more accurately approximated by (6.2).

For this purpose, represent u and v in the form

u= u1 +u2, v = v1 + v2. (8.19)

Introduce the transformations

u1 = δα1u∗1 , u2 = δα1+1u∗2 , v1 = δα2v∗1 , v2 = δα2+1v∗2 , (8.20)

and assume the following relations to be satisfied:

u∗1 ∼ 1, u∗2 ∼ 1, v∗1 ∼ 1, v∗2 ∼ 1. (8.21)

From (8.19), one obtains

u= δα1u∗1 + δα1+1u∗2 , v = δα2v∗1 + δα2+1v∗2 . (8.22)

Placing (8.22) in (6.2), one arrives at

√
2
[

3
(
δα1u∗1 + δα1+1u∗2

)2(
δα2v∗1 + δα2+1v∗2

)
+
(
δα2v∗1 + δα2+1v∗2

)3
]

+
(
δα1u∗1 + δα1+1u∗2

)2− (δα2v∗1 + δα2+1v∗2
)2 = 0.

(8.23)

Consider now fixed values of α1 and α2.

(ii) α1 =−0.5, α2 = 0. Equation (8.23) takes the form

√
2
[

3
(
δ−0.5u∗1 + δ0.5u∗2

)2(
v∗1 + δv∗2

)
+
(
v∗1 + δv∗2

)3
]

+
(
δ−0.5u∗1 + δ0.5u∗2

)2− (v∗1 + δv∗2
)2 = 0.

(8.24)
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Taking into account the involution procedure, multiplication, and keeping only the
terms including δ−1 and δ0, one has

√
2
{

3
[
δ−1(u∗1 )2

v∗1 +
(
u∗1
)2
v∗2 + 2u∗1 u

∗
2 v

∗
1

]
+
(
v∗1
)3
}
− δ−1(u∗1 )2

+ 2u∗1 u
∗
2 −

(
v∗1
)2 = 0.

(8.25)

Splitting with respect to δ gives

δ−1 : 3
√

2
(
u∗1
)2
v∗1 +

(
u∗1
)2 = 0,

δ0 :
√

2
{

3
[(
u∗1
)2
v∗1 + 2u∗1 u

∗
2 v

∗
1

]
+
(
v∗1
)3
}

+ 2u∗1 u
∗
2 −

(
v∗1
)2 = 0.

(8.26)

Equation (8.26) is invariant with respect to the transformations

u1 = δ−0.5u∗1 , u2 = δ0.5u∗2 , v1 = v∗1 , v2 = δv∗2 , (8.27)

which makes it possible to return from the transformed values to the initial ones

3
√

2u2
1v1 +u2

1 = 0,
√

2
[
3
(
u2

1v1 + 2u1u2v1
)

+ v3
1

]
+ 2u1u2− v2

1 = 0.
(8.28)

The invariants of transformations (8.27) are

z1 = v1, z2 = u1u2, z3 = u2
1v2, (8.29)

and hence

v1 = z1, u2 = z2

u1
, v2 = z3

u2
1
. (8.30)

For this case, asymptotical estimations (8.20), (8.21) have the form

u1 ∼ δ−0.5 > 1, u2 ∼ δ0.5 < 1, v1 ∼ 1, v2 ∼ δ < 1. (8.31)

Substituting (8.30) into (8.28), the following equations with respect to invariants are
obtained:

3
√

2z1 + 1= 0,
√

2
[
3
(
z3 + 2z1z2

)
+ z3

1

]
+ 2z2− z2

1 = 0.
(8.32)

Solving the first equation

z1 =− 1
3
√

2
=⇒ v1 =− 1

3
√

2
, (8.33)



A. D. Shamrovskii et al. 439

Y

0

z2 = −0.078

z2 = 0

z2 = 0

z2 = −5.5

X

Figure 8.2. Variants of two approximation results in infinity and on the loop.

and substituting the obtained results for the appropriate quantities in the second equa-
tion, one has

3
√

2z3 = 2
27
=⇒ z3 = 2

81
√

2
. (8.34)

