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We consider several heat conduction problems for glass lenses with different boundary
conditions. The problems dealt with in Sections 2 to 4 are motivated by the problem of
an airborne digital camera that is initially too cold and must be heated up to reach the
required image quality. The problem is how to distribute the heat to the different lenses in
the system in order to reach acceptable operating conditions as quickly as possible. The
problem of Section 5 concerns a space borne laser altimeter for planetary exploration.
Will a coating used to absorb unwanted parts of the solar spectrum lead to unaccept-
able heating? In this paper, we present analytic solutions for idealized cases that help in
understanding the essence of the problems qualitatively and quantitatively, without hav-
ing to resort to finite element computations. The use of dimensionless quantities greatly
simplifies the picture by reducing the number of relevant parameters. The methods used
are classical: elementary real analysis and special functions. However, the boundary con-
ditions dictated by our applications are not usually considered in classical works on the
heat equation, so that the analytic solutions given here seem to be new. We will also show
how energy conservation leads to interesting sum formulae in connection with Bessel
functions. The other side of the story, to determine the deterioration of image quality by
given (inhomogeneous) temperature distributions in the optical system, is not dealt with
here.

Copyright © 2007 Beat Aebischer. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider several heat conduction problems motivated by industrial applications. Even
though the use of finite elements is much en vogue today, we try to solve the problems
with analytical methods for three reasons. First, finite element software is quite expensive
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Figure 1.1. Sketch of a lens. The glue between the mounting and the glass is shown in gray.

and therefore not available to everybody, second, the reduction to dimensionless vari-
ables, a step that is often left off when finite element software is used, yields insight that
one should not miss, third, trying to find analytic solutions one can have fun with the
mathematics involved. Because of space limitations, we will not say much about the in-
dustrial background, just enough for an understanding of the mathematical problems.
For the convenience of the reader, the mathematical derivations are relegated to the ap-
pendices.

Of course, most real-world problems must be simplified in order to allow for an an-
alytic solution. Our case is not an exception. For most of the time we will simplify the
optical lens as having constant thickness (in effect being optically useless). However, it is
often possible to find a good approximation to the “correct” model, so that an analytic
solution can be found. For instance in Section 5.5, we seek a stationary solution for a
problem involving a “real” lens. A simple (and precise) approximation of the thickness
profile allows for an explicit solution, while the same problem for a spherical lens can
only be practically solved by iterated numerical quadrature.

Other and similar classical methods for deriving explicit solutions of heat equations
have been employed in [1] (operational calculus), [2] (Laplace transform), [3] (Green’s
functions), [4] (fundamental solutions “heat kernel,” Fourier series, operational calcu-
lus). Modern treatments of heat conduction can be found, for example, in [5] (classical
methods, Laplace transform), [6] (computational/numerical methods), and many others.

1.1. General assumptions and preliminaries. A simple lens together with its mounting
is shown in Figure 1.1. We distinguish between the “optical surfaces” and the “boundary
surface” of the lens.
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Initially, at time t = 0, the lens is uniformly cold. It is then heated up through its
boundary surface, either by keeping the mounting at a higher temperature, which is then
constant in time (Section 2), or by delivering a constant heat flux through the mounting
up to some time t0 > 0 (Section 3). In Section 4, part of the boundary surface will be kept
at a given temperature, while another part will deliver a constant heat flux up to time t0,
the remaining part of the boundary being thermally isolated.

We make the following simplifying assumptions.
(i) The lens exchanges no heat through its optical surfaces (∂u/∂n= 0 at the optical

surfaces).

(ii) The temperature of the lens is constant in the direction of its optical axis.

(iii) The lens and the mounting are radially symmetric, and, depending on the
boundary condition.

(iv) The mounting keeps its temperature independently of the quantity of heat it
must deliver.

or
(iv′) The heat source holds the heat flux constant independently of the temperature

of the lens.
Assumption (ii) is satisfied when the lens is a cylinder and the mounting covers the whole
mantle surface; if not, we will enforce it by averaging the temperature in the axis direc-
tion. This assumption reduces the problem to a spatially two-dimensional one (the lens
is modeled as a circular disk) and the radial symmetry (iii) will eliminate another dimen-
sion.

In general, using cylinder coordinates r, ϕ, z, the temperature of the lens is described
by the function

u= u(r,ϕ,z; t), 0≤ r ≤ R, 0≤ ϕ≤ 2π, 0≤ z ≤ h, t ≥ 0, (1.1)

where R denotes the radius of the lens and h its thickness, and u is 2π-periodic in ϕ. In
fact, since our problems are radially symmetric and independent of z, the solution will be
independent of ϕ and z,

u= u(r, t), 0≤ r ≤ R, t ≥ 0. (1.2)

This follows from the fact that u satisfies the heat equation

∂u

∂t
= κ ·Δu+Q(r, t)= κ ·

[
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂ϕ2
+
∂2u

∂z2

]
+Q(r, t) (1.3)

and is uniquely determined when initial and boundary conditions are imposed. Note that
the source term Q is independent of ϕ and z and in fact will be nonzero only in Section 5.
Averaging (1.3) over ϕ and z and using (i) and the periodicity in ϕ implies that the average
temperature,

u(r, t) := 1
2πh

∫ 2π

0

∫ h

0
u(r,ϕ,z; t)dzdϕ, (1.4)
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is another solution of (1.3), satisfying the same initial and boundary conditions when
those are also independent of ϕ and z. Hence u≡ u, and we will assume (1.2) whenever
appropriate.

In Section 5, we will consider a lens with a coating on its front surface that heats up by
absorbing part of the solar spectrum. In this case the heating will come from the coating
and not from the mounting. Since for simplicity we still want (ii) to hold, we will again
average the temperature along the z-direction, so that the heat absorption will give rise
to the source term in (1.3).

For completeness we mention that the constant κ in (1.3) is the thermal conductivity,
which is related to other thermal parameters as follows (for uniqueness the SI units are
given in brackets):

κ= λ

cρ
: thermal conductivity

[
m2 s−1],

λ : heat conductivity
[

W m−1 K−1],
c : specific heat

[
J kg−1 K−1],

ρ : density
[

kg m−3].

(1.5)

In general, the total heat flux w(t) (measured in Watt) into a domain G⊂ R3, inside which
the heat equation (1.3) holds, can be computed as follows:

w(t)= λ

κ

∫
G

∂u

∂t
dv ≡ λ

∫
∂G

�∇u ·d�σ +
λ

κ

∫
G
Qdv, (1.6)

where ∂G denotes the boundary of G, d�σ the infinitesimal surface element orthogonal to
∂G pointing out of G, and dv the infinitesimal volume element. The identity derives from

an application of the Gauss integral theorem to the gradient vector field �∇u and using
�∇· �∇u = Δu = (∂u/∂t−Q)/κ; its physical interpretation is energy conservation. In our

special case, G is a cylinder of radius R and height h, on its boundary �∇u vanishes except
on the mantle surface, where it points in the direction of the surface normal, and u is
radially symmetric, hence (1.6) specializes to

w(t)= λ

κ
2πh

∫ R

0

∂u

∂t
(r, t) · r dr ≡ 2πRhλ · ∂u

∂r
(R, t) +

λ

κ
2πh

∫ R

0
Q(r, t) · r dr. (1.7)

The total energy supplied to the lens is

E(t)=
∫ t

0
w(t′)dt′ (1.8)

and it equals the change in internal energy of the lens

E(t)= λ

κ

∫
G

[
u(r, t)−u(r,0)

