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A new element with three nodal curvatures has been considered for analysis of the non-
prismatic curved beams by finite element method. In the formulation developed, the
force-curvature relationships in polar coordinate system have been obtained first, then
the curvature of the element has been assumed to have a second-order polynomial func-
tion form and the radial, tangential displacements, and rotation of the cross section have
been found as a function of the curvature accounting for the effects of the cross section
variation. Moreover, the relationship between nodal curvatures and nodal deformations
has been calculated and used for determining the deformations in terms of curvature at
an arbitrary point. The total potential energy has been calculated accounting for bending,
shear, and tangential deformations. Invoking the stationary condition of the system, the
force-deformation relationship for the element has been obtained. Using this relation-
ship, the stiffness matrix and the equivalent fixed loads applying at the nodes have been
computed. The results obtained have been compared with the results of some other refer-
ences through several numerical examples. The comparison indicates that the present for-
mulation has enough accuracy in analysis of thin and thick nonprismatic curved beams.

Copyright © 2007 H. Saffari et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Because of much application of curved beams and arches in different structures, in recent
decades many studies have been conducted for analysis of such beams using finite element
methods, Marquis and Wang [1], Litewka and Rakowski [2, 3], Friedman and Kosmatka
[4]. Finite element analysis of the curved beams using several straight beam elements, or
low-order curved beam elements have been proposed by Mac Neal and Harder [5]; but
the effects of shear and membrane locking exist in their results. Ashwell et al. [6, 7] have



2 Mathematical Problems in Engineering

analyzed the curved beams using two models; in the first model the radial deformation
has been approximated by a third-order polynomial function, but the tangential deforma-
tion by a linear function, and in the second model the shape functions for the cylindrical
shell elements have been used in order to determine the deformations of the curved beam
elements. Comparing the results of two models has indicated that the second model has
been more accurate for thick arches with low displacements. Dawe [8] has introduced
eight different models using different shell element theories. Among the models intro-
duced, the results obtained by using high-order shape functions are more accurate even
though modeling them is more difficult. Krishnan and Suresh [9] have calculated the de-
formation of an arch element by static and dynamic analysis of the arch using a pair of
polynomials of order three that have been guessed, and then they have discussed the error
resulting from eliminating the effect of the shear in determining the natural frequency of
the arches. Babu and Prathap [10] have introduced the radial and tangential displace-
ments and rotation for several models of the thick curved element guessing linear shape
functions. In these models, the error arising from the shear locking has been emphasized.
The relationships for the curved beam element have been determined without the effect
of shear using penalty method by Tessler and Spiridigliozzi [11]; but the relationships of
the proposed model are so complex. Stolarski and Belytschko [12] have considered the
membrane locking phenomenon in thin arches with low displacements using high-order
polynomials. The relationships obtained have a significant error in the analysis of thick
arches because of shear and membrane locking.

In recent years, the locking phenomenon has been paid much attention by researchers.
When the element is under bending and elongation of the fibers is restricted, the mem-
brane locking will be produced. On the other hand, if in the element formulation, the
effects of pure bending are considered without implementing the effects of shear, then
the shear locking will be existed. Lee and Sin [13] have presented a three-node element
based upon curvature having constant cross section. They have studied the results of the
deformations for different thickness values through numerical examples. The results ob-
tained indicate that the shear and membrane locking phenomenon has been reduced sig-
nificantly. Raveendranath et al. [14] have introduced a two-node arch element accounting
for shear effects, but they have reported that the results for high thicknesses are with error.
In several references ignoring the membrane effects, the effects of shear in static analysis
of prismatic curved beams have been discussed (Yang and Sin [15], Sheikh [16]). Chen
[17] has studied the effects of shear for loading inside the curved beam plane using cu-
bic technique. In the previous studies carried out by Sinaie and the authors of this paper
[18] considering the relationships proposed by Lee and Sin [13], the high-order curva-
ture shape functions have been used instead of displacement shape functions and then,
the force-deformation relationships have been determined. Sinaie et al. [18] have elimi-
nated the shear and membrane locking in the relationships proposed by Lee and Sin [13]
for prismatic curved beam. In other words, in their work the effects of the shear and tan-
gential deformation and also the effect of the bending moment in the calculation of the
curved element with six nodal curvatures for analysis of thin and thick prismatic beams
have been accounted for, which is the main difference with the method proposed in other
references.
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Figure 2.1. Components of displacement in a typical nonprismatic circular curved beam.