Note that z2 is reduced and remains undefined.
Consequently, in view of (8.30) and (8.19),

u= u1 +
z2

u1
, v =− 1

3
√

2
+

√
2

81u2
1
. (8.35)

For z2 = 0, u1 coincides with u, and for sufficiently large values of u1, the formula for v
gives a deviation of the curve from the asymptote. For nonzero values of z2, (8.35) yields
a parametric equation of the curve with parameter u1. Furthermore, a suitable choice of
z2 may give a better approximation of the curve than that for z2 = 0. The corresponding
results are shown in Figure 8.2:

√
2
[

3
(
δ0.5u∗1 + δ1.5u∗2

)2(
v∗1 + δv∗2

)
+
(
v∗1 + δv∗2

)3
]

+
(
δ0.5u∗1 + δ1.5u∗2

)2− (v∗1 + δv∗2
)2 = 0.

(8.36)

Application of the involution operations, multiplication, and keeping only the terms
including δ0 and δ results in

√
2
[

3δ
(
u∗1
)2
v∗1 +

(
v∗1
)3

+ 3δ
(
v∗1
)2
v∗2
]

+ δ
(
u∗1
)2− (v∗1 )2− 2δv∗1 v

∗
2 = 0. (8.37)

Splitting with respect to δ yields

δ0 :
√

2
(
v∗1
)3− (v∗1 )2 = 0,

δ : 3
√

2
[(
u∗1
)2
v∗1 +

(
v∗1
)2
v∗2
]2

+
(
u∗1
)2− 2v∗1 v

∗
2 = 0.

(8.38)
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Equations (8.38) are invariant with respect to the transformations

u1 = δ0.5u∗1 , u2 = δ1.5u∗2 , v1 = v∗1 , v2 = δv∗2 , (8.39)

and therefore one may return from the transformed variables to the initial ones:

√
2v3

1 − v2
1 = 0,

3
√

2
(
u2

1v1 + v2
1v2
)

+u2
1− 2v1v2 = 0.

(8.40)

The invariants of transformations (8.39) read

z1 = v1, z2 = u2

u3
1

, z3 = v2

u2
1

, (8.41)

and hence

v1 = z1, u2 = u3
1z2, v2 = u2

1z3. (8.42)

Asymptotical estimations (8.20), (8.21), taking the form

u1 ∼ δ0.5 < 1, u2 ∼ δ1.5 < 1, v1 ∼ 1, v2 ∼ δ < 1, (8.43)

are automatically satisfied (see (8.42)) for small values of u1 playing the role z2 of a real
small parameter.

Substituting (8.42) into (8.40), one achieves the following equations with respect to
the invariants:

√
2z1− 1= 0,

3
√

2
(
z1 + z2

1z3
)

+ 1− 2z1z3 = 0.
(8.44)

The solution to the first equation is

z1 = 1√
2
=⇒ v1 = 1√

2
, (8.45)

and, on appropriate substitution with the obtained results, the second equations yields

1√
2
z3 =−4=⇒ z3 =−4

√
2. (8.46)

Quantity z2 does not appear in (8.44) and remains undefined. Taking into account
(8.42) and (8.19), one finally obtains

u= u1 +u3
1z2, v = 1√

2
− 4
√

2u2
1. (8.47)
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Y

0
X

Figure 8.3. The loop shape with respect to the sum of two approximations, with all the best results
taken into account.

Under the assumption z2 = 0, u1 coincides with u and for sufficiently small values of u1

the formula for v describes the bending of the loop top. For nonzero values of z2, (8.47)
yields the curve equation in a parametric form with parameter u1. Again, by a suitable
choice of z2, one may achieve a better approximation of the curve than that for z2 = 0.
The corresponding results are reported in Figure 8.2.

With the matching of all suitable results provided by the procedure of successive ap-
proximations, the exact curve is practically reached. Disadvantageously, it consists of as
many as five parts, two of which are asymptotical, corresponding to large (in modulo)
values of u, another two of which are in the vicinity of the origin of the coordinate sys-
tem, and one part of which is in a neighborhood of the loop top. The corresponding
summarized results are shown in Figure 8.3.