]
dv, (1.9)

as follows from (1.6) and (1.8) by changing the order of integration. Comparison of (1.7),
(1.8) with (1.9) will lead to interesting infinite sums in Sections 2.5, 4.2, and 5.3.
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2. Constant temperature of the mounting

2.1. Statement of the problem. We denote the initial temperature of the lens by u0 and
the temperature of the mounting by um. As explained in Section 1, we may assume (1.2),
and the temperature u is determined by the following partial differential equation prob-
lem:

∂u

∂t
= κ ·Δu= κ ·

[
∂2u

∂r2
+

1
r

∂u

∂r

]
, (2.1a)

u(r,0)= u0, (2.1b)

D · ∂u
∂r

(R, t) +u(R, t)−um = 0. (2.1c)

The boundary condition (2.1c) is justified below. The quantities κ and λ defined in (1.5)
both refer to glass (the lens). The length constant D in the boundary condition is deter-
mined by the contact between the stainless steel of the mounting and the glass. In fact,
there is some layer of glue between these two materials. If the thickness of this layer is d
and the heat conductivity of the glue is λglue, then the heat flux into the lens through the
cylinder mantle of area A= 2πRh is

λ ·A · ∂u
∂r

(R, t)= λglue ·A · um−u(R, t)
d

, (2.2)

since the surface normal points in the radial direction, hence we get the boundary condi-
tion (2.1c) with

D = d · λ

λglue
. (2.3)

If the thickness d goes to zero we get the extreme case D = 0. This case is slightly unphysi-
cal, because it implies that the flux of energy into the glass starts with a delta distribution
at time t = 0. It is nevertheless an interesting limiting case, because it slightly simplifies
the formulas.

2.2. Scaling. Before solving (2.1), let us introduce dimensionless quantities in order to
simplify the notation and, more importantly, to pin down the relevant parameter combi-
nations. We define

r̃ = r

R
, T = R2

κ
, t̃ = t

T
, D̃ = D

R
= d

R

λ

λglue
, ũ(r̃, t̃ )= u(r, t)−um

um−u0
.

(2.4)
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Problem (2.1) then becomes

∂ũ

∂t̃
= ∂2ũ

∂r̃ 2 +
1
r̃

∂ũ

∂r̃
, (2.5a)

ũ(r̃,0)≡−1, (2.5b)

D̃ · ∂ũ
∂r̃

(
1, t̃
)

+ ũ(1, t̃ )= 0. (2.5c)

Now all the quantities appearing in (2.5) are dimensionless. From (2.4), we see that in-
stead of the five original parameters, κ, D, R, u0, and um in (2.1), only the two combi-
nations T = R2/κ and D̃ = D/R matter. The subtraction of um in the last entry of (2.4)
makes the boundary condition (2.5c) homogeneous, which is necessary for the separa-
tion method used in the next section to work.

2.3. Analytic solution. The solution of the dimensionless problem (2.5) is given by the
Fourier-Bessel series

ũ(r̃, t̃ )=
∞∑
j=1

−2e−k
2
j t̃(

D̃2k2
j + 1

) · kjJ1(kj) J0
(
kj r̃
)

(2.6)

with the constants 0 < k1 < k2 < ··· determined by the transcendental equation

f (x) := J0(x) + D̃xJ ′0(x)≡ J0(x)− D̃xJ1(x)= 0. (2.7)

For a proof, see Appendix A. The special case D̃ = 0 is already known from [2, equation
(12)].

The solution to the original problem (2.1) in physical units is obtained by using the
replacements (2.4). For the convergence properties of Fourier-Bessel series we refer the
reader to [7, Section 18]. The fast convergence of the series (2.6) is due to the following
fact.

Proposition 2.1. Equation (2.7) has only simple roots and in fact has infinitely many roots,
satisfying

lim
j→∞

kj+1− kj = π. (2.8)

For a proof see Appendix A. For later use we note that from (2.7) and the well-known
identities J1(x) + xJ ′1(x)= xJ0(x) and J ′0(x)=−J1(x), see, for example, [8, equation (26.3)]
and [9, Section 9.1.28], respectively, we get

f ′(x)= J ′0(x)− D̃
(
J1(x) + xJ ′1(x)

)= J ′0(x)− D̃xJ0(x)=−J1(x)− D̃xJ0(x). (2.9)

2.4. Numerical considerations and examples. For the limiting case d = D̃ = 0 (no glue),
the constants kj are just the positive zeros of J0. They are tabulated, for example, in

[9, Table 9.5]. For the case d > 0, hence D̃ > 0, the kj must be computed from (2.7). This
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Figure 2.1. Solution of problem (2.1) for D̃ = 0.027. That the temperature u at the boundary r = R is
below um and grows with time is due to the glue layer, see (2.1c).

can be done by Newton iteration. From (2.7) and (2.9) we have

− f (x)
f ′(x)

= J0(x)− D̃xJ1(x)

J1(x) + D̃xJ0(x)
. (2.10)

The Newton iteration is thus

k(i+1)
j = k(i)

j +
J0
(
k(i)
j

)− D̃k(i)
j J1
(
k(i)
j

)
J1
(
k(i)
j

)
+ D̃k(i)

j J0
(
k(i)
j

) (i= 0,1,2, . . .). (2.11)

Usually D̃
 1, then the solutions kj of (2.7) are close to the zeros of J0, and one can use
those as starting values for the iteration. In the general case we just sample the function f
and search for sign changes. A uniform sampling grid of 3000 points in the interval [0,65]
is sufficient to provide reliable starting values for k1, . . . ,k20. A few iterations of (2.11)
suffice to compute the kj accurately. Numerical experiments show that for D̃ ≤ 0.02 and
j = 1, . . . ,20, four iterations yield residuals less than 10−15.

With the kj computed as described above, it is easy to compute the solution ũ(r̃, t̃ ) ac-
cording to (2.6). Note that the smaller t̃, the more terms are needed in the series. Because
the kj are asymptotically equidistant, (2.8), the terms decrease exponentially. Moreover,
numerical experiments show that the series is essentially (but not exactly) alternating.
The last term used is thus an approximate upper bound on the truncation error, except
near r̃ = 1. Figure 2.1 shows some results for a typical value of D̃.

Example 2.2. If we want the temperature difference from the center of the lens to its
boundary to decrease to about 18% of its original value, then we must wait the time
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t = 0.4 · T , which in a realistic situation can be about 1 hour. After half the time the
temperature difference is only reduced to 53% of the original value.