In the present paper, after finding the curvature-strain relationships and the internal
forces in polar coordinate system, guessing a second-order polynomial function for the
element curvature, the shape functions have been determined first. Then, the curvature
at any point of a three-node element has been found based upon the nodes curvatures.
Furthermore, the relationship between the nodal curvature and the nodal displacement
has been found accounting for the effects of the cross section variation using a transform
matrix. The ratio of the moment of inertia to the cross sectional area has been considered
as a function of the arch length. Finally, minimizing the total potential energy, the force-
deformation relationship and the stiffness matrix in local coordinate system have been
found. Moreover, an algorithm for analyzing the nonprismatic curved beams has been
presented. At the end, through three numerical examples, the results of using the method
proposed in this work have been compared with the results of (a) using shell elements
(b) using prismatic curved beam elements (c) exact solution. It has been indicated that
since in the proposed element the shear and membrane deformation effects have been
accounted for, the accuracy for analysis of thin and thick nonprismatic curved beams
has been increased. The simplicity of modeling and high accuracy of the analysis are
the privileges of the proposed method compared to the methods of the other references.
In the other methods, the member must be divided into many elements, while in the
proposed approach the convergence will be achieved with one or two elements only.

2. Formulation of the curved element based upon curvature

The formulation for an element of the nonprismatic curved beam shown in Figure 2.1
will be conducted in four steps. The first step is setting up the basic curvature-displace-
ment equations for an element of the curved beam in polar coordinate system and de-
termining the components of the radial, tangential displacements, and rotation in terms
of curvature considering the variation of the cross sectional area; the second step is de-
termining the shape functions that state the curvature of any point on the element axis
in terms of the curvatures of three nodes adopted, which is done by choosing a second-
order function; the third step is finding a relationship between the nodal curvature at the
three nodes and the nodal displacements at two ends of the element; the fourth step is
calculating the total potential energy considering the effects of the internal membrane
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and shear forces and bending moment. Invoking the stationary condition of the system,
the force-displacement relationship, and then, the stiffness matrix of the member and the
equivalent fixed load vector can be found.

2.1. The basic curvature equations in polar coordinate system. In Figure 2.1, an ele-
ment of nonprismatic circular curved beam having radius R and the arch length L is
shown. The displacement components are the radial displacement, W , the tangential dis-
placement, U , and the rotation, θ. The strain-deformation relationships are as follows
(Timoshenko and Goodier [19]):

ε =U ,s−W

R
, (2.1)

κ= θ,s, (2.2)

γ =W ,s− θ +
U

R
, (2.3)

where ε is the tangential strain, κ is the curvature, γ is the shear strain and the subscript
,s indicates the derivative with respect to the arch length.

The relationship between the internal forces of the element and the strains can be
stated as follows

N = E ·A · ε,
Mb = E · I · κ,

V =G ·A ·n · γ,

(2.4)

where N is the tangential force, Mb is the bending moment, V is the shear force, A and
I are the cross sectional area and the moment of inertia as functions of arch length s,
respectively, n is the shear correction coefficient, E andG are elasticity and shear modulus,
respectively, and κ is the curvature of the deformed beam. On the other hand, setting up
the equilibrium at point s of the element, the following relationships are obtained:

Mb,s +V = 0, (2.5)

V ,s +
N

R
= 0, (2.6)

N ,s +
Mb,s

R
= 0. (2.7)

Substituting (2.4) into (2.5) and (2.6), the relationships between strains and curvature
can be found as follows:

ε = R

A
· (I,ssκ+ 2I,sκ,s + κ,ssI

)
,

γ =− E

G ·A ·n ·
(
I,sκ+ κ,sI

)
.

