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1. Introduction

Kármán [1] introduced an ingenious similarity transformation to study the axisymmet-
ric flow induced by a single rotating disk. Batchelor [2] showed that this transformation
can be used even when the fluid is confined between two parallel disks rotating about a
common axis at different speeds. The solutions that are not axially symmetric were con-
sidered by Berker [3]. He established a one-parameter family of solutions for the flow be-
tween two disks rotating about a common axis with the same angular velocity. Later, Ra-
jagopal [4] obtained asymmetric solutions for the flow due to porous disks rotating with
equal angular velocity about a common axis. Parter and Rajagopal [5] studied Berker’s
problem in the case of rotation at different speeds and rigorously proved that there is a
one-parameter family of solutions when the disks rotate about a common axis or distinct
axes. Lai et al. [6] obtained a numerical solution for the asymmetric flows belonging to
the equations established by Parter and Rajagopal [5]. Later, Lai et al. [7] presented solu-
tions that lack symmetry for the flow in the semi-infinite interval above a single rotating
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disk. Szeri et al. [8] investigated asymmetric flows above a rotating disk with uniform
suction.

Flow of non-Newtonian fluids between rotating disks has also drawn attention in view
of its applications in engineering practice. Maxwell and Chartoff [9] claimed that it is
possible to determine the complex dynamic viscosity of a viscoelastic fluid if an instru-
ment consisting of two parallel disks rotating with the same angular velocity about two
distinct axes normal to the disks is used. In this domain, Abbott and Walters [10] ob-
tained an exact solution for the flow of the Navier-Stokes fluid. In the case of a viscoelas-
tic fluid, they also carried out a perturbation analysis by expanding in a power series in
the distance between the axes of rotation. Rajagopal and Gupta [11] studied the possi-
bility of existence of asymmetric solutions for the flow of a second-grade fluid between
disks rotating about a common axis with the same speed. Rajagopal [12] showed that
the motion represented by Berker [3] is one with constant stretch history. Rajagopal and
Wineman [13] extended Berker’s work [3] to the case of a special subclass of the K-BKZ.
Motivated by the work of Parter and Rajagopal [5], Huilgol and Rajagopal [14] derived
the equations of motion in the case of an Oldroyd-B fluid. Rajagopal [15] discussed the
existence of solutions that do not possess axial symmetry for viscoelastic fluids in the
case of rotation about a common axis. He also took into account the flow in an orthog-
onal rheometer and then discussed the flow produced by the rotations about a com-
mon axis and distinct axes when two disks have different speeds. Later, Rajagopal [16]
reviewed the articles that study symmetric and asymmetric solutions for both a linearly
viscous fluid and viscoelastic fluids, and discussed questions that remain unanswered.
For a discussion about this subject, we also refer the reader to the book by Truesdell and
Rajagopal [17].

The velocity field employed by Abbott and Walters [10] for the analysis of a viscoelas-
tic fluid was adapted to the problem of flow between disks rotating about noncoaxial axes
at different speeds by Knight [18]. Abbott and Walters considered that the components of
translational velocity are related to each other. Knight took Abbott and Walters’ velocity
field to be a basis and obtained a full numerical solution. By assuming that the inertia
effects are small, he also found an approximate analytical solution. Later, several authors
took into account the perturbation procedure used by Knight and appliedit to their own
problems in order to obtain approximate analytical solutions. Banerjee and Borkakati
[19] studied the heat transfer characteristics of the flow when the disks are maintained
at different temperatures. A. R. Rao and P. R. Rao [20] investigated the flow induced un-
der the application of a uniform magnetic field in the axial direction. P. R. Rao and A.
R. Rao [21] studied the influence of heat transfer under the application of a magnetic
field. P. R. Rao and A. R. Rao [22] examined the flow between two torsionally oscillating
disks with the same frequency. Rao [23] studied the flow between disks performing tor-
sional oscillations with the same frequency in the presence of a uniform axial magnetic
field.

In this paper, the flow of a linearly viscous fluid between two disks rotating with a
small speed difference about distinct axes is investigated. In practice, there may be a small
difference between the angular velocities even when the disks are forced to rotate with the
same angular velocity. This view motivates us to examine this different-speed problem.
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Figure 2.1. Flow geometry.