2.5. Energy conservation and a sum formula. From (1.7) with Q = 0 the total heat flux
is

w(t)= λ

κ
2πh

∫ R

0

∂u

∂t
(r, t) · r dr ≡ 2πRhλ · ∂u

∂r
(R, t). (2.12)

Using the scaling formulae (2.4) and

W := 2πhλ
(
um−u0

)
, w̃(t̃ ) := w(t)

W
, (2.13)

we get the dimensionless version of (2.12)

w̃(t̃ )=
∫ 1

0

∂ũ

∂t̃
(r̃, t̃ ) · r̃ dr̃ ≡ ∂ũ

∂r̃
(1, t̃ ). (2.14)

Using either form of w̃(t̃ ), we get from (2.6)

w̃(t̃ )=
∞∑
j=1

2e−k
2
j t̃

(D̃2k2
j + 1)

. (2.15)

As one would expect, the total heat energy E(t) supplied to the lens up to time t remains
bounded

E(t)=WT
∫ t/T

0
w̃(t̃ )d t̃

=WT
∞∑
j=1

2(
D̃2k2

j + 1
)
k2
j

(
1− e−k

2
j t/T
)
−−−→
t→∞ WT

∞∑
j=1

2(
D̃2k2

j + 1
)
k2
j

.
(2.16)

Using (2.1b) and limt→∞u(r, t)= um (see (2.6) and (2.4)) we get from (1.9)

E(t)−−−→
t→∞ =

λ

κ

(
um−u0

) ·πR2h= WT

2
. (2.17)

Comparison with (2.16) yields the sum formula

∞∑
j=1

1(
D̃2k2

j + 1
)
k2
j

= 1
4
. (2.18)

The only reference to a similar formula we have found is [8, Example (27), page 134]

∞∑
j=1

1
α2
j

= 1
4(ν + 1)

, (2.19)

where 0 < α1 < α2 < ··· are the positive zeroes of Jν, ν > −1. The special case ν = 0 of
(2.19) agrees with the special case D̃ = 0 of (2.18).
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3. Prescribing heat flux instead of temperature

3.1. Problem statement. Since any high-quality optical system consists of lenses of dif-
ferent size and thickness, the heating times computed in Section 2 will vary quite a lot
among the lenses. It is therefore desirable to have an individual heat source for each lens,
which can then be adjusted to the size of the lens. This just changes the boundary condi-
tion in our heat conduction problem.

We make the simplifying assumptions (i), (ii), (iii), and (iv′) from Section 1. As ex-
plained there, we expect a radially symmetric solution of the form u = u(r, t) (0 ≤ r ≤
R, t ≥ 0). We want to turn on the heat flux from time 0 to some time t0 > 0. Denoting by
q [unit: W/m2] the constant heat flux density at the interface between the glass and the
glue, applied from time 0 to t0, we now get the following problem:

∂u

∂t
= κ ·

[
∂2u

∂r2
+

1
r

∂u

∂r

]
, (3.1a)

u(r,0)= u0, (3.1b)

λ · ∂u
∂r

(R, t)= q ·H(t0− t
)
, (3.1c)

where H(t) is the Heaviside function (0 for t < 0, 1 for t ≥ 0).

3.2. Scaling. As in Section 2.2, we introduce dimensionless quantities. This time the nat-
ural temperature scale of the problem is qR/λ. We define

r̃ = r

R
, T = R2

κ
, t̃ = t

T
, t̃0 = t0

T
, U = qR

λ
, ũ(r̃, t̃ )= u(r, t)−u0

U
.

(3.2)

The problem (3.1) is thus equivalent to

∂ũ

∂t̃
= ∂2ũ

∂r̃ 2 +
1
r̃

∂ũ

∂r̃
, (3.3a)

ũ(r̃,0)= 0, (3.3b)

∂ũ

∂r̃
(1, t̃ )=H

(
t̃0− t̃

)
. (3.3c)

All the quantities in (3.3) are dimensionless. Note that instead of the six original param-
eters κ, λ, R, u0, q, and t0, we now have three relevant physical parameters: T = R2/κ,
U = qR/λ, and t0.
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Figure 3.1. Solution of problem (3.1) for t0 = T . After turning the heat flux off at time t = T , heat
diffusion takes over.

3.3. Analytic solution. As shown in Appendix B, the solution of problem (3.3) is given
by

ũ(r̃, t̃ )=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r̃ 2

2
+ 2t̃− 1

4
−

∞∑
j=1

2e−k
2
j t̃

k2
j J0
(
kj
) J0(kj r̃ ), 0≤ t̃ < t̃0

2t̃0 +
∞∑
j=1

2
k2
j J0
(
kj
)(1− e−k

2
j t̃0
)
e−k

2
j (t̃−t̃0)J0

(
kj r̃
)
, t̃ > t̃0,

(3.4)

where the kj are the positive zeros of the Bessel function J1 in ascending order. For the
solution to the original problem (3.1) in physical units, use the replacements (3.2).

The energy flowing into the lens is easily computed: from (1.7) with Q = 0 the heat
flux is

w(t)= 2πRhλ
∂u

∂r
(R, t)= 2πRhq ·H(t0− t

)
, (3.5)

hence

E(t)=
∫ t

0
w(t′)dt′ = 2πRhq ·min

{
t, t0
}

(t ≥ 0). (3.6)

3.4. Numerical results. Computing the solution ũ according to (3.4) yields the sample
results shown in Figure 3.1. After the heat flux is turned off at time t = T , the temperature
distribution gets more and more uniform.
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Figure 4.1. Boundary of the lens. The optical axis is horizontal and the glue is shown in gray.

4. Heating only part of the cylinder mantle

4.1. Statement of the problem and scaling. Here is a more general problem combining
the two previous ones: the lens is still a cylinder of radius R and height hL. Part of the
cylinder mantle, a ring of width hm, is kept at a constant temperature um by the mounting,
while another part of the cylinder mantle, a ring of width hh, is heated by delivering
a constant heat flux density q for a time t0 and then the heating is turned off, that is,
this part of the mantle surface is then isolated. The remaining mantle surface (of width
hL− (hm + hh)) and all other surfaces of the lens are thermally isolated. Figure 4.1 shows
a sketch of the situation.

To simplify the problem and hence allow for an analytic solution we disregard the
variation of temperature along the axis direction, that is, we replace the temperature by
its average along the z-coordinate, u= u(r, t), 0≤ r ≤ R, t ≥ 0. This average temperature
then satisfies

∂u

∂t
= κ ·

[
∂2u

∂r2
+

1
r

∂u

∂r

]
(4.1a)

u(r,0)= u0. (4.1b)

For the boundary condition at r = R, we consider the energy balance through the surface
A= 2πRhL of the cylinder mantle:

q ·H(t0− t
) ·
(
A
hh
hL

)
+ λglue

(
A
hm
hL

)
· um−u(R, t)

d
= λ ·A · ∂u

∂r
(R, t), (4.2)

where d denotes the thickness of the glue layer and H is the Heaviside function. Rewriting
yields

d
λ

λglue

hL
hm
· ∂u
∂r

(R, t) +u(R, t)−
(
um +H

(
t0− t

) · q hh
hm

d

λglue

)
= 0. (4.1c)

For t ≤ t0, our problem (4.1a), (4.1b), and (4.1c) reduces to problem (2.1) with

D := d
λ

λglue

hL
hm

(4.3)
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and with um replaced by the “effective temperature”

ue := um + q
hh
hm

d

λglue
. (4.4)

With the scaling

r̃ = r

R
, T = R2

κ
, t̃ = t

T
, t̃0 = t0

T
, D̃ = D

R
= d

R

λ

λglue

hL
hm

,

ũ(r̃, t̃ )= u(r, t)−um
ue−u0

, γ = ue−um
ue−u0

(4.5)

problem (4.1a), (4.1b), and (4.1c) transforms into its dimensionless form

∂ũ

∂t̃
= ∂2ũ

∂r̃ 2 +
1
r̃

∂ũ

∂r̃
, (4.6a)

ũ(r̃,0)≡ γ− 1, (4.6b)

D̃ · ∂ũ
∂r̃

(1, t̃ ) + ũ(1, t̃ )= γ ·H(t̃0− t̃
)
. (4.6c)

For later use we note that the last equation in (4.5) is equivalent to each of

1− γ = um−u0

ue−u0
, ue−um = γ

1− γ

(
um−u0

)
. (4.7)

4.2. Analytic solution. By Appendix C, the solution of the dimensionless
problem (4.6a)–(4.6c) is given by

ũ(r̃, t̃ )=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ−
∞∑
j=1

2e−k
2
j t̃(

D̃2k2
j + 1

) · kjJ1(kj) J0
(
kj r̃
)
, 0≤ t̃ ≤ t̃0

∞∑
j=1

2(
D̃2k2

j + 1
) · kjJ1(kj) ·

[
γe−k

2
j (t̃−t̃0)− e−k

2
j t̃
]
· J0
(
kj r̃
)
, t̃ ≥ t̃0

(4.8)

with 0 < k1 < k2 < ··· the roots of (2.7). For the solution of the original problem (4.1a),
(4.1b), and (4.1c) in physical units use the scaling (4.5) and the definition (4.4).