(2.8)
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Substituting (2.8) into (2.1) to (2.3), the displacement-curvature relationships are ob-
tained as follows:

(
I,sκ+ κ,sI

)=−G ·A ·n
E

·
(
W,s− θ +

U

R

)
, (2.9)

(
I,ssκ+ 2I,sκ,s + κ,ssI

)= A

R
·
(
U

′s−W

R

)
. (2.10)

From (2.2), the rotation θ in terms of the curvature κ can be calculated as follows:

θ =
∫ s

0
κ ·dS+Cθ (2.11)

in which the constant Cθ can be computed based upon the end conditions. Moreover, the
following differential equation which states W in terms of κ will be obtained by eliminat-
ing U in (2.9) and (2.10):

W,s +
1
R2
·W =− 1

A

(
(
I,ssκ+ 2I,sκ,s + κ,ssI

) ·
(

1 +
E

G ·n
))

+
(
I,sκ+ κ,sI

) ·
(

A,s ·E
G ·A2 ·n + κ

)
.

(2.12)

The solution of the differential equation (2.12) consists of general solution, Wh, and par-
ticular solution, WP , as follows:

W =Wh +WP , (2.13)

Wh = CW1 ·Cos
s

R
+CW2 · Sin

s

R
, WP =WP(κ,I ,A,s). (2.14)

The constants CW1 and CW2 will be calculated applying the end boundary conditions.
WP depends on A, I , and κ which all are functions of arch length s. Substituting W from
(2.13) into (2.9), the tangential displacement U can also be computed as follows:

U = R ·
(
θ−W,s− E

G ·A ·n ·
(
I,sκ+ κ,sI

)
)
. (2.15)

2.2. Determining the relationship between the curvature at an arbitrary point and
Nodal curvatures. In this section, guessing a second-order polynomial function for cur-
vature and conducting some regular matrix operations, the shape function and also the
curvature function, κ, at any point will be obtained. Therefore, the relationship of the
element curvature at any arbitrary point in terms of the curvatures of three nodes will
be found (see Figure 2.2). As indicated in Figure 2.2, the curvature has been considered
at three points of the element, so, the curvature function has three unknown constants.
Hence,

κ=
3∑

i=1

Ci · si−1. (2.16)



6 Mathematical Problems in Engineering

L
κ3

κ2

κ1

t
m

R

rS

Figure 2.2. Nodal curvatures and applied loads in a 3-node nonprismatic circular curved beam.

Matrix form of the function (2.16) arises from multiplying geometrical vector [g] by
constant coefficients vector [C] as follows:

κ= [g] · [C], g =
[

1 s s2
]

, CT =
[
C1 C2 C3

]
. (2.17)

If Q is the vector indicating the curvature at three nodes as shown in Figure 2.2, then

Q =
[
κ1 κ2 κ3

]T
,

Q= [h] · [C], h= {gi
}

, i=
[

1 2 3
]

,
(2.18)

where gi is g at point i. So, the relationship between the nodal curvature and the curvature
at an arbitrary point is stated as follows:

κ= g ·h−1 ·Q (2.19)

or

κ= Fκ ·Q, (2.20)

Fκ = g ·h−1. (2.21)

The components of the shape functions vector concerning the curvature function, Fκ, are
shown as follows:

Fκ =
[
f κ1 f κ2 f κ3

]
. (2.22)

The displacement components of the element (radial, tangential, and rotation) will be
computed by substituting the curvature function from (2.20) into (2.11), (2.13), and
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Figure 2.3. Components of displacements at edge nodes.

(2.15) as follows,

θ = Fθ ·Q+Cθ , (2.23)

Fθ =
[
f θ1 f θ2 f θ3

]
, (2.24)

W = FW ·Q+CW1 ·Cos
s

R
+CW2 · Sin

s

R
, (2.25)

FW =
[
f W1 f W2 f W3

]
, (2.26)

U = FU ·Q+R ·Cθ +CW1 · Sin
s

R
−CW2 ·Cos

s

R
, (2.27)

FU =
[
f U1 f U2 f U3

]
. (2.28)

Fκ, Fθ , FW , and FU can be found having A and I functions. The values of these functions
for the case that the cross section of the beam is rectangular such that its height is a
function of arch length s can be found in Appendix A.