Following Parter and Rajagopal [5] and Lai et al. [6], an approximate analytical solution
is obtained by employing a perturbation method. The influence of the parameters con-
trolling the flow is carefully examined.

2. Basic equations

Let us consider an incompressible linearly viscous fluid between two disks rotating about
noncoincident axes. The lower and upper disks located at z = ∓h rotate with the angu-
lar velocities Ωl =Ω and Ωu = λΩ about the axes through the points O′′(0,−�,−h) and
O′(0,�,h), respectively (see Figure 2.1). Thus, the appropriate boundary conditions are

u=−λΩ(y− �), v = λΩx, w= 0 at z = h, (2.1a)

u=−Ω(y + �), v =Ωx, w= 0 at z =−h, (2.1b)

where u, v, w represent the velocity components along the x, y, z-directions. In the light
of the above boundary conditions, we seek solutions for the velocity field of the form

u=ΩxF(ζ)−ΩyG(ζ) +Ωh f (ζ), (2.2a)

v =ΩxG(ζ) +ΩyF(ζ) +Ωhg(ζ), (2.2b)

w =ΩhH(ζ), (2.2c)

where ζ = z/h. Using (2.1a)-(2.1b) and (2.2a)–(2.2c), we have

F(1)= 0, G(1)= λ, H(1)= 0,

F(−1)= 0, G(−1)= 1, H(−1)= 0,
(2.3)

f (1)= δλ, g(1)= 0, f (−1)=−δ, g(−1)= 0, (2.4)
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where δ = �/h. Substituting (2.2a)–(2.2c) into the equation of continuity and the Navier-
Stokes equations, we obtain

2F +H′ = 0, (2.5)

F′′ −R(F2−G2 +HF′
)= K , (2.6)

G′′ −R(2FG+HG′)= 0, (2.7)

f ′′ −R(H f ′ +F f −Gg)=A, (2.8)

g′′ −R(Hg′ +Fg +G f )= B, (2.9)

where R=Ωh2/ν is the Reynolds number, ν is the kinematic viscosity of the fluid, a prime
denotes differentiation with respect to ζ , and K , A, B are the unknown constants. Equa-
tions (2.5)–(2.7) and the boundary conditions (2.3) also reflect the axially symmetric
flow problem corresponding to the flow between two rotating coaxial disks. Equations
(2.8)-(2.9) subject to the boundary conditions (2.4) are linear but their solutions depend
on those of (2.5)–(2.7). In order to obtain a solution to (2.8)-(2.9), we need two extra
conditions. For this reason, we follow Lai et al. [6] and consider that the velocity compo-
nents u and v are equal to zero at a point that is defined by (xp, yp) in midplane. Thus, we
have

f (0)=−γ1F(0) + γ2G(0),

g(0)=−γ1G(0)− γ2F(0),
(2.10)

where γ1 = xp/h and γ2 = yp/h.

3. Solution to the problem

As it is well known, the fluid rotates as a rigid body for the induced axisymmetric flow
when two disks rotate about a common axis with the same speed. In this case, the velocity
field takes the form obtained by writing F =H = 0, G= 1, and f = g = 0. In the case of
rotation with equal angular velocity about non-coincident axes, the velocity field reduces
to the form obtained for F = H = 0, G = 1, f = f0, g = g0, as found by Berker [24]. In
the light of this knowledge, let us assume that the upper disk rotates a bit faster than the
lower disk. If we define a parameter given by ε = (Ωu −Ωl)/Ωl (i.e., λ = 1 + ε), we can
expand the unknowns in terms of the parameter ε in the form

F(ζ)= εF1(ζ) +O
(
ε2), G(ζ)= 1 + εG1(ζ) +O

(
ε2),

H(ζ)= εH1(ζ) +O
(
ε2), K = R+ εK1 +O

(
ε2),

f (ζ)= f0(ζ) + ε f1(ζ) +O
(
ε2), g(ζ)= g0(ζ) + εg1(ζ) +O

(
ε2),

A=A0 + εA1 +O
(
ε2), B = B0 + εB1 +O

(
ε2),

(3.1)