9. Improved variant of successive approximations

The variant of successive approximations described earlier is burdened with an essential
drawback. Namely, some of the parameters (invariants) are sought via visual choice. In
what follows, an improved variant of successive approximations is proposed.

The operations carried out in (8.6) keep the supplemented terms including δ3, and
result in

δ
(
X∗1
)3

+ 3δ2(X∗1 )2
X∗2 + 3δ3X∗1

(
X∗2
)2

+ δ2(Y∗1 )3
+ 3δ3(Y∗1 )2

Y∗2

− δX∗1 Y
∗
1 − δ2X∗1 Y

∗
2 − δ2X∗2 Y

∗
1 − δ3X∗2 Y

∗
2 = 0.

(9.1)

Splitting with respect to the same powers of δ in (8.8) yields additionally

δ3 : 3X∗1
(
X∗2
)2

+ 3
(
Y∗1
)2
Y∗2 −X∗2 Y

∗
2 = 0. (9.2)
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The system composed of three equations (8.8) and (9.2) is invariant with respect to
transformations (8.9). Hence, a transition to untransformed quantities can be realized,
and two equations (8.10) as well as the equation

3X1X
2
2 + 3Y 2

1Y2−X2Y2 = 0 (9.3)

are obtained.
The application of new (8.11) and (8.12) results in two equations (8.14) accompanied

by

3z2
2 + 3z2

1z3− z2z3 = 0. (9.4)

Substituting the solution of the first equation of (8.14) into the second one and into
(9.4), one obtains the following system of equations with respect to z2 and z3:

2z2− z3 + 1= 0, 3z2
2 + 3z3− z2z3 = 0. (9.5)

The reduction of z3 gives the equation

z2
2 + 5z2 + 3= 0. (9.6)

Observe that the smaller (in modulo) root of this equation reads

z2 =−0.69722, (9.7)

which is very close to the one found earlier through the visual choice of z2 =−0.7.
We apply an analogous approach to two procedures of successive approximations con-

structed on the basis of (6.2). In the first one, with the operations carried out in (8.24),
the terms including not only δ−1 and δ0 but also δ are kept:

√
2
{

3
[
δ−1(u∗1 )2

v∗1 +
(
u∗1
)2
v∗2 +2u∗1 u

∗
2 v

∗
1 +2δu∗1 u

∗
2 v

∗
2 +δ

(
u∗2
)2
v∗1
]

+
(
v∗1
)3

+ 3δ
(
v∗1
)2
v∗2
}

+ δ−1(u∗1 )2
+ 2u∗1 u

∗
2 + δ

(
u∗2
)2− (v∗1 )2− 2δv∗1 v

∗
2 = 0.

(9.8)

Splitting with respect to δ yields, apart from the two equations (8.26), the equation

δ : 3
√

2
[

2u∗1 u
∗
2 v

∗
2 +

(
u∗2
)2
v∗1 +

(
v∗1
)2
v∗2
]

+
(
u∗2
)2− 2v∗1 v

∗
2 = 0. (9.9)

This equation is invariant with respect to transformations (8.28). Hence, one may
return to the initial variables

3
√

2
(
2u1u2v2 +u2

2v1 + v2
1v2
)

+u2
2− 2v1v2 = 0. (9.10)

On applying invariants (8.29) besides (8.32) the third equation is obtained:

3
√

2
(
2z2z3 + z2

2z1 + z2
1z3
)

+ z2
2 − 2z1z3 = 0. (9.11)
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Substituting here the solution (8.33) of the first equation of (8.32), one obtains

12z2z3 + z3 = 0=⇒ z2 =− 1
12
=−0.083333. (9.12)

Note that also in this case the obtained value z2 is close to the one obtained earlier
(z2 =−0.078) with the help of a proper choice.

In (8.36) the terms δ0, δ, and δ2 are kept:

√
2
{

3
[
δ
(
u∗1
)2
v∗1 + δ2(u∗1 )2

v∗2 + 2δ2u∗1 u
∗
2 v

∗
1

]
+
(
v∗1
)3

+ 3δ
(
v∗1
)2
v∗2 + 3δ2v∗1

(
v∗2
)2
}

+ δ
(
u∗1
)2

+ 2δ2u∗1 u
∗
2 −

(
v∗1
)2− 2δv∗1 v

∗
2 − δ2(v∗2 )2 = 0.