Note that for q = 0, we have γ = 0 and (4.8) reproduces (2.6) as a special case (with
D̃ as in (2.4) if hm = hL). The analytic solution further shows that instead of the twelve
original physical parameters of the problem, only the four parameters T , t̃0, D̃, and γ
really matter.

Further note that the jump discontinuity in the boundary condition (4.6c) necessarily
leads to a corresponding discontinuity of the boundary temperature ũ(1, t̃ ) at t̃ = t̃0, but
there is of course no discontinuity for r̃ < 1.
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We invite the reader to do the energy computation. From (1.7), (1.8), (4.5), (4.8) one
gets

E(t)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

WT
∞∑
j=1

2(
D̃2k2

j + 1
)
k2
j

[
1− e−k

2
j t/T
]

, 0≤ t ≤ t0,

WT
∞∑
j=1

2(
D̃2k2

j + 1
)
k2
j

[
γe−k

2
j (t−t0)/T + 1− γ− e−k

2
j t/T
]

, t ≥ t0

(4.9)

with W := 2πhλ(ue−u0). From (1.9) and limt→∞u(r, t)= um (see (4.8) and (4.5)) we get

E(t)= λ

κ
2πh

∫ R

0

[
u(r, t)−u0

]
r dr −−−→

t→∞
λ

κ
2πh

R2

2

(
um−u0

)= WT

2
(1− γ), (4.10)

and comparison with (4.9) again yields the sum formula (2.18).

4.3. Numerical results. Again, using the Newton iteration (2.11) for the solution of
(2.7), it is easy to compute the solution ũ according to (4.8). Some results are displayed
in Figure 4.2, with the series truncated after the first 20 terms. The Gibbs phenomenon
shown is due to the truncation in the identity

∞∑
j=1

2(
D̃2k2

j + 1
) · kjJ1(kj) J0

(
kj r̃
)≡ 1, (4.11)

which follows from (C.5) and (C.6). It only appears when t− t0 is positive and small. For
larger t it disappears due to the exponential decay of the terms in (4.8). In [7, Section
18.12] it is shown that (4.11) (in fact a more general identity) holds for 0≤ r̃ ≤ 1 if D̃ > 0
(the variable H used there equals 1/D̃).

Applying the heat flux q according to (4.4) makes the temperature u approach um
much faster. In the example of Figure 4.2, at t = T/4 we have (using (4.7))

∣∣∣∣u
(

0,
T

4

)
−um

∣∣∣∣= 0.0515 ·∣∣ue−u0
∣∣= 0.0515 ·

∣∣um−u0
∣∣

1− γ
= 0.103 ·∣∣um−u0

∣∣.
(4.12)

Without the heat flux, we get |u(0,T/4)−um| = 0.388 · |um−u0|.

5. Heating through absorption in the coating

5.1. Statement of the problem and scaling. The present problem concerns the receiver
optics of a laser altimeter to be used by the European Space Agency for the exploration
of the planet Mercury. We still model each lens as a cylinder of radius R and height h.
The mounting, which is attached to the cylinder mantle by a glue layer of thickness d, is
kept at a constant temperature u0. But now one of the optical surfaces is coated in order to
absorb unwanted parts of the solar spectrum, which implies that this surface is heated up.
We model this effect by a constant and homogeneous heat flux density q [unit: W/m2],
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Figure 4.2. Solution to problem (4.1) for t0/T = 0.1, γ = 0.5, and D̃ = 0.01. The wiggly line is for
t/T = 0.1001 and shows the Gibbs phenomenon with 20 terms in the sum (4.8).

which is turned on for a time t0 and then is turned off. The other optical surface of the
lens is thermally isolated.

The problem is rotationally symmetric around the cylinder axis. To simplify it further,
we again replace the temperature by its average along the z-coordinate, u = u(r, t), 0 ≤
r ≤ R, t ≥ 0. The heat equation now contains a source term proportional to q,

∂u

∂t
= κ ·

[
∂2u

∂r2
+

1
r

∂u

∂r
+

q

λh
H
(
t0− t

)]
, (5.1a)

where H is the Heaviside function. The initial and boundary conditions are

u(r,0)= u0, (5.1b)

D · ∂u
∂r

(R, t) +u(R, t)= u0 (5.1c)

with

D = d · λ

λglue
(5.2)

as in Section 2.1. With the scaling

r̃ = r

R
, T = R2

κ
, t̃ = t

T
, t̃0 = t0

T
,

ũ(r̃, t̃ )= u(r, t)−u0

U
, U = qR

λ
, q̃ = R

h
, D̃ = D

R
,

(5.3)
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problem (5.1a)–(5.1c) transforms into its dimensionless form

∂ũ

∂t̃
= ∂2ũ

∂r̃ 2 +
1
r̃

∂ũ

∂r̃
+ q̃ ·H(t̃0− t̃ ), (5.4a)

ũ(r̃,0)= 0, (5.4b)

D̃ · ∂ũ
∂r̃

(1, t̃ ) + ũ(1, t̃ )= 0. (5.4c)

Before solving these equations, we first consider the stationary state.

5.2. Stationary case. If the heating is never turned off (t̃0 =∞), then for large times the
temperature will approach a stationary distribution ũ(r̃,∞) =: ũ(r̃ ), which will give an
upper bound on the temperature and which will be used in the derivation of the general
case, see (D.1). From (5.4a), we have for the stationary case

ũ′′(r̃ ) +
ũ′(r̃ )
r̃

+ q̃ = 0 (5.5)

with the general solution

ũ(r̃ )=− q̃

4
r̃ 2 + c1 · log r̃ + c2. (5.6)

The fact that ũ(0) is finite implies c1 = 0 and by (5.4c), D̃ · ũ′(1) + ũ(1) = 0, hence c2 =
(q̃/4)(1 + 2D̃), thus

ũ(r̃ )= q̃

4

(
1 + 2D̃− r̃ 2). (5.7)

In the original physical parameters the stationary solution is, using (5.3),

u(r)= u0 +
q

4λh

(
R2 + 2DR− r2)= u0 +

P

4πλh

(
1 + 2

D

R
− r2

R2

)
, (5.8)

where

P = πR2q (5.9)

is the total heating power.

