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This paper explores the behavior of rational probabilistic deciders (RPDs) in three types
of collectives: zero sum matrix games, fractional interactions, and Edgeworth exchange
economies. The properties of steady states and transients are analyzed as a function of
the level of rationality, N , and, in some cases, the size of the collective, M. It is shown
that collectives of RPDs, may or may not behave rationally, depending, for instance, on
the relationship between N and M (under fractional interactions) or N and the mini-
mum amount of product exchange (in Edgeworth economies). The results obtained can
be useful for designing rational reconfigurable systems that can autonomously adapt to
changing environments.
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1. Introduction

1.1. Issues addressed and results obtained. The notion of a rational probabilistic de-
cider (RPD) was introduced in [1]. Roughly speaking, an RPD is a stochastic system,
which takes less penalized decisions with larger probabilities than other ones (see Section
1.2 below for a precise definition). Two types of RPDs have been analyzed: local (L-RPD)
and global (G-RPD). L-RPDs take their decisions based on the penalty function of their
current states, while G-RPDs consider penalties of other states as well.

In [1], the behavior of individual RPDs was investigated. It was shown that asymptotic
properties of both L- and G-RPDs are the same: both converge to the best decision when
the so-called level of rationality tends to infinity. However, their temporal properties are
different: G-RPDs react at a faster rate, which gives them an advantage in nonstationary
environments.
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The current paper is devoted to group (or collective) behavior of RPDs. A collective of
RPDs is formed by assuming that their penalty functions are interrelated in the sense that
the penalty of each depends on the actions of the others. Three types of penalty functions
are considered. In the first one, the penalty function is defined by the payoff matrix of
a zero sum game (with the players being RPDs). In the second, referred to as fractional,
the penalty function depends on the fraction of the group members that select a partic-
ular decision. The fractional interactions considered are of two types: homogeneous and
nonhomogeneous. In the homogeneous case, all group members are penalized identi-
cally, while in the nonhomogeneous one the penalty depends on the particular subgroup
to which an RPD belongs. Finally, the third type of penalty function is defined by an
economic model referred to as the Edgeworth exchange economy.

In all these types of interactions, the question of interest is that will a collective of RPDs
behave rationally, that is, converge to the state where the penalty is minimized? Analyzing
this question, this paper reports the following results.

In the matrix game environment,
(a) both L- and G-RPDs converge to the min-max point if the payoff matrix has a

saddle in pure strategies; this result is analogous to that obtained in [2], where
rational behavior was modeled by finite automata;

(b) if the saddle point is in mixed strategies, both L- and G-RPDs are unable to find
these, however, G-RPDs playing against L-RPDs win by converging to the upper
value of the game; this result is novel;

(c) if an L-RPD or G-RPD is playing against a human that uses his mixed optimal
strategy, the RPD is able to find its mixed optimal strategy provided that the pay-
off matrix is symmetric; this is different from [3] in that finite automata cannot
find mixed optimal strategies when playing against humans;

(d) rates of convergence for G-RPDs are faster than those for L-RPDs, giving G-
RPDs an advantage in the transients when playing against L-RPDs in games with
a saddle in pure strategies; this result is novel—the previous literature did not
address this issue.

Under homogeneous fractional interaction,
(a) a collective behaves optimally if the level of rationality of each RPD grows at least

as fast as the size of the collective; this is similar to the result obtained in [4, 5],
where rational behavior was modeled by finite automata and general dynamical
systems, respectively;

(b) although G-RPDs behave similarly to L-RPDs in the steady state, the rate of con-
vergence for G-RPDs is much faster than that of L-RPDs; this result is also novel.

Under nonhomogeneous fractional interaction,
(a) a collective behaves optimally even if the size of the collective tends to infinity as

long as the level of rationality of each individual is sufficiently large; this result is
similar to that obtained in [5];

(b) as in homogeneous fractional interactions, the rate of convergence for G-RPDs
is much faster than that of L-RPDs, which is also a new result.

In the Edgeworth exchange economy [6],
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(a) G-RPDs with an identical level of rationality converge to a particular Pareto equi-
librium, irrespective of the initial product allocation; this result is different from
the classical one where the convergence is to a subset of the Pareto equilibrium,
which is defined by the initial allocation; this result is novel;

(b) if the level of rationality of the two G-RPDs are not identical, the resulting stable
Pareto equilibrium gives advantage to the one with larger rationality; this result
is also novel.