(9.13)

Splitting with respect to F yields two equations (8.38) and the equation

δ2 : 3
√

2
[(
u∗1
)2
v∗2 + 2u∗1 u

∗
2 v

∗
1 + v∗1

(
v∗2
)2
]

+ 2u∗1 u
∗
2 −

(
v∗2
)2 = 0. (9.14)

It is transformed, using (8.39), to the form

3
√

2
(
u2

1v2 + 2u1u2v1 + v1v
2
2

)
+ 2u1u2− v2

2 = 0, (9.15)

and then (8.41) is received in the form

3
√

2
(
z3 + 2z1z2 + z1z

2
3

)
+ 2z2− z2

3 = 0. (9.16)

Substituting here the solution of the first of equations (8.44), that is, (8.45), one obtains

8z2 + 3
√

2z3 + 2z2
3 = 0. (9.17)

Taking z2 in (8.46) into account, one obtains

8z2 + 40= 0=⇒ z2 =−5. (9.18)

To conclude, again a value close to that obtained via the visual choice is found.

10. Full variant of successive approximations

In order to enable deeper apprehension of all peculiarities of the successive approxima-
tions procedure, its full (general) variant will be rigorously considered.

The quantities occurring in (4.4) are expressed in the form of the series

x =
∞∑
i=1

xi, y =
∞∑
i=1

yi. (10.1)

The following transformations are introduced:

xi = δα1+i−1x∗i , yi = δα2+i−1y∗i (i= 1,2, . . .), (10.2)
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and it is required that they yield satisfaction to the following relations:

x∗i ∼ 1, y∗i ∼ 1 (i= 1,2, . . .). (10.3)

Substituting (10.2) into (10.1), one arrives at

x = δα1

∞∑
i=1

x∗i δ
i−1, y = δα2

∞∑
i=1

y∗i δ
i−1. (10.4)

Consequently, the series composed of the terms with the increasing exponents of small
parameter δ are obtained. If conditions (10.3) are satisfied, then the necessary conditions
of the series convergence are satisfied as well.

Substitution of (10.4) into (4.4) yields

δ3α1

∞∑
i=1

x∗i δ
i−1

∞∑
j=1

x∗j δ
j−1

∞∑
k=1

x∗k δ
k−1 + δ3α2

∞∑
i=1

y∗i δ
i−1

∞∑
j=1

y∗j δ
j−1

∞∑
k=1

y∗k δ
k−1

− δα1+α2

∞∑
i=1

x∗i δ
i−1

∞∑
j=1

y∗j δ
j−1 = 0.

(10.5)

For the purpose of further analysis, (10.5) should be simplified with respect to the
same powers of δ. However, this splitting is carried out for fixed values of α1, α2. We take
the values of α1, α2 considered in the previous sections.

(iii) α1 = 1/3, α2 = 2/3. The values of α1, α2 correspond to the following form of
(10.5):

∞∑
i=1

∞∑
j=1

∞∑
k=1

x∗i x
∗
j x
∗
k δ

i+ j+k−3 +
∞∑
i=1

∞∑
j=1

∞∑
k=1

y∗i y
∗
j y

∗
k δ

i+ j+k−2−
∞∑
i=1

∞∑
j=1

x∗i y
∗
j δ

i+ j−2 = 0. (10.6)

The splitting yields

∑
i+ j+k=p+2

x∗i x
∗
j x
∗
k +

∑
i+ j+k=p+1

y∗i y
∗
j y

∗
k −

∑
i+ j=p+1

x∗i y
∗
j = 0 (p = 1,2, . . .). (10.7)

In the above, in each term the summation is carried out with respect to all values of
indices i, j, k up to p+ 1 or p+ 2.