H. Volkan Ersoy 5

where K1, A0, A1, B0, B1 are constants. The appropriate conditions are

f0(1)= δ, g0(1)= 0, f0(0)= γ2,

g0(0)=−γ1, f0(−1)=−δ, g0(−1)= 0,
(3.2a)

F1(1)= 0, G1(1)= 1, H1(1)= 0, F1(−1)= 0,

G1(−1)= 0, H1(−1)= 0,
(3.2b)

f1(1)= δ, g1(1)= 0, f1(0)=−γ1F1(0) + γ2G1(0),

g1(0)=−γ1G1(0)− γ2F1(0), f1(−1)= 0, g1(−1)= 0.
(3.2c)

Substituting the expressions (3.1) into (2.5)–(2.9) and equating the coefficients of differ-
ent powers of ε, one obtains

f ′′0 +Rg0 = A0, (3.3a)

g′′0 −R f0 = B0, (3.3b)

F′′1 + 2RG1 = K1, (3.4a)

G′′1 − 2RF1 = 0, (3.4b)

2F1 +H′
1 = 0, (3.4c)

f ′′1 +Rg1 = R
(
H1 f

′
0 +F1 f0−G1g0

)
+A1, (3.5a)

g′′1 −R f1 = R
(
H1g

′
0 +F1g0 +G1 f0

)
+B1. (3.5b)

By defining φ0(ζ)= f0(ζ) + ig0(ζ), (3.3a)-(3.3b) and (3.2a) reduce to

φ′′0 − iRφ0 = A0 + iB0, (3.6a)

φ0(1)= δ, (3.6b)

φ0(0)= γ2− iγ1, (3.6c)

φ0(−1)=−δ. (3.6d)

The solution to (3.6a) satisfying the conditions (3.6b)–(3.6d) is

φ0(ζ)= δ sinhκζ
sinhκ

+

(
γ2− iγ1

)

1− coshκ
(coshκζ − coshκ) (3.7)

or

f0(ζ)= δ P(1)P(ζ) +Q(1)Q(ζ)
P2(1) +Q2(1)

+
γ2T(ζ) + γ1S(ζ)

[
1−D(1)

]2
+E2(1)

, (3.8a)

g0(ζ)= δ P(1)Q(ζ)−Q(1)P(ζ)
P2(1) +Q2(1)

+
γ2S(ζ)− γ1T(ζ)

[
1−D(1)

]2
+E2(1)

, (3.8b)
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where

κ=
√
R

2
(1 + i), P(ζ)= sinh

√
R

2
ζ cos

√
R

2
ζ ,

Q(ζ)= cosh

√
R

2
ζ sin

√
R

2
ζ , D(ζ)= cosh

√
R

2
ζ cos

√
R

2
ζ ,

E(ζ)= sinh

√
R

2
ζ sin

√
R

2
ζ ,

T(ζ)=D2(1)−D(1) +E2(1) +D(ζ)−D(1)D(ζ)−E(1)E(ζ),

S(ζ)= E(ζ)−E(1) +E(1)D(ζ)−D(1)E(ζ),

A0 = R
[
1−D(1)

]2
+E2(1)

{
γ1
[
D(1)−D2(1)−E2(1)

]− γ2
[
E(1)

]}
,

B0 = R
[
1−D(1)

]2
+E2(1)

{
γ1
[
E(1)

]
+ γ2

[
D(1)−D2(1)−E2(1)

]}
.

(3.9)

Using (3.4a)-(3.4b) and (3.2b) with the definition ϕ1(ζ)= F1(ζ) + iG1(ζ), we have

ϕ′′1 − 2iRϕ1 = K1, (3.10a)

ϕ1(1)= i, (3.10b)

ϕ1(−1)= 0. (3.10c)

The solution to (3.10a) subject to the boundary conditions (3.10b)-(3.10c) is

ϕ1(ζ)= i
(
R−K1

)

2Rcoshc
coshcζ +

isinhcζ
2sinhc

+
iK1

2R
, (3.11)

where c =√R(1 + i). Substituting the real part of the solution (3.11) into (3.4c) leads to