5.3. Analytic solution for the general case. The solution of dimensionless problem
(5.4a), (5.4b), and (5.4c) is shown in Appendix D to be

ũ(r̃, t̃ )=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̃

4

(
1 + 2D̃− r̃ 2)−

∞∑
j=1

2q̃e−k
2
j t̃(

D̃2k2
j + 1

)
k3
j J1
(
kj
) J0(kj r̃ ), 0≤ t̃ ≤ t̃0

∞∑
j=1

2q̃(
D̃2k2

j + 1
)
k3
j J1
(
kj
) ·
[
e−k

2
j (t̃−t̃0)− e−k

2
j t̃
]
· J0
(
kj r̃
)
, t̃ ≥ t̃0

(5.10)
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with kj the positive roots of (2.7) in ascending order. For the solution of the original
problem (5.1a)–(5.1c) in physical units use the scaling (5.3) and the definition (5.2). The
analytic solution shows that from the nine original physical parameters of the problem,
κ, q, λ, h, R, t0, u0, d, λglue, only the five combinations T = R2/κ, U = qR/λ, q̃ = R/h,

t̃0 = t0/T , D̃ =D/R= d/R · λ/λglue really matter.
The energy computation will now give us another sum formula. From (1.7) with Q =

κ(q/λh)H(t0− t), we get the heat flux

w(t)= 2πRh
∂u

∂r
(R, t) +πR2q ·H(t0− t

)
, (5.11)

hence (5.10), (5.9), (5.3), and integration yield the energy

E(t)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4PT ·
∞∑
j=1

1− e−k
2
j t/T(

D̃2k2
j + 1

)
k4
j

, 0≤ t ≤ t0,

4PT ·
∞∑
j=1

e−k
2
j (t−t0)/T − e−k

2
j t/T(

D̃2k2
j + 1

)
k4
j

, t > t0.

(5.12)

For finite t0, we have limt→∞u(r, t)=u0 and limt→∞E(t)=0 in accord with (1.9). However,
if t0 =∞, then

lim
t→∞u(r, t)= u0 +

q̃

4
U
(
1 + 2D̃− r̃ 2)= u0 +

P

4πhλ

(
1 + 2D̃− r2

R2

)
, (5.13)

lim
t→∞E(t)= 4PT ·

∞∑
j=1

1(
D̃2k2

j + 1
)
k4
j

. (5.14)

Comparison with (1.9),

E(t)= λ

κ

∫
G

[
u(r, t)−u0

]
dv −−−→

t→∞
P

2κ

∫ R

0

(
1 + 2D̃− r2

R2

)
r dr = PT

2

(
D̃+

1
4

)
(5.15)

yields the sum formula

∞∑
j=1

1(
D̃2k2

j + 1
)
k4
j

= D̃+ 1/4
8

. (5.16)

We could not find this formula in the standard references on Bessel functions, the closest
match is [8, Example (27), page 134]

∞∑
j=1

1
α4
j

= 1

16
(
ν + 1

)2(
ν + 2

) , (5.17)

where 0 < α1 < α2 < ··· are the positive zeroes of Jν, ν > −1. The special case ν = 0 of
(5.17) agrees with the special case D̃ = 0 of (5.16).

Open question. We have assumed a constant thickness of the lens. In Section 5.5, we
will treat the stationary solution for a varying thickness profile. For which “physically
reasonable” thickness profiles can the general (nonstationary) case be solved analytically?
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Figure 5.1. Solution to problem (5.1) for t̃0 ≡ t0/T = 1, q̃ ≡ R/h = 4, and D̃ ≡ D/R = 0.1. At every
point the temperature u grows until t = t0, then decreases again towards the mounting temperature
u0.

5.4. Numerical results. To compute the solution ũ according to (5.10), we again use the
Newton iteration (2.11) to solve (2.7). Some exemplary results for t̃0 = 1, q̃ = 4, D̃ = 0.1
are displayed in Figure 5.1, with the series truncated after the first 20 terms. For 0 ≤ t̃ ≤
t̃0 = 1 the lens heats up, reaching a center temperature of ũ(0,1)= 1.1886 at t̃ = 1, which
is already close to the upper bound q̃/4 + 2D̃ = 1.2 given by the stationary solution (5.7).
After this point the heating is turned off and the lens quickly cools down, the center
temperature ũ(0, t̃ ) reaches 0.1217 already at t̃ = 1.5.

5.5. Stationary solution for a lens of variable thickness. So far we have assumed that the
lens has constant thickness, in order to allow for an analytic solution of the heat equation.
Here we dismiss this assumption and try to generalize the results for the stationary case
to a real lens. The thickness profile of a spherical biconvex lens is

h(r)= h0− r1− r2 +
√
r2

1 − r2 +
√
r2

2 − r2, (5.18)

where h0 is the central thickness and r1 and r2 are the radii of the lens surfaces. Our
problem is still given by (5.1a)–(5.1c), but h now depends on r. The dimensionless form
of (5.18) is

h̃(r̃ ) := h(Rr̃ )
R

= h̃0− r̃1− r̃2 +
√
r̃ 2

1− r̃ 2 +
√
r̃ 2

2− r̃ 2, h̃0 = h0

R
, r̃i = ri

R
(i= 1,2).

(5.19)
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Dimensionless equations (5.4a), (5.4b), and (5.4c) still hold if we generalize q̃ to the func-
tion

q̃ ≡ q̃(r̃ ) := 1

h̃(r̃ )
= R

h(Rr̃ )
. (5.20)

The ordinary differential equation for the stationary case is thus

ũ′′(r̃ ) +
ũ′(r̃ )
r̃

+ q̃(r̃ )= 0 (5.21)

with the boundary condition

D̃ · ũ′(1) + ũ(1)= 0. (5.22)

In Appendix D, it will be shown that the solution of (5.21), (5.22), the stationary solution
for an arbitrary lens profile, is

ũ(r̃ )= D̃ · g(1)−
r̃∫

1

g(x)
x

dx, g(x) :=
∫ x

0
x′ q̃(x′)dx′. (5.23)

Trying to symbolically perform the integration in the definition of g with the Matlab
“Symbolic Math Toolbox” did work, but a pretty print of the result fills many screens,
being virtually useless. Even for the special case r̃1 = r̃2 it fills a screen and the other in-
tegration in (5.23) cannot be done symbolically. Of course we can easily perform the
integrations in (5.23) numerically. However, it is easy to approximate (5.19) by a simpler
function so that the integrations can be reduced to known special functions.

The quadratic polynomial

h̃approx(r̃ )= h̃0
(
1− cr̃ 2) (5.24)

is a good approximation to (5.19) for a suitable choice of the parameter c.

Example 5.1. For r̃1 = r̃2 = 10, h̃0 = 0.2, the choice c = 0.5010403 yields a maximal ap-
proximation error (for 0≤ r̃ ≤ 1) of 4.3·10−5, which is negligible for practical purposes.

This also works when r̃1 �= r̃2. For an asymmetric lens with r̃1 = 8, r̃2 = 13, h̃0 = 0.2 (of
similar optical power (5.33)), the choice c = 0.506063 yields a maximal approximation
error of 5.2 · 10−5.

For our approximation (5.24), we get from (5.20) and (5.23)

g(x)= 1

h̃0

∫ x

0

x′

1− cx′2
dx′ = − 1

2h̃0c
log
(
1− cx2), (5.25)

ũ(r̃ )= 1

2h̃0c

∫ r̃

1

log
(
1− cx2

)
x

dx− D̃

2h̃0c
log(1− c)

= 1

4h̃0c

[
Li2(c)−Li2

(
cr̃ 2)]− D̃

2h̃0c
log(1− c),

(5.26)
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where the dilogarithm Li2 is defined by [10, Section 6.15]

Li2(z)=−
∫ z

0

log(1− x)
x

dx =
∞∑
k=1

zk

k2

(|z| < 1
)
. (5.27)

Since any real lens has positive thickness, we may assume h̃approx(1) > 0, hence c < 1. Be-
cause the dilogarithm is not commonly implemented in scientific software, it may be best
to just do the integration in (5.26) numerically, or one might use the integral representa-
tion [10, Section 6.15.3]

Li2(z)= z ·
∫∞

0

t

et − z
dt = z ·

∫ π/2

0

tans
etan s− z

(
1 + tan2 s

)
ds, z /∈ [1,∞). (5.28)