Each of equations (10.7) is obtained via extraction, from (10.6), of the terms obtained
as a result of transformations (10.2). Consequently, (10.7) are invariant with respect to
transformations (10.2) for chosen values of α1, α2, that is, the following transformations
are applied:

xi = δi−2/3x∗i , yi = δi−1/3y∗i (i= 1,2, . . .). (10.8)

This variance makes it possible to return in (10.7) from the transformed quantities to
the initial ones:

∑
i+ j+k=p+2

xixjxk +
∑

i+ j+k=p+1

yi y j yk −
∑

i+ j=p+1

xi y j = 0 (p = 1,2, . . .). (10.9)
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Therefore, the solution to (4.4) is cast in the form of series (10.1) with the terms sat-
isfying (10.9). Observe that neither the series nor the equations include a formally intro-
duced small parameter δ.

Owing to (10.3), the following asymptotical estimations hold:

xi ∼ δi−2/3, yi ∼ δi−1/3 (i= 1,2, . . .) (10.10)

and, in particular,

x1 ∼ δ1/3. (10.11)

Therefore, the role of a real (not formal) small parameter introduced here is played by
the following quantity:

δ = x3
1 . (10.12)

The invariants of transformations (10.8) are as follows:

Ixi = x2−3i
1 xi, Iyi = x1−3i

1 yi
(
Ix1 = 1; i= 1,2, . . .

)
. (10.13)

Hence

xi = x3i−2
1 Ixi, yi = x3i−1

1 Iyi (i= 1,2, . . .). (10.14)

For constant values of invariants Ixi, Iyi and the chosen small parameter (10.12), rela-
tions (10.10) hold automatically. Thus, the infinite choice of estimations (10.10) follows
from the estimation

x3
1 < 1. (10.15)

That means that giving sufficiently small values x1, one can verify all asymptotical
estimations. The series of the form (10.1) are the series along the increasing exponents of
quantity x3

1.
Substituting (10.14) into (10.9), the following equations with respect to invariants are

obtained:
∑

i+ j+k=p+2

IxiIx j Ixk +
∑

i+ j+k=p+1

IyiIy j Iyk −
∑

i+ j=p+1

IxiIy j = 0 (p = 1,2, . . .). (10.16)

We give some examples of the first approximations:

p = 1 : I3
x1− Ix1Iy1 = 0. (10.17)

It has been assumed that for p = 1 there are no terms of the second sum in (10.16)
corresponding to the equality i+ j + k = p+ 1 for i≥ 1, j ≥ 1, k ≥ 1. Furthermore,

p = 2 : 3I2
x1Ix2 + I3

y1− Ix1Iy2− Ix2Iy1 = 0,

p = 3 : 3I2
x1Ix3 + 3Ix1I

2
x2 + 3I2

y1Iy2− Ix1Iy3− Ix2Iy2− Ix3Iy1 = 0,

p = 4 : 3I2
x1Ix4 + 6Ix1Ix2Ix3 + I3

x2 + 3I2
y1Iy3 + 3Iy1I

2
y2− Ix1Iy4− Ix2Iy3− Ix3Iy2− Ix4Iy1 = 0.

(10.18)



446 Asymptotic-group analysis of algebraic equations

Y (28)

0

(26)(24)

(20)
(26)

(20)

X

(24)

(28)

Figure 10.1. Results of application of many approximations using the standard approach.

A solution to the approximating equation of first order (10.17) is easy to find. In ac-
cordance with (10.13) and (10.14),

Ix1 = 1, Iy1 = 1=⇒ y1 = x2
1 . (10.19)

If only the first approximation is taken, then

x = x1, y = y1, y = x2. (10.20)

This parabolic dependence has already been considered earlier; the corresponding
graph is shown in Figure 10.1.

Substituting Ix1 = 1, Iy1 = 1 into the second-order approximation equation ((10.18),
p = 2), one obtains

2Ix2− Iy2 + 1= 0, (10.21)

which is an equation with two unknowns. To solve this equation as well as the other equa-
tions governing successive approximations obtained eventually, two different approaches
will be considered.