H1(ζ)= K1−R
RΔ1

[
Q1(1)I1(ζ)−P1(1)I2(ζ)

]
+

1
Δ2

[
P2(1)I4(ζ)−Q2(1)I3(ζ)

]
+CH1, (3.12)

where CH1 is a constant and

P1(ζ)= cosh
√
Rζ cos

√
Rζ , P2(ζ)= sinh

√
Rζ cos

√
Rζ ,

Q1(ζ)= sinh
√
Rζ sin

√
Rζ , Q2(ζ)= cosh

√
Rζ sin

√
Rζ ,

Δ1 = P2
1(1) +Q2

1(1), Δ2 = P2
2(1) +Q2

2(1),

I1(ζ)= 1
2
√
R

[
cosh

√
Rζ sin

√
Rζ + sinh

√
Rζ cos

√
Rζ
]

,

I2(ζ)= 1
2
√
R

[
cosh

√
Rζ sin

√
Rζ − sinh

√
Rζ cos

√
Rζ
]

,

I3(ζ)= 1
2
√
R

[
cosh

√
Rζ cos

√
Rζ + sinh

√
Rζ sin

√
Rζ
]

,

I4(ζ)= 1
2
√
R

[
sinh

√
Rζ sin

√
Rζ − cosh

√
Rζ cos

√
Rζ
]
.

(3.13)
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Since H1(1) = 0, H1(−1) = 0, I1(1) = −I1(−1), I2(1) = −I2(−1), I3(1) = I3(−1), I4(1) =
I4(−1), we have

K1 = R, CH1 = Q2(1)I3(1)−P2(1)I4(1)
Δ2

, (3.14)

F1(ζ)= Q2(1)P2(ζ)−P2(1)Q2(ζ)
2Δ2

, (3.15)

G1(ζ)= 1
2

+
1

2Δ2

[
P2(1)P2(ζ) +Q2(1)Q2(ζ)

]
, (3.16)

H1(ζ)= P2(1)
[
I4(ζ)− I4(1)

]−Q2(1)
[
I3(ζ)− I3(1)

]

Δ2
. (3.17)

The functions F, G, H depicted the variation with ζ for various values of R and ε in
Figure 3.1 also reflect axial symmetric flow between two disks rotating about a common
axis with a small angular velocity difference.

Introducing φ1(ζ)= f1(ζ) + ig1(ζ) and using (3.5a)-(3.5b) with (3.2c), we have

φ′′1 − iRφ1 = R
(
H1φ

′
0 +F1φ0 + iG1φ0

)
+
(
A1 + iB1

)
, (3.18a)

φ1(1)= δ, (3.18b)

φ1(0)= 1
2

(
γ2− iγ1

)
, (3.18c)

φ1(−1)= 0. (3.18d)

For the sake of simplicity, let us rewrite I3(ζ) and I4(ζ) as follows:

I3(ζ)= b1 coshcζ + b2 coshdζ , I4(ζ)=−b2 coshcζ − b1 coshdζ , (3.19)

where

b1 = 1− i
4
√
R

, b2 = 1 + i
4
√
R

, d =
√
R(1− i). (3.20)

Thus, with the help of the solutions (3.7) and (3.15)–(3.17), (3.18a) transforms to the
following form:

φ′′1 − iRφ1 = ψ1 coshe1ζ +ψ2 coshe2ζ +ψ3 coshe3ζ +ψ3 coshe4ζ

+ψ4 sinhe1ζ +ψ5 sinhe2ζ +ψ6 sinhe3ζ −ψ6 sinhe4ζ

+ψ7 coshκζ +ψ8 sinhκζ +ψ9 sinhcζ +ψ10 +
(
A1 + iB1

)
,

(3.21)
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Figure 3.1. Variations of F(ζ), G(ζ), H(ζ) with ζ (R= 10,20; ε = 0.01,0.03,0.05).
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where

e1 = (
√

2 + 1)
√
R/2(1 + i), e2 = (

√
2− 1)

√
R/2(1 + i),

e3 =
⌊
(
√

2 + 1)− i(√2− 1)
⌋√
R/2, e4 =

⌊
(
√

2− 1)− i(√2 + 1)
⌋√
R/2,

ψ1 = R
(
β1 + q1

)