For small c (weak lens), we get from (5.26) and (5.27)

u(r̃ )= 1

4h̃0

{
1 + 2D̃− r̃ 2 +

c

4

(
1 + 4D̃− r̃ 4)+

c2

9

(
1 + 6D̃− r̃ 6)+O

(
c3)} (5.29)

in agreement with (5.7) for c = 0. Note that the optical power of a thin lens is given by

1
f
= (n− 1)

(
1
r1

+
1
r2

)
, (5.30)

where f is the focus length and n is the index of refraction of the glass. The second factor

in (5.30) is essentially the curvature or the second derivative of h̃ at the origin (since

h̃′(0)= 0)

1
r̃1

+
1
r̃2
=−h̃′′(0). (5.31)

For the approximation (5.24), we have

h̃′′approx(0)=−2 h̃0 c, (5.32)

hence the power of the “approximating lens” is

1
f
= 2(n− 1)

R
h̃0c, (5.33)

so that (5.29) can be interpreted as an expansion in powers of the optical power.
Finally we show the effect of the lens profile on the equilibrium temperature. To do this,

we use the same spherical lens as in the example above: r̃1 = r̃2 = 10, h̃0 = 0.2, approxi-
mated by (5.24) with c = 0.5010403; as before, we set D̃ = 0.1. We compare the equilib-
rium temperature of the real lens with that for a “flat lens” (constant thickness) of equal
volume, as well as with that for a flat lens of equal thickness at the center. Figure 5.2 shows
the three temperature curves. They have been computed using the trapezoid rule for the
integral in (5.26).
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Figure 5.2. Stationary solution to problem (5.1) with D̃ = 0.1 for a biconvex spherical lens (solid) and
for “flat lenses” with equal central thickness (dashed) and equal volume (dash-dotted), respectively.

As one would expect, compared with the flat lens of equal volume, the spherical lens
has slightly higher temperature at the boundary and lower temperature at the center. The
flat lens with equal central thickness has much higher volume (33% in our case) and
therefore lower temperature everywhere.

6. Conclusions

We have given analytic solutions in terms of Fourier-Bessel series to four idealized heat
conduction problems motivated by industrial applications. It is shown how, by introduc-
ing dimensionless quantities, the number of relevant parameters can be reduced, so that
a single simulation applies to a multiparameter family of physical situations. We have fur-
ther shown how our formulae, involving the transcendental equation (2.7), can be used
numerically. In each case, we have computed the energy E(t) supplied to the lens up to
time t. It is shown how energy conservation leads to apparently new sum formulae of
mathematical interest.

In one case (Section 5.5) the idealizing assumption was greatly relaxed and still an
explicit solution could be given for the stationary case in terms of the dilogarithm Li2.

These results are an important first step in understanding the practical problem of
how to heat up a lens system so that an acceptably homogeneous temperature is reached
as quickly as possible.

Appendices

A. Mathematical derivations for Section 2

We first prove the proposition from Section 2.3.
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Proof. Assume f had a double root, f (x)= f ′(x)= 0. Then from (2.7) and (2.9), we get
the system

[
1 D̃x

−D̃x 1

][
J0(x)
J ′0(x)

]
= 0 (A.1)

with determinant 1 + (D̃x)2 > 1. Hence x would be a double root of J0, which is impossi-
ble.

From the asymptotic formulae for J0 and J1 [9, Section 9.2.1], we get

f (x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−D̃
√

2x
π

{
cos
(
x− 3π

4

)
+O

(
x−1
)}

, D̃ > 0

√
2
πx

{
cos
(
x− π

4

)
+O

(
x−1
)}

, D̃ = 0

(x −→ +∞). (A.2)

This implies (2.8) and completes the proof. �

We now derive the Fourier-Bessel series (2.6). With the usual separation ansatz

ũ(r̃, t̃ )= y(r̃ ) · g(t̃ ), (A.3)

the time dependence can be separated. From (2.5a) and (A.3), it follows

g′

g
= y′′ + y′/r̃

y
≡−a (= constant), (A.4)

because the left-hand side only depends on t̃ and the right-hand side only depends on r̃.
Hence,

g(t̃ )= e−at̃, (A.5)

y′′ +
y′

r̃
+ a · y = 0. (A.6)

Due to (A.5), we have a > 0. Equation (A.6) is equivalent to the Bessel equation [9, Section
9.1.1]

x2y′′ + xy′ +
(
k2x2−n2)y = 0 (A.7)

with x = r̃, index n= 0, and a= k2. The solutions of (A.6) are therefore the Bessel func-
tions J0(kr̃ ) and Y0(kr̃ ), where k =√a. The function of the second kind, Y0, is out of the
question, because it is singular at zero, hence

y(r̃ )= J0(kr̃ ). (A.8)

The boundary condition (2.5c) is now

D̃kJ ′0(k) + J0(k)= 0. (A.9)
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Let 0 < k1 < k2 < ··· denote the positive solutions of (A.9) and hence of (2.7). (Note
that with k also −k is a solution, but J0(kr̃ ) and J0(−kr̃ ) are linearly dependent.) The
general solution of (2.5a) and (2.5c) can then be written as the Fourier-Bessel series (or
Dini series)

ũ(r̃, t̃ )=
∞∑
j=1

Aje
−k2

j t̃ J0(kj r̃ ). (A.10)

For the convergence properties of such series we refer the reader to [7, Section 18], where
a series defined by (A.10), (A.9) with D̃ �= 0 is called Dini’s series of Bessel functions.

The coefficients Aj must be determined from (2.5b),

∞∑
j=1

AjJ0
(
kj r̃
)≡−1. (A.11)

Note that in the case D̃ = 0, whatever the coefficients Aj , the sum on the left is zero for
r̃ = 1, because of (A.9). Hence (A.11) only holds for r̃ < 1, and more and more terms are
needed for r̃ → 1. This is due to the original problem formulation, when D̃ = 0 the initial
and boundary conditions (2.5b) and (2.5c) are contradictory for r̃ = 1, t̃ = 0. As long as
r̃ < 1, our solution (A.10) is correct even for t̃ = 0 (cf. [7, Section 18.12]), but the closer
r̃ gets to 1, the more it is difficult to numerically sum the infinite series! For increasing t̃
the problem rapidly disappears due to the exponential decay of the terms in (A.10).

To determine the Aj from (A.11) we can use the following orthogonality relation:

∫ 1

0
rJ0
(
kir
)
J0
(
kjr
)
dr = D̃2k2

j + 1

2D̃2k2
j

J0
(
kj
)2 · δi, j ≡

D̃2k2
j + 1

2
J1
(
kj
)2 · δi, j , (A.12)

see for instance [9, Section 11.4.5], [11, Section 3.12.4], or [8, Section 35]. It follows that

Aj =
−2D̃2k2

j(
D̃2k2

j + 1
) · J0(kj)2 ·

∫ 1

0
rJ0
(
kjr
)
dr ≡ −2(

D̃2k2
j + 1

) · J1(kj)2 ·
∫ 1

0
rJ0
(
kjr
)
dr. (A.13)

For the integral, we can use

∫ 1

0
rJ0(kr)dr = J1(k)

k
(k �= 0), (A.14)

see, for example, [9, Section 11.3.20], [11, Section 3.8.1], or [8, equation (32.3)], and get

Aj =
−2D̃2kj

D̃2k2
j + 1

· J1
(
kj
)