1.2. Definition of RPD. To make this paper self-contained, below we briefly recapitulate
the definition of RPDs; for more details, see [1], where a comprehensive literature review
is also included.

A probabilistic decider (PD) is a stochastic system defined by a quadruple,

(�,Φ,N ,�), (1.1)

where � = {1,2, . . . ,s} is the decision space; Φ = [ϕ1,ϕ2, . . . ,ϕs] is the penalty function;
N ∈ (0,∞) is the level of rationality; and �= {P1,P2, . . . ,Ps} is a set of transition proba-
bilities such that the probability of a state transition from state i∈� is

P
[
x(n+ 1) �= i | x(n)= i]= Pi

(
ϕ1,ϕ2, . . . ,ϕs;N

)= Pi(Φ;N), n= 0,1,2, . . . . (1.2)

When a state transition occurs, all other states are selected equiprobably, that is,

P
[
x(n+ 1)= j | x(n)= i]= Pi(Φ;N)

s− 1
for j �= i. (1.3)

Let κi(Φ;N) denote the steady state probability of state i∈� when Φ is constant (i.e.,
the environment is stationary). A PD is rational (i.e., RPD) if the following takes place:
inequality ϕi < ϕj implies that

κi
κj
> 1, ∀N ∈ (0,∞), (1.4)

and, moreover,

κi
κj
−→∞ as N −→∞. (1.5)

An RPD is local (i.e., L-RPD) if

Pi(Φ;N)= PI(ϕi,N
)
, i∈�, (1.6)

that is, L-RPDs take decisions based on the penalty of the current state. An RPD is global
(i.e., G-RPD) if �= {1,2},

P1(Φ;N)
P2(Φ;N)

= PII(ϕ1,ϕ2;N
)
, (1.7)
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that is, G-RPDs take decisions based on the penalties of all states. The properties of PI

and PII are described in [1]. In particular, PII may be of the form

PII = F(G
(
N ,ϕ1

/
ϕ2)

)

F
(
G(N ,ϕ2

/
ϕ1)

) , (1.8)

where functions F and G are characterized in [1]. Examples of appropriate functions F
and G can be given as follows:

F(x)= x

1 + x
, G(N , y)= yN . (1.9)

The current paper addresses the issue of collective behavior of M RPDs, that is, when
the penalty function ϕi, i= 1,2, . . . ,s, is not constant but is changing in accordance with
changing states of all members of the collective.

1.3. Paper outline. The outline of this paper is as follows. In Section 2, we introduce
the notion of a collective of RPDs and describe the problems addressed. The collective
behaviors of RPDs in zero sum matrix games, under fractional interactions, and in Edge-
worth exchange economies are investigated in Sections 3–5, respectively, and Section 6
gives conclusions. All proofs are given in the appendices.

2. Collective of RPDs

2.1. Modeling. A collective of RPDs is defined as a set of RPDs, where the penalties in-
curred by an RPD depend not only on the its state but also on the states of the other
RPDs. Specifically, consider a set of M RPDs. Denote the jth RPD by the quadruple,
(� j ,Φ j ,N j ,� j), j = 1,2, . . . ,M, where

(a) � j = {x j1 ,x
j

2 , . . . ,x
j
s j} is the decision space of the jth RPD. At each time moment,

n= 0,1,2, . . . , the RPD is in one of the states of � j ;
(b) Φ j(n)= [ϕ

j
1(n) ϕ

j
2(n) ··· ϕ

j
s j (n)] is a vector, where ϕ

j
i (n) denotes the pen-

alty associated with state x
j
i ∈� j at time n. Furthermore, we assume

ϕ
j
i (n)= φ j

(
x1(n),x2(n), . . . ,x j−1(n),x

j
i ,x j+1(n), . . . ,xM(n)

)
, (2.1)

where xk(n)∈�k, k �= j, denotes the state of the kth RPD at time n;
(c) N j ∈ (0,∞) is a positive number, which denotes the level of rationality of the jth

RPD;
(d) � j = {P j

1 (Φ j(n),N j),P
j

2 (Φ j(n),N j), . . . ,P
j
s j (Φ

j(n),N j)}, where

0 < P
j
i

(
Φ j(n),N j

)
< 1, (2.2)

is a set of transition probabilities depending on Φ j(n) and N j .
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The collective of RPDs can operate in the following two modes.