2
, ψ2 = R

(
β1− q1

)

2
, ψ3 = Rβ2

2
,

ψ4 = R
(
β3 + q2

)

2
, ψ5 = R

(−β3 + q2
)

2
, ψ6 = Rβ4

2
,

ψ7 = R
(
β5 + q5

)
, ψ8 = R

(
β6 + q4

)
, ψ9 = Rq3, ψ10 = Rq6,

β1 =−α1b2 +α5b1, β2 =−α1b1 +α5b2, β3 =−α2b2 +α6b1,

β4 =−α2b1 +α6b2, β5 = α3 +α7, β6 = α4 +α8,

q1 = t1t3, q2 = t1t4, q3 =−t1t5, q4 = t2t3, q5 = t2t4, q6 =−t2t5,

t1 = i

2sinhc
, t2 = i

2
, t3 = δ

sinhκ
, t4 = γ2− iγ1

1− coshκ
, t5 = t4 coshκ,

α1 = P2(1)a1

Δ2
, α2 = P2(1)a2

Δ2
, α3 = −P2(1)a1I4(1)

Δ2
,

α4 = −P2(1)a2I4(1)
Δ2

, α5 = −Q2(1)a1

Δ2
, α6 = −Q2(1)a2

Δ2
,

α7 = Q2(1)a1I3(1)
Δ2

, α8 = Q2(1)a2I3(1)
Δ2

,

a1 = δκ

sinhκ
, a2 = κ

(
γ2− iγ1

)

1− coshκ
.

(3.22)

The solution to (3.21) satisfying the conditions (3.18b)–(3.18d) is

φ1(ζ)=�1 coshκζ + �2 sinhκζ +T1 coshe1ζ +T2 coshe2ζ

+T3 coshe3ζ +T4 coshe4ζ +T5 sinhe1ζ +T6 sinhe2ζ

+T7 sinhe3ζ +T8 sinhe4ζ +T9ζ sinhκζ +T10ζ coshκζ

+T11 sinhcζ +T12−
(
A1 + iB1

)

Ri
,

(3.23)
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where

T1 = ψ1

e2
1−Ri

, T2 = ψ2

e2
2−Ri

, T3 = ψ3

e2
3−Ri

, T4 = ψ3

e2
4−Ri

,

T5 = ψ4

e2
1−Ri

, T6 = ψ5

e2
2−Ri

, T7 = ψ6

e2
3−Ri

, T8 =− ψ6

e2
4−Ri

,

T9 = ψ7

2κ
, T10 = ψ8

2κ
, T11 = ψ9

c2−Ri , T12 = ψ10i

R
,

�1 = 1
coshκ− 1

[
δ

2
−
(
γ2− iγ1

)

2
−
(
Ψ1 +Ψ2

)

2
+Ψ3

]

,

�2 = 1
sinhκ

[
δ

2
−
(
Ψ1−Ψ2

)

2

]

,

A1 + iB1 = Ri

2

[

�1(coshκ+ 1) +

(
Ψ1 +Ψ2

)

2
+Ψ3− δ

2
−
(
γ2− iγ1

)

2

]

,

Ψ1 = T1 coshe1 +T2 coshe2 +T3 coshe3 +T4 coshe4 +T5 sinhe1 +T6 sinhe2

+T7 sinhe3 +T8 sinhe4 +T9 sinhκ+T10 coshκ+T11 sinhc+T12,

Ψ2 = T1 coshe1 +T2 coshe2 +T3 coshe3 +T4 coshe4−T5 sinhe1−T6 sinhe2

−T7 sinhe3−T8 sinhe4 +T9 sinhκ−T10 coshκ−T11 sinhc+T12,

Ψ3 = T1 +T2 +T3 +T4 +T12.

(3.24)

Figure 3.2 shows the variations of the functions f and g that represent the dimen-
sionless x- and y-components of the translational velocity for various values of the pa-
rameters. The conditions obtained by means of the perturbation method, that is, f (1)=
δ(1 + ε), f (0) = γ2(1 + ε/2), f (−1) = −δ, g(1) = 0, g(0) = −γ1(1 + ε/2), g(−1) = 0, are
confirmed by Figure 3.2. It is obvious from Figure 3.2 that the influence of ε on f and g
is small. When the Reynolds number R increases, the curves become flatter in the core,
whereas they have a little more pronounced variation in the region near the disks.