The first approach. Since, in the first approximation, the dependence y = y(x) (10.20) is
found, the successive approximations improve its exactness. Quantity x, playing the role
of the argument, can be improved, that is,

xi = 0, Ixi = 0 (i≥ 2). (10.22)

Then (10.21) yields

Iy2 = 1=⇒ y2 = x5
1 . (10.23)
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Owing to the results of the two approximations, one obtains

x = x1, y = y1 + y2 = x2 + x5. (10.24)

The corresponding graph, together with graph (10.20), is shown in Figure 10.1.
Substituting Ix1 = 1, Iy1 = 1, Ix2 = 0, Iy2 = 1, Ix3 = 0 into the equation of the third

approximation ((10.18), p = 3), one obtains

3− Iy3 = 0=⇒ Iy3 = 3=⇒ y3 = 3x8
1 . (10.25)

The results of the three approximations give

x = x1, y = y1 + y2 + y3 = x2 + x5 + 3x8. (10.26)

The corresponding graph is shown in Figure 10.1.
With the results of the first three approximations taken into account, the equation of

the fourth approximation ((10.18), p = 4) takes the form

12− Iy4 = 0=⇒ Iy4 = 12, y4 = 12x11
1 . (10.27)

The common results of the four approximations are as follows:

x = x1, y = y1 + y2 + y3 + y4 = x2 + x5 + 3x8 + 12x11 (10.28)

and they are shown graphically in Figure 10.1.
Although, with respect to the proposed approach, the procedures of the successive ap-

proximations can be extended, the results obtained so far prove sufficient for analysis.
Comparing the graphs (cf. Figure 10.1) obtained using one, two, three, and four approx-
imations, one can observe that in fact they coincide in a certain neighborhood of the
coordinate system origin and become significantly different with the increase of the dis-
tance from the origin. The reason for this lies in the fact that the series for quantity (10.1)
has a bounded convergence space, inside which the additional new series terms improve
slightly the accuracy, and at the same time outside the boundaries, the computational re-
sults obtained via various numbers of approximations (i.e., the number of series terms)
differ strongly from one another.

It should be emphasized that here the theorem of the series convergence is not for-
mulated and the series radius of convergence is not computed. An image of the bounded
space of the series convergence is obtained somehow in an experimental manner on the
basis of analysis of Figure 10.1. This figure exhibits the reasons for boundness of the con-
vergence space and even shows its dimension, as the initial curve is given in an implicit
form by (4.4) and has the shape of a loop in the neighborhood of the coordinate system
origin.

Moving away from the origin to the right along axis x, a point of loop rotation is
approached. The function y = y(x) cannot describe this rotation since the loop gives
two values of y, while, by assumption, the function y = y(x) is unique. Therefore, the
loop rotation point is a real boundary of the series convergence space for the function
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y = y(x). The distance from the origin to the rotation point along axis x is equal to the
radius of the series convergence. Since the convergence space is symmetric with respect
to the coordinate system origin, therefore to the left from the origin, at a distance larger
than the radius, the series is divergent.

To conclude, the first approach gives good results in the neighborhood of the origin
bounded by the loop dimension, but it is unsuitable for the curve description outside this
space. This corresponds fully with the asymptotical estimations on the basis of which the
applied procedure of successive approximations was constructed (smallness of x).

The second approach. It is possible to obtain more accurate results than those achieved in
the first approach. We turn once more to the approach discussed in the previous section.
Developing both y and x into series, in the second approximation one obtains two ad-
ditional (and sought after) quantities x2, y2 as well as two corresponding new invariants
Ix2, Iy2, but only one new equation ((10.18), p = 2).

In the above, the considerations are reduced to the following observation: part of the
third approximation, in which terms Ix3, Iy3 have been neglected, is added to the second
approximated equation. Taking into account that Ix1 = 1, Iy1 = 1, the following system is
obtained:

2Ix2− Iy2 + 1= 0, 3I2
x2 + 3Iy2− Ix2Iy2 = 0. (10.29)

The first equation in (10.29) yields

Iy2 = 2Ix2 + 1, (10.30)

which, substituted into the second equation, gives the following squared equation:

I2
x2 + 5Ix2 + 3= 0. (10.31)

From the two roots of this equation, the smaller one (in modulo) is taken, that is, the
one nearest to the zero value of Ix2, and corresponding to the first approach:

Ix2 =
√

13− 5
2

=−0.69722. (10.32)

The corresponding value Iy2 is found from (10.30). Owing to (10.14) and (10.1), one
obtains

x = x1 + x2 = x1 + Ix2x
4
1, y = y1 + y2 = x2

1 + Iy2x
5
1 . (10.33)

The results are graphically presented in Figure 10.2 together with the parabola corre-
sponding to the first approximation.