(α) Parallel operation: if at time n the jth RPD, j = 1,2, . . . ,M, is in state x
j
i , then the

probability that it will make a state transition at time n+ 1 is

P
[
x j(n+ 1) �= x ji | x j(n)= x ji

]= P j
i

(
Φ j(n);N j

)
. (2.3)

When a state transition occurs, the RPD chooses any other state with equal prob-
ability, that is,

P
[
x j(n+ 1)= x jl | x j(n)= x ji

]= P
j
i

(
Φ j(n);N j

)

s j − 1
for x

j
i �= x jl . (2.4)

(β) Sequential operation: at each time n, one of the RPDs is chosen with probability

1/M. Suppose the jth RPD is chosen and that it is in state x
j
i . Then, at time n+ 1,

it will make a state transition according to (2.3) and (2.4), while all other RPDs
remain in their original states.

2.2. Problems. The interactions among the RPDs in a collective are described by the
penalties in (2.1), and are defined by the environment surrounding the collective. In this
paper, the behavior of collectives of RPDs in zero sum matrix games, under fractional
interactions, and in Edgeworth exchange economies are considered. In particular, we ad-
dress the following problems: given a collective of RPDs and an environment,

(i) analyze the steady state probabilities of various decisions as a function of the level
of rationality and the parameters of the environment;

(ii) investigate the rates of convergence to the steady state.
Exact formulations and solutions of these problems are given in Sections 3–5.

3. Collective of RPDs in zero sum matrix games

3.1. Environment and steady state probabilities. Consider a 2× 2 zero sum matrix
game with payoff matrix

M =
[
m11 m12

m21 m22

]

, (3.1)

wheremkl, k, l = 1,2, is the payoff to the first player when it selects action k and the second
selects action l. Without loss of generality, we assume that

−0.95≤mkl ≤ 0.95 k, l = 1,2. (3.2)

The two players of the matrix game form a collective of RPDs described below.
(i) The first and second player of the matrix game are the first and second RPD of

the collective, respectively.
(ii) Let � j = {1,2}, j = 1,2, where the states in � j correspond to the actions of the

RPDs.
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(iii) Converting payoffs to penalties, let

Φ j(n)=
[
ϕ
j
1(n) ϕ

j
2(n)

]
, (3.3)

where

ϕ
j
i (n)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−mil

2
, if j = 1 and the second RPD selects state l at time n,

1 +mki

2
, if j = 2 and the first RPD selects state k at time n.

(3.4)

(iv) The RPDs of the collective are L-RPDs or G-RPDs. If the jth RPD is L-RPD, then

P
j
i

(
Φ j(n);N j

)= (
ϕ
j
i (n)

)N j

for i= 1,2. (3.5)

If the jth RPD is G-RPD with functions F and G given by (1.9), then

P
j
i

(
Φ j(n);N j

)=
(
ϕ
j
i (n)

)N j

(
ϕ
j
1(n)

)N j

+
(
ϕ
j
2(n)

)N j for i= 1,2. (3.6)

(v) The RPDs make state transitions according to parallel operation mode.
Due to assumptions (i)–(v), the dynamics of a collective of RPDs playing the 2× 2

matrix game is described by an ergodic Markov chain with transition matrix

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
1− a11

)(
1− b11

) (
1− a11

)
b11 a11

(
1− b11

)
a11b11

(
1− a12

)
b12

(
1− a12

)(
1− b12

)
a12b12 a12

(
1− b12

)

a21
(
1− b21

)
a21b21

(
1− a21

)(
1− b21

) (
1− a21

)
b21

a22b22 a22
(
1− b22

) (
1− a22

)
b22

(
1− a22

)(
1− b22

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.7)

where

akl =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1−mkl

2

)N1

, if the first RPD is an L-RPD,

((
1−mkl

)
/2
)N1

((
1−m1l

)
/2
)N1

+
((

1−m2l
)
/2
)N1 , if the first RPD is a G-RPD,

(3.8)

bkl =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1 +mkl

2

)N2

, if the second RPD is an L-RPD,

((
1 +mkl

)
/2
)N2

((
1 +mk1

)
/2
)N2

+
((

1 +mk2
)
2
)N2 , if the second RPD is a G-RPD.