Figures 3.3 and 3.4 illustrate the variations of the dimensionless x- and y-components
of the velocity field with the position, respectively, and reveal the flow produced by the
rotation of two disks with nearly the same angular velocity about distinct axes. The
conditions u(1) = (−y + δ)(1 + ε), u(0) = (−y + γ2)(1 + ε/2), u(−1) = −(y + δ), v(1) =
x(1 + ε), v(0)= (x− γ1)(1 + ε/2), v(−1)= x, which are obtained by the use of the pertur-
bation method, are clearly seen in Figures 3.3 and 3.4, where x = x/h, y = y/h, u= u/Ωh,
v = v/Ωh.

4. Discussion and conclusions

When two disks rotate about distinct axes with the same angular velocity, the flow is a
result of superposition, in each z = constant plane, of a rigid body rotation with the same
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Figure 3.4. Dependence of v on x, y, ζ (R= 10; ε = 0.01; δ = 0.05; γ1 = 0.004; γ2 = 0.008).
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angular velocity about the vertical axis passing the origin and a rigid body translation
that changes from plane to plane. In this case, it is clear that there is no flow perpendic-
ular to the disks. If there is a difference between the angular velocities of the disks, the
flow is a result of superposition, in each z = constant plane, of the Kármán flow and a
rigid body translation that is different from plane to plane (see Lai et al. [6]). The ro-
tation at different speeds causes a flow in the z-direction, which is a consequence of
the Kármán flow. The equations governing the flow are the nonlinear Kármán equa-
tions and the linear equations whose coefficients include the solution to the Kármán
equations. However, the boundary conditions are missing for linear equations. In or-
der to overcome this difficulty, Lai et al. [6] proposed a parameter characterizing the
stagnation points defined by u = v = 0 in midplane. In this paper, we follow the same
way and introduce two parameters defined as γ1 = xp/h and γ2 = yp/h, where xp and yp
are the coordinates at which the velocity components u and v in midplane are equal to
zero.

The solution to the problem is obtained by means of a perturbation analysis. From a
theoretical point of view, such solutions are very practical since the effects of successive
terms in the perturbation expansion decrease very rapidly. Since our perturbation anal-
ysis is valid only for small values of ε, the variation of ε is limited to a range from 0.0 to
0.05.

The effects of parameters on the velocity field are examined in detail. The conclusions
which are drawn from this analysis can be summarized as follows.

(i) The dimensionless velocity components u and v are strongly dependent on y and
x, respectively. The effect of eccentricity is noticeable for small values of x and y,
but gets progressively weaker as x and y increase.

(ii) The dimensionless velocity components u and v depend strongly on γ2 and γ1,
respectively.

(iii) Since the eccentricity is defined along the y-axis, the influence of the eccentricity
parameter δ on u is readily observed, but the eccentricity has a weak effect on v.

(iv) The effect of the parameter ε on the flow indicating the translational motion of
rigid body is small. This effect is more pronounced in the region between mid-
plane and the faster disk. In general, an increase in ε leads to an increase in the
velocity components of the fluid.

(v) The axial velocity is the same as that produced for axisymmetric flow of the fluid
between two disks rotating with different speeds; in other words, it is indepen-
dent of δ, γ1, γ2. The fluid flows from the slower rotating disk towards the faster
rotating disk. When the angular velocities are increased at the same rate, the axial
velocity becomes larger. The axial velocity in the core region is nearly uniform for
large Reynolds numbers. Far from the z-axis, the contribution of axial velocity to
the velocity vector is insignificant.

(vi) We take into account the solutions at moderate Reynolds number where the
uniqueness of von Kármán’s solution is guaranteed because there are multiple
solutions at high enough Reynolds number. Increasing Reynolds number R has
a tendency to make the three velocity components flatter in the core region. The
increase of R gives rise to the boundary layers developing on both disks.
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