We construct the third approximation. With three terms in series (10.1) being kept,
again two additional sought after quantities x3, y3 together with corresponding invariants
Ix3, Iy3 are obtained. The corresponding equation of the third approximation ((10.18),
p = 3) was already applied in the second approximation in the form of (10.29).



A. D. Shamrovskii et al. 449

Y

(38)

0

(33)

(20)

(33)
(38)

(20)

X

Figure 10.2. Results of one, two, and three approximations within the improved approach.

The part of the third approximation equation that remains reads

3I2
x1Ix3− Ix1Iy3− Ix3Iy1 = 0. (10.34)

In consequence, the equation of the third approximation has been split into two parts,
each of which is separately equal to zero, that is, two equations are obtained instead of
one.

In the equation of the fourth approximation ((10.18), p = 4), the terms with Ix4, Iy4

are neglected to yield

6Ix1Ix2Ix3 + I3
x2 + 3I2

y1Iy3 + 3Iy1I
2
y2− Ix2Iy3− Ix3Iy2 = 0. (10.35)

Finally, taking the results of the first two approximations into account, the following
system of two equations is obtained:

2Ix3− Iy3 = 0,(
6Ix2− Iy2

)
Ix3 +

(
3− Ix2

)
Iy3 + I3

x2 + 3I2
y2 = 0.

(10.36)

Solving the given system of linear equations, one gets

Ix3 =
I3
x2 + 3I2

y2

Iy2− 4Ix2− 6
, Iy3 = 2Ix3. (10.37)

The result of the three approximations is as follows:

x = x1 + x2 + x3 = x1 + Ix2x
4
1 + Ix3x

7
1,

y = y1 + y2 + y3 = x2
1 + Iy2x

5
1 + Iy3x

8
1 .

(10.38)

The corresponding graphs are shown in Figure 10.2, which will be further analyzed. It
is clearly seen that an increase in the number of approximations does not practically yield
any improvement in the accuracy. In other words, from the point of view of accuracy, the
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Figure 11.1. The solution obtained applying two-point Padé approximants.

second approach to the successive approximation procedure is the same as the first one.
The most significant result—a possibility of bending of the approximating curve outside
the loop boundary—is already sufficiently well reported in the second approximation;
further approximations do not offer anything of actual importance.

However, there exist problems when the third and further approximations are re-
quired. In what follows, the importance of the results obtained through the second ap-
proach will be addressed briefly. Beginning from the third approximation equation, each
of the occurring equations is split into two. The first of them often includes all terms
related to previous approximations whereas the second one contains only the quantities
related to a given approximation; moreover, each part separately is equal to zero. The
number of equations becomes twice larger, and for each approximation there appears a
possibility of finding two of the occurring quantities in the form Ixi, Iyi.

Within the problem under discussion, there is no need to consider other variants of the
successive approximation procedure, since, with two approximations taken into account,
the problem becomes reduced to the one considered in Section 9. The applied method,
being a match of the asymptotical and group analyses, divides the curve into characteristic
parts. Each of the parts is associated with a sufficiently exact description. As a result,
one complex curve is divided into (a series of) three simpler ones, each of which, while
possessing its own characteristic properties, describes a certain initial curve.

In conclusion, it should be pointed out that making use of a relatively simple prob-
lem, as an example, an effective method for the complex system investigation, including
decomposition and interactions of separate parts, has been suggested and discussed.

11. Using two-point Padé approximants

It is worth noticing that an application of two-point Padé approximation yields very good
results in this case. Matching the solutions y = x = 0.5, y = −x, y = x2, one obtains the
branch y = x2/(1− x), which is shown in Figure 11.1. By changing x ⇔ y, the second
solution branch is attained. However, vicinity of point (0.5,0.5) requires additional in-
vestigation.
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