2.3. Determining the relationships between the Nodal curvatures and the Nodal dis-
placements. Using (2.23), (2.25), and (2.27), the components of the radial and tangen-
tial displacements and rotation at node 1 of the curved beam element with 6 degrees of
freedom, as shown in Figure 2.3, are

W1 = FW |0 ·Q+CW1, (2.29)

U1 = FU |0 ·Q+R ·Cθ −CW2, (2.30)

θ1 = Fθ|0 ·Q+Cθ = Cθ. (2.31)

The components of the radial and tangential displacements and rotation at node 2 of the
element are (see Figure 2.3)

W2 = FW |L ·Q+CW1 ·Cos
L

R
+CW2 · Sin

L

R
, (2.32)

U2 = FU |L ·Q+R ·Cθ +CW1 · Sin
L

R
−CW2 ·Cos

L

R
, (2.33)

θ2 = Fθ|L ·Q+Cθ. (2.34)
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Eliminating the constants CW1 from (2.29) and (2.32), CW2 from (2.30) and (2.33), and
Cθ from (2.31) and (2.34) results in the following equations:

W2−
(
W1 ·Cos

L

R
−U1 · Sin

L

R
+ θ1 ·R · Sin

L

R

)

=
(
HWP|L−HWP|0 ·Cos

L

R
+HU |0 · Sin

L

R

)
·Q,

U2−
(
W1 · Sin

L

R
+U1 ·Cos

L

R
+ θ1 ·R

(
1−Cos

L

R

))

=
(
HU |L−HWP|0 · Sin

L

R
+HU |0 ·Cos

L

R

)
·Q,

θ2− θ1 = Fθ|L ·Q.

(2.35)

If (2.35) are rearranged in the matrix form, the following relationships between nodal
displacements and nodal curvatures will be obtained:

Q = T ·Δ,

Δ= [W1,U1,θ1,W2,U2,θ2
]T

,
(2.36)

where

T = T−1
κ ·TU ,

Tκ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

FW |L ·Q−FW |0 ·Cos
L

R
+FU |0 · Sin

L

R

FU |L ·Q−FW |0 · Sin
L

R
+FU |0 ·Cos

L

R
Fθ|L

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

TU =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Cos
L

R
Sin

L

R
−R · Sin

L

R
1 0 0

−Sin
L

R
−Cos

L

R
−R ·

(
1−Cos

L

R

)
0 1 0

0 0 −1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.37)

The value of the curvature at any arbitrary point of the element in terms of nodal dis-
placements can be calculated as follows:

κ= Fκ ·T ·Δ. (2.38)

Moreover, substituting (2.38) into (2.23), (2.25), and (2.27), the values of radial and tan-
gential displacements and rotation at any arbitrary point of the element in terms of nodal



H. Saffari et al. 9

displacements can be computed as follow:

θ = (Fθ ·T +Fθ0
) ·Δ, (2.39)

W =
((

FW −FW |0 Cos
s

R
+FU |0 Sin

s

R

)
·T +FW0

)
·Δ, (2.40)

U =
((

FU −FW |0 Sin
s

R
−FU |0 Sin

s

R

)
·T +FU0

)
·Δ (2.41)

in which FW |0 and FU |0 indicate the values of FW and FU at s= 0, respectively. The values
of Fθ0, FW0, and FU0 can be found in Appendix B.

2.4. The equilibrium equation of the finite element and force-deformation relation-
ship. The total potential energy of a curved element as shown in Figure 2.2 accounting
for the effects of tangential and shear forces and bending moment can be presented as
follows:

Π=Ue−
(∫ L

0
mθ ·ds+

∫ L

0
rW ·ds+

∫ L

0
tU ·ds

)
(2.42)

in which r and t are the radial and tangential distributed external loads, respectively, and
m is the distributed bending moment as indicated in Figure 2.2. Furthermore, Ue is the
strain energy which can be found as follows:

Ue = 1
2
E ·
∫ L

0
I(s) · κ2ds+

1
2
G ·n ·

∫ L

0
A(s) · γ2ds+

1
2
E ·
∫ L

0
A(s) · ε2ds. (2.43)

The components of the radial and tangential displacements and the rotation from (2.39),
(2.40), and (2.41), respectively, will be substituted into (2.8) first, and then, the result will
be inserted in (2.43). So, accounting for the effects of the membrane, shear and bending
deformations in the total potential energy, the shear and membrane locking will be elim-
inated and it is expected that such element can be used for analysis of the thick beams
besides the thin beams. Now, the stationary condition of the system, δΠ= 0, is invoked
using Mathematica Software [20]. and the result is arranged in the force-deformation
relationship as follows:

[K] · [Δ]= [P] (2.44)

in which [K] is the stiffness matrix and can be found as follows:

[K]= TT ·
[
E
(∫ L

0
I(s) ·FT

κ ·Fκds+
∫ L

0
α ·FT

κ,s ·Fκ,sds+
∫ L

0
β ·FT

κ,ss ·Fκ,ssds
)]
·T ,

α= f (s) ·R2, β = E

G ·n · f (s),

(2.45)

where f (s)= I/A (the ratio of the moment of inertia to the cross sectional area as a func-
tion of the arch length, s). [P] is the resultant of the forces acting on each node which can
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Figure 3.1. A quarter circular nonprismatic cantilever circular arch.

be found from the following relationship:

[P]=
∫ L

0
STW · r ·ds+

∫ L

0
STU · t ·ds+

∫ L

0
STθ ·m ·ds. (2.46)

The values of SW , SU , and Sθ can be found in Appendix B.

3. Numerical studies

In this section, the formulation presented in this paper has been applied to three nonpris-
matic curved beams with different characteristics and different end conditions, and the
results obtained have been compared to the results of the finite element model with shell
elements, to the results of the energy method, and also to the results presented by Lee
and Sin [13]. The first example concerns a curved beam in the form of a quarter of a ring
having one end clamped and a concentrated load applied on the other end. The second
example considers a pinched ring under concentrated symmetric loading. The third ex-
ample is a simply supported curved beam under a concentrated load. The three examples
are shown in Figures 3.1, 3.2, and 3.4, respectively.

3.1. Example 1: a quarter of a ring. A curved beam in the form of a quarter of a ring,
as shown in Figure 3.1, has been considered for Example 1. Its fixed end is setting on the
origin of the coordinate system and the external load is applying on its free end. In this
example, the cross section of the beam is rectangular having width equal to unity. The
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Figure 3.2. A pinched nonprismatic ring with a load of 2P and modeled for 1/4 circular arch.

height of the cross section, H(s), is a linear function of the arch length, s, as follows:

H(s)=H1 ·
(

1− s

L

)
, (3.1)

L= R · π
2

, (3.2)

where H1 is the height of the section at its fixed end and L is the length of the curved
beam. This example has been solved for different ratios of H1/R in order to indicate
the capability of the formulation developed which considered the high effects of shear
deformation for thin and thick beams. For better comparison, four methods have been
used for solving this example as follows.

In the first method, the displacements have been found using Castigliano’s theorems
through the following processes.

The internal forces of the ring are

Mb(s)=−P ·R ·Cos(θ),

V(s)= P · Sin(θ),

N(s)=−P ·Cos(θ).

(3.3)

On the other hand, the strain energy of the curved beam element is

Ue = 1
2

∫ L

0

{
N · ε+Mb · κ+V · γ} ·dS. (3.4)
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Radial displacement can be obtained using Mathematica Software [20] by taking ds =
R ·dθ and derivation of the strain energy as

W2 = ∂Ue

∂P
. (3.5)

Then, the radial displacement based upon Castigliano’s method without accounting for
shear and membrane effects have been calculated as follows:

W ′
2 =

((− 24LP · (R2 + 8L2 Cos(4L/R)

· CosIntegral (−4L/R)− 8L2 Sin(4L/R)

· SinIntegral (−4L/R)
))/(

b ·E ·H13)

+
(
48LP · (R2 +R2 Cos(2L/R) + 4L2 Cos(4L/R)

· CosIntegral (−2L/R) + 2LRSin(2L/R)− 4L2 Sin(4L/R)

· SinIntegral (−2L/R)
))
/(b ·E ·H13))/2.