J0
(
kj
)2 ≡

−2

D̃2k2
j + 1

· 1
kjJ1

(
kj
) ≡ −2D̃

D̃2k2
j + 1

· 1
J0
(
kj
) , (A.15)

which together with (A.10) implies (2.6).
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B. Mathematical derivations for Section 3

We give a derivation of (3.4).
We first consider the case 0≤ t̃ ≤ t̃0. Before we can use the separation method we must

make the boundary condition (3.3c) homogeneous. This can be done by subtracting a
special solution of (3.3a) and (3.3c), that is, by setting

v(r̃, t̃ ) := ũ(r̃, t̃ )− r̃ 2

2
− 2t̃. (B.1)

This transforms the problem (3.3) (for 0≤ t̃ ≤ t̃0) into

∂v

∂t̃
= ∂2v

∂r̃ 2 +
1
r̃

∂v

∂r̃
, (B.2a)

v(r̃,0)=− r̃ 2

2
, (B.2b)

∂v

∂r̃
(1, t̃)= 0. (B.2c)

Using a separation ansatz as in Appendix A, we get

v(r̃, t̃ )=
∞∑
j=0

Aje
−k2

j t̃ J0(kj r̃ ), (B.3)

where now by the boundary condition (B.2c) the kj are the nonnegative zeros of J1,

0=: k0 < k1 < k2 < ···
(
J1
(
kj
)= 0

)
. (B.4)

The coefficients Aj must be determined from the initial condition (B.2b)

∞∑
j=0

AjJ0
(
kj r̃
)=− r̃ 2

2
. (B.5)

Note that, similarly as discussed in connection with (A.11), (B.5) can only be satisfied for
r̃ < 1, and more and more terms are needed for r̃ → 1. Again, this is caused by the initial
and boundary conditions (3.3b) and (3.3c), which are contradictory for r̃ = 1, t̃ = 0. In
(B.3), the problem disappears for increasing t̃ due to the exponential decay of the terms.

To solve (B.5) for Aj , we use the orthogonality relation ([8, Section 35] or (A.12) for

D̃→∞),

∫ 1

0
rJ0
(
kir
)
J0
(
kjr
)
dr = 1

2
J0
(
kj
)2 · δi, j . (B.6)

Note that this also holds if one or both of i and j are zero. This follows from J0(0) = 1,
(A.14), and J1(kj)= 0. It follows that

Aj = −1

J0
(
kj
)2

∫ 1

0
r3J0

(
kjr
)
dr ( j = 0,1,2, . . .). (B.7)
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For the integral, we can use the formula

∫ 1

0
r3J0(kr)dr = 2

k2

[
J0(k) +

(
k

2
− 2
k

)
J1(k)

]
(k �= 0) (B.8)

for j �= 0, see, for example, [8, equation (32.4)]. Hence, since in our case J1(kj) = 0, we
get

Aj = −2
k2
j J0
(
kj
) ( j = 1,2, . . .), A0 =−1

4
. (B.9)

Finally, taking together (B.1), (B.3), and (B.9), yields (3.4) for 0≤ t̃ ≤ t̃0.
For t̃ ≥ t̃0 we have the limiting case D̃ →∞ of the problem of Section 2, but with a

different initial condition at t̃ = t̃0. In analogy to Section 2.3, we get

ũ(r̃, t̃ )=
∞∑
j=0

Aje
−k2

j (t̃−t̃0)J0
(
kj r̃
) (

t̃ ≥ t̃0
)
, (B.10)

where 0 =: k0 < k1 < k2 < ··· are the zeros of J1, and the coefficients Aj are determined
by

∞∑
j=0

AjJ0
(
kj r̃
)= ũ

(
r̃, t̃0

)
. (B.11)

From (3.4) for t̃ = t̃0, we have

ũ
(
r̃, t̃0

)= r̃ 2

2
+ 2t̃0− 1

4
−

∞∑
j=1

2e−k
2
j t̃0

k2
j J0
(
kj
) J0(kj r̃ ), (B.12)

where again the kj are the positive zeros of J1. Note that the series (B.11) converges
slower and slower when r̃ approaches 1, which leads to the Gibbs phenomenon shown
in Figure 4.2. The cause of it is the boundary condition (3.3c), which demands a jump in
the derivative ∂ũ/∂r̃ at r̃ = 1, t̃ = t̃0.

Equations (B.11), (B.12), and the orthogonality relation (B.6) imply

Aj

2
J0
(
kj
)2 =

∫ 1

0

r3

2
J0
(
kjr
)
dr +

(
2t̃0− 1

4

)
·
∫ 1

0
rJ0
(
kjr
)
dr

−
∞∑
i=1

2e−k
2
i t̃0

k2
i J0
(
ki
)
∫ 1

0
rJ0
(
kir
)
J0
(
kjr
)
dr.

(B.13)

For j = 0, we get, using J0(k0r)= J0(0)= 1 and (B.6),

A0

2
=
∫ 1

0

r3

2
dr +

(
2t̃0− 1

4

)
·
∫ 1

0
r dr, (B.14)

hence

A0 = 2t̃0. (B.15)
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For j ≥ 1 we can make use of (B.8), J1(kj)= 0, and (B.13), yielding

Aj = 2
k2
j J0
(
kj
)(1− e−k

2
j t̃0
)

( j ≥ 1). (B.16)

We finally get (3.4) for t̃ ≥ t̃0 from (B.10), (B.15), and (B.16).

C. Mathematical derivations for Section 4

Here we derive (4.8). From (4.6a)–(4.6c) it follows that ũ− γ satisfies (2.5a)–(2.5c) for
t̃ ≤ t̃0, hence the solution is given by (2.6)

ũ(r̃, t̃ )= γ−
∞∑
j=1

2e−k
2
j t̃(

D̃2k2
j + 1

) · kjJ1(kj) J0
(
kj r̃
) (

0≤ t̃ ≤ t̃0
)
, (C.1)

and the constants 0 < k1 < k2 < ··· are the roots of (2.7).
For t̃ > t̃0 the boundary condition (4.6c) reads

D̃ · ∂ũ
∂r̃

(1, t̃ ) + ũ(1, t̃ )= 0. (C.2)

The initial condition (at t̃ = t̃0) is given by (C.1)

ũ
(
r̃, t̃0

)= γ−
∞∑
j=1

2e−k
2
j t̃0(

D̃2k2
j + 1

) · kjJ1(kj) J0
(
kj r̃
)
. (C.3)

Since for t̃ ≥ t̃0, ũ satisfies (4.6a) and (C.2), we have as in (A.10)

ũ(r̃, t̃ )=
∞∑
j=1

Aje
−k2

j (t̃−t̃0)J0
(
kj r̃
) (

t̃ ≥ t̃0
)
. (C.4)

According to (C.3) the coefficients Aj are determined by

∞∑
j=1

AjJ0
(
kj r̃
)= γ−

∞∑
j=1

2e−k
2
j t̃0(

D̃2k2
j + 1

) · kjJ1(kj) J0
(
kj r̃
)
. (C.5)

In view of (A.11), (A.15), and the orthogonality property (A.12), we get

Aj = 2(
D̃2k2

j + 1
) · kjJ1(kj) ·

[
γ− e−k

2
j t̃0
]

(C.6)

in agreement with (4.8) for t̃ ≥ t̃0.