(3.6)

The redial displacements by Castigliano’s method accounting for shear and membrane
is divided by the results obtained from Castigliano’s method which does not account
for shear and membrane effects. These ratios are indicated by WC

2 /W̃
C
2 and shown in

Table 3.1.
Similarly, the tangential displacement and the rotation have been computed and the

results have been divided by the results obtained using Castigliano’s method which does
not account for shear and membrane deformations effects. These ratios are indicated by

UC
2 /Ũ

C
2 for tangential displacement and by θC2 /θ̃

C
2 for rotation.

In the second method, the ring has been modeled by one element based upon the
formulation developed in this paper and then, the displacements obtained have been di-
vided by the amounts obtained using Castigliano’s method which does not account for
shear and membrane deformations effects. These ratios are indicated by WF

2 /W̃
C
2 for ra-

dial displacement, by UF
2 /Ũ

C
2 for tangential displacement, and by θF2 /θ̃

C
2 for rotation.

In the third method, the ring has been modeled and analyzed by ANSYS [21] using
one hundred elements. The number of elements has been taken high in order to increase
the accuracy for the thick elements. Then, the displacements obtained have been divided
by the amounts obtained using Castigliano’s method which does not account for shear
and membrane deformations effects. These ratios are indicated by WS

2 /W̃
C
2 for radial

displacement, by US
2 /Ũ

C
2 for tangential displacement, and by θS2/θ̃

C
2 for rotation.

In the forth method, the ring has been modeled and analyzed using 20 prismatic
curved beam elements as proposed by Lee and Sin [13]. Then, the displacements ob-
tained have been divided by the amounts resulting from Castigliano’s method which does
not account for shear and membrane deformations effects. These ratios are indicated by

WCB
2 /W̃C

2 for radial displacement, by UCB
2 /ŨC

2 for tangential displacement, and by θCB
2 /θ̃C2

for rotation.
As explained, for better comparing and for considering the shear locking and mem-

brane effects, the amounts obtained using all the four above-mentioned methods have
been made dimensionless dividing by the amounts obtained using Castigliano’s method
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Table 3.2. Comparing the radial displacement of nodes 1, 2 in Example 2.

H1/R

Radial displacement ratio of node 1 Radial displacement ratio of node 2

WC
1 /W̃

C
1 WF

1 /W̃
C
1 WS

1 /W̃
C
1 WCB

1 /W̃C
1 WC

2 /W̃
C
2 WF

2 /W̃
C
2 WS

2 /W̃
C
2 WCB

2 /W̃C
2

1/200 1.0000 0.9972 0.9972 0.9972 1.0000 0.9969 0.9969 0.9969

1/100 1.0000 0.9989 0.9989 0.9989 1.0000 0.9985 0.9985 0.9985

1/20 1.0016 0.9991 0.9991 0.9991 1.0016 0.9988 0.9988 0.9988

1/10 1.0096 0.9998 0.9998 0.9998 1.0096 0.9998 0.9998 0.9998

2/5 1.0115 1.0254 1.0284 1.0224 1.0115 1.0222 1.0278 1.0218

1/2 1.0261 1.0445 1.0458 1.0435 1.0261 1.0441 1.0453 1.0428

The superscripts C, F, S, and CB indicate the amounts obtained using Castigliano’s method, the method
developed in this work, using shell element of ANSYS [21] and using the element developed by Lee and Sin [13],
respectively.

W̃C
1 , W̃C

2 are the amounts of radial displacements of nodes 1, 2 resulting from Castigliano’s method which does

not account for shear and membrane effects, respectively.

which does not account for shear and membrane deformations effects, and have been
shown in Table 3.1. So, the effects of the shear and membrane phenomenon on the re-
sults can be easily evaluated and compared.