D. Mathematical derivations for Section 5

We now give a derivation of (5.10). We first concentrate on the case 0 ≤ t̃ ≤ t̃0, when
the heating is turned on. Since the differential equation must be homogeneous in order
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for the separation technique to work, we must first transform (5.4a)–(5.4c) by using the
stationary solution. Defining

v(r̃, t̃ ) := q̃

4

(
1 + 2D̃− r̃ 2)− ũ(r̃, t̃ ), (D.1)

the function v satisfies the homogeneous problem (for 0≤ t̃ ≤ t̃0),

∂v

∂t̃
= ∂2v

∂r̃ 2 +
1
r̃

∂v

∂r̃
, (D.2a)

v(r̃,0)= q̃

4
(1 + 2D̃− r̃ 2), (D.2b)

D̃ · ∂v
∂r̃

(1, t̃) + v(1, t̃ )= 0. (D.2c)

Now the separation ansatz and (D.2a), (D.2c) imply

v(r̃, t̃ )=
∞∑
j=1

Aje
−k2

j t̃ J0
(
kj r̃
)
, (D.3)

where 0 < k1 < k2 < ··· are the positive roots of (2.7), as in Section 2.3.
The coefficients Aj must be determined from the initial condition (D.2b)

∞∑
j=1

AjJ0
(
kj r̃
)= q̃

4

(
1 + 2D̃− r̃ 2). (D.4)

Using the orthogonality relation (A.12), we get

Aj = q̃

2
(
D̃2k2

j + 1
)
J1
(
kj
)2

∫ 1

0
rJ0
(
kjr
)(

1 + 2D̃− r2)dr ( j = 1,2, . . .). (D.5)

For the integral, we can use (A.14) and (B.8) to get

Aj = q̃

2
(
D̃2k2

j + 1
)
J1
(
kj
)2

{
2
k2
j

[
D̃kjJ1

(
kj
)− J0

(
kj
)]

+
4
k3
j

J1
(
kj
)}

. (D.6)

The term in brackets vanishes by the definition of kj , hence

Aj = 2q̃(
D̃2k2

j + 1
)
k3
j J1
(
kj
) ( j = 1,2, . . .). (D.7)

Finally, (D.1), (D.3), and (D.7), yield (5.10) for 0≤ t̃ ≤ t̃0.
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We now consider the case t̃ ≥ t̃0. Using (5.4a), (5.4c), and (5.10) for t̃ = t̃0, we have the
problem

∂ũ

∂t̃
= ∂2ũ

∂r̃ 2 +
1
r̃

∂ũ

∂r̃
, (D.8a)

ũ
(
r̃, t̃0

)= q̃

4

(
1 + 2D̃− r̃ 2)−

∞∑
j=1

2q̃e−k
2
j t̃0(

D̃2k2
j + 1

)
k3
j J1
(
kj
) J0(kj r̃ ), (D.8b)

D̃ · ∂ũ
∂r̃

(1, t̃ ) + ũ(1, t̃ )= 0. (D.8c)

From (D.8a), (D.8c), we get

ũ(r̃, t̃ )=
∞∑
j=1

Aje
−k2

j (t̃−t̃0)J0
(
kj r̃
)

(D.9)

with kj as before (cf. (D.3)). The coefficients Aj are now determined by (D.8b)

∞∑
j=1

AjJ0
(
kj r̃
)= q̃

4

(
1 + 2D̃− r̃ 2)−

∞∑
j=1

2q̃e−k
2
j t̃0(

D̃2k2
j + 1

)
k3
j J1
(
kj
) J0(kj r̃ ). (D.10)

Comparison with (D.4) and (D.7) yields

Aj = 2q̃(
D̃2k2

j + 1
)
k3
j J1
(
kj
)
[

1− e−k
2
j t̃0
]

, (D.11)

verifying (5.10) for t̃ ≥ t̃0.
Now we derive (5.23). We must solve (5.21) with the boundary condition (5.22). We

set

v(x) := ũ′(x) (D.12)

and get the linear first order equation

x · v′(x) + v(x) + x · q̃(x)= 0, (D.13)

which can be integrated (using x · v′ + v = (x · v)′) to get

v(x)=−g(x)
x

, (D.14)

where g is an antiderivative of the function x · q̃(x). By symmetry we must have v(0) =
ũ′(0) = 0, hence we can fix the integration constant in the definition of g as in (5.23).
Using (D.12), we thus get

ũ(r̃ )= ũ(1)−
∫ r̃

1

g(x)
x

dx. (D.15)

The boundary condition (5.22) now reads −D̃ · g(1) + ũ(1)= 0 and (5.23) follows.



28 Mathematical Problems in Engineering

Acknowledgments

The author thanks his colleague Bernhard Braunecker for providing the physical prob-
lems and for stimulating the research reported here. Thanks are also due to Leica Geosys-
tems for granting the time to write the paper.

References

[1] S. Goldstein, “Some two-dimensional diffusion problems with circular symmetry,” Proceedings
of the London Mathematical Society, vol. 34, no. 1, pp. 51–88, 1932.

[2] H. S. Carslaw and J. C. Jaeger, “Some two-dimensional problems in conduction of heat with
circular symmetry,” Proceedings of the London Mathematical Society, vol. 46, no. 1, pp. 361–388,
1940.

[3] J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions,
Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Hemi-
sphere, London, UK, 1992.

[4] R. Courant and D. Hilbert, Mathematical Methods in Physics, Vol. II: Partial Differential Equa-
tions, John Wiley & Sons, New York, NY, USA, 1962.

[5] H. S. Carlslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, Oxford,
UK, 2nd edition, 1986.

[6] Y. Jaluria and K. E. Torrance, Computational Heat Transfer, Series in Computational Methods
and Physical Processes in Mechanics and Thermal Sciences, Taylor & Francis, New York, NY,
USA, 2nd edition, 2003.

[7] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cam-
bridge, UK, 2nd edition, 1944.

[8] I. N. Sneddon, Spezielle Funktionen der mathematischen Physik und Chemie, vol. 54 of
B. I. Hochschultaschenbücher: Mathematische, Formelsammlung II, Bibliographisches Institut,
Mannheim, Germany, 1963.

[9] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, NY,
USA, 1970, 9th printing.

[10] D. Zwillinger, Ed., CRC Standard Mathematical Tables and Formulae, CRC Press, Boca Raton,
Fla, USA, 30th edition, 1996.

[11] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of
Mathematical Physics, vol. 52 of Die Grundlehren der mathematischen Wissenschaften, Springer,
New York, NY, USA, 3rd edition, 1966.

Beat Aebischer: Corporate Technology and Innovation Center, Leica Geosystems AG,
9435 Heerbrugg, Switzerland
Email address: beat.aebischer@leica-geosystems.com

mailto:beat.aebischer@leica-geosystems.com

	1. Introduction
	1.1. General assumptions and preliminaries

	2. Constant temperature of the mounting
	2.1. Statement of the problem
	2.2. Scaling
	2.3. Analytic solution
	2.4. Numerical considerations and examples
	2.5. Energy conservation and a sum formula

	3. Prescribing heat flux instead of temperature
	3.1. Problem statement
	3.2. Scaling
	3.3. Analytic solution
	3.4. Numerical results

	4. Heating only part of the cylinder mantle
	4.1. Statement of the problem and scaling
	4.2. Analytic solution
	4.3. Numerical results

	5. Heating through absorption in the coating
	5.1. Statement of the problem and scaling
	5.2. Stationary case
	5.3. Analytic solution for the general case
	5.4. Numerical results
	5.5. Stationary solution for a lens of variable thickness

	6. Conclusions
	Appendices
	A. Mathematical derivations for [sec:1]Section 2
	B. Mathematical derivations for [sec:2]Section 3
	C. Mathematical derivations for [sec:3]Section 4
	D. Mathematical derivations for [sec:4]Section 5
	Acknowledgments
	References