As it can be seen in Table 3.1, in thin beams, because of shear and membrane defor-
mations effects, the results are close to 1, but in thick beams (i.e., the thickness to radius
ratio more than 1.2) the results are so far from 1. On the other hand, the results obtained
applying the method developed in this paper are so close to the results of analyzing by
ANSYS [21]. That is because of high effects of shear phenomenon, which is one of the
abilities of the element introduced in this work for analyzing the thick beams. The other
point is that in the present method which uses curved beam element with nonprismatic
cross section, just one element has been used for convergence.

3.2. Example 2: a pinched ring. Figure 3.2(a) indicates a pinched ring with nonpris-
matic cross section under two concentrated symmetric loads. Because of symmetry, the
problem has been modeled as a quarter of a ring with the boundary conditions shown
in Figure 3.2(b). It is assumed that the height of the section varies linearly based upon
(3.1). This example has been considered for different ratios of H1/R using four methods,
as explained in the following, and the results are indicated in Table 3.2.

In the first method, the radial displacements at nodes 1 and 2 have been calculated
using Castigliano’s theorems. In the second method, the problem has been modeled using
the formulation developed in this paper and the radial displacements at nodes 1 and 2
have been determined under concentrated load accounting for effects of variation of the
height of the section based upon (3.1). In the third method, the analysis has been done
by ANSYS [21] using 100 SHELL63 elements. Finally, in the fourth method, the ring has
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Figure 3.4. Simply supported thick curved beam.

been modeled and analyzed using 20 prismatic curved beam elements as proposed by Lee
and Sin [13].

The results of the four methods have been made dimensionless dividing by the dis-
placements obtained using Castigliano’s method which does not account for shear and
membrane deformations effects, and compared in Table 3.2. As it can be seen, the dif-
ference between the results and unity indicates the high effects of shear and membrane
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Table 3.3. Comparing the displacement of node 2 in Example 3.

H1/R H1/L WF
2 /W

S
2 θF2 /θ

S
2

1/200 1/100π 0.9999 1.0000

1/100 1/50π 0.9980 1.0000

1/20 1/10π 0.9970 1.0000

1/10 1/5π 0.9890 1.0100

Superscripts F and S indicate the results using 2 curved beam elements (present work) and analysis by ANSYS

[21] using shell elements, respectively.

deformations. The results of applying the method developed in this work have high ac-
curacy although just one element has been used for analysis. Figure 3.3 shows the varia-
tion of the radial displacement component, W , versus the variation of the angle, φ, (see
Figure 3.2), for a curved beam with thickness to radius ratio equal to 1/100 under unit
load using the Castigliano’s method and the method developed in this work. In Figure 3.3,
the accuracy of the method developed in this paper is shown. The maximum error is less
than 0.1%.

3.3. Example 3: simply supported thick curved beam. In this example a simply sup-
ported thick curved beam is loaded as shown in Figure 3.4. The height of the section
varies linearly based upon (3.1). The radial displacement at node 2 accounting for sec-
tion variation under concentrated loading has been computed first using the method
developed in this paper and then, the results have been compared with the results of the
analysis method using SHELL63 element as shown in Table 3.3. As it can be seen, the re-
sults are very close. In this example, the support at node 2 is oblique which can be easily
modeled by the method developed in this paper.

4. Summary and conclusion

In this paper, for analyzing the curved beams with variable moment of inertia, a new ele-
ment has been proposed. In the proposed element, curvature shape functions have been
used instead of displacement shape functions. The displacements of the ends of the ele-
ment have been related to the beam curvature, and the variation of the cross sectional area
has been used in the formulation of the element as a function of the arch length. Then, the
force-displacement relationship has been obtained by invoking the stationary condition
of the system. So, calculating the stiffness matrix and equivalent fixed end forces, a good
approximation for linear analysis of nonprismatic curved beams has been presented. In
this work, accounting for total bending, shear and membrane potential energy, the effect
of the shear locking has been eliminated. As indicated by numerical examples, the pro-
posed method can be used for analyzing both thick and thin beams. Simplicity in mod-
eling the nonprismatic curved beams is one of the privileges of the proposed method. In
the developed formulation, for the solution convergence one or two elements are needed
only. The accuracy of the method is high while the degrees of freedom are low.
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Appendices

A.

f κ1 = 1− 3
s

L
+ 2
(
s

L

)2

f κ2 =−
s

L
+ 2
(
s

L

)2

f κ3 = 4
s

L
− 4
(
s

L

)2

,

f θ1 = s− 3s2

2L
+

2s3

3L2
f θ2 =

s2 · (−3L+ 4s)
6L2

f θ3 =
2(3L− 2s) · s2

3L2
,

f W1 = {R2 · (− 4E ·H12 ·L2 + 2E ·H12 ·R2 + 4E ·H12 ·L · s−E ·H12 · s2

− 4G ·H12 ·L2 ·n+ 12G ·L4 ·n+ 2G ·H12 ·R2 ·n− 48G ·L2 ·R2 ·n
+ 4G ·H12 ·L · s ·n− 36G ·L3 · s ·n−G ·H12 · s2 ·n
+ 24G ·L2 · s2 ·n)}/(12G ·L4 ·n),

f W2 = {R2 · (− 4E ·H12 ·L2 + 2E ·H12 ·R2 + 4E ·H12 ·L · s−E ·H12 · s2

− 4G ·H12 ·L2 ·n+ 2G ·H12 ·R2 ·n+ 48G ·L2 ·R2 ·n+ 4G ·H12 ·L · s ·n
− 12G ·L3 · s ·n−G ·H12 · s2 ·n+ 24G ·L2 · s2 ·n)}/(12G ·L4 ·n),

f W3 = {R2 · (4E ·H12 ·L2− 2E ·H12 ·R2− 4E ·H12 ·L · s+E ·H12 · s2

+ 4G ·H12 ·L2 ·n− 2G ·H12 ·R2 ·n+ 48G ·L2 ·R2 ·n− 4G ·H12 ·L · s ·n
+ 24G ·L3 · s ·n+G ·H12 · s2 ·n− 24G ·L2 · s2 ·n)}/(6G ·L4 ·n),

f U1 = R · (s− (3s2)/(2L) +
(
2s3)/(3L2) +

(
E ·A · (3L− 4s)

)/(
G ·L2 ·n)

+
(
R2 · s · (E ·H12 +G ·H12 ·n− 24G ·L2 ·n))/(6G ·L4 ·n)

+
(
R2 · (− (E ·H12)−G ·H12 ·n+ 9G ·L2 ·n))/(3G ·L3 ·n),

f U2 = (R · (6E ·A ·L3− 2E ·H12 ·L ·R2− 24E ·A ·L2 · s+E ·H12 ·R2 · s
− 2G ·H12 ·L ·R2 ·n+ 6G ·L3 ·R2 ·n+G ·H12 ·R2 · s ·n
− 24G ·L2 ·R2 · s ·n− 3G ·L3 · s2 ·n+ 4G ·L2 · s3 ·n)),

f U3 = (R(− 12E ·A ·L3 + 2E ·H12 ·L ·R2 + 24E ·A ·L2 · s−E ·H12 ·R2 · s
+ 2G ·H12 ·L ·R2 ·n− 12G ·L3 ·R2 ·n−G ·H12 ·R2 · s ·n
+ 24G ·L2 ·R2 · s ·n+ 6G ·L3 · s2 ·n− 4G ·L2 · s3 ·n))/(3G ·L4 ·n).

(A.1)

B.

SW =
(
FW −FW

∣
∣

0 ·Cos
s

R
+FU

∣
∣

0 · Sin
s

R

)
·T +FW0,

SU =
(
FU −FW

∣
∣

0 · Sin
s

R
−FU

∣
∣

0 ·Cos
s

R

)
·T +FU0,

Sθ = Fθ ·T +Fθ0,
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Fθ0 =
[

0 0 1 0 0 0
]

,

FW0 =
[

Cos
s

R
−Sin

s

R
R · Sin

s

R
0 0 0

]
,

FU0 =
[

Sin
s

R
Cos

s

R
R ·
(

1−Cos
s

R

)
0 0 0

]
.

(B.1)
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