(3.9)
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Let κ= [κ11 κ12 κ21 κ22] be a row vector, where κkl is the steady state probability of
the first RPD selecting state k and the second selecting l. Then, κ can be calculated from
the equations

κ= κA,
∑

kl

κkl = 1. (3.10)

The solutions to (3.10) are given by

κ11 =−Δ11

Δ
, κ12 =−Δ12

Δ
, κ21 =−Δ21

Δ
, κ22 =−Δ22

Δ
, (3.11)

where

Δ=−a12a21b11− a21a22b11− a11a22b12− a21a22b12− a11a21b11b12

+ a12a21b11b12 + a11a22b11b12− a12a22b11b12− a11a12b21− a11a22b21

− a12b11b21 + a11a12b11b21 + a12a21b11b21− a22b11b21 + a11a22b11b21

+ a21a22b11b21− a11b12b21 + a11a12b12b21 + a11a21b12b21− a22b12b21

+ a12a22b12b21 + a21a22b12b21− a11a12b22− a12a21b22− a12b11b22

+ a11a12b11b22− a21b11b22 + a11a21b11b22 + a12a22b11b22

+ a21a22b11b22− a11b12b22 + a11a12b12b22− a21b12b22

+ a12a21b12b22 + a11a22b12b22 + a21a22b12b22− a11a21b21b22

+ a12a21b21b22 + a11a22b21b22− a12a22b21b22,

Δ11 = a21a22b12 + a22b12b21− a12a22b12b21− a21a22b12b21

+ a12a21b22 + a21b12b22− a12a21b12b22− a21a22b12b22

− a12a21b21b22 + a12a22b21b22,

Δ12 = a21a22b11 + a11a22b21 + a22b11b21− a11a22b11b21

− a21a22b11b21 + a21b11b22− a11a21b11b22− a21a22b11b22

+ a11a21b21b22− a11a22b21b22,

Δ21 = a11a22b12− a11a22b11b12 + a12a22b11b12 + a11a12b22

+ a12b11b22− a11a12b11b22− a12a22b11b22 + a11b12b22

− a11a12b12b22− a11a22b12b22,

Δ22 = a12a21b11 + a11a21b11b12− a12a21b11b12 + a11a12b21

+ a12b11b21− a11a12b11b21− a12a21b11b21 + a11b12b21

− a11a12b12b21− a11a21b12b21.

(3.12)

These expressions are used below to analyze steady states of collectives where payoff

matrices lead to either pure or mixed optimal strategies.
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3.2. Zero sum matrix games having pure optimal strategies. In this subsection, it is
assumed that the matrix game at hand has a pure optimal strategy. Without loss of gen-
erality, assume the payoff matrix in (3.1) satisfies the relation

m21 <m11 <m12, (3.13)

that is, m11 is the saddle point, and the optimal strategy is for both RPDs to select action
1. Furthermore, assume the RPDs have the same level of rationality, that is,

N1 =N2 =N , (3.14)

where N ∈ (0,∞).

3.2.1. Steady state behavior. The following analysis question is addressed.
A1: can RPDs, playing the above matrix game, find their pure optimal strategies, that

is, κ11 → 1 as N →∞?
Specifically, the following collectives of RPDs are of interest.

(C1) Both RPDs are L-RPDs.
(C2) Both RPDs are G-RPDs.
(C3) The first RPD is a G-RPD and the second is an L-RPD.
Evaluation of (3.11) shows that for the collectives (C1)–(C3), κ11 approaches 1 as N

approaches infinity, that is, the RPDs converge to the saddle point reliably as N becomes
arbitrarily large. This is illustrated in Figures 3.1 and 3.2 for payoff matrices,

[ −0.1 −0.05

−0.15 −0.9

]

, (3.15)

[
0.1 0.5

0.05 −0.15

]

, (3.16)

respectively. For the matrix game (3.15) and for the collectives (C1) and (C2), the values
of N that are required to converge reliably to the saddle point, for example, κ11 = 0.95,
are 76 and 87, respectively. For the matrix game (3.16), the required values of N are 20
and 68, respectively. Based on the above, the following observations can be made.

(a) Although a G-RPD uses more information than an L-RPD, this does not lead to
an advantage as N →∞ (in the sense that the G-RPD does not receive more than
the optimal payoff).

(b) Surprisingly, the required N for reliable selection of the saddle point is larger
when both players are G-RPDs than when both are L-RPDs. In some games, as
the one with payoff matrix (3.16), the difference is quite large.

3.2.2. Transient behavior. From the above analysis, G-RPDs do not outperform L-RPDs
in the steady state. However, the fact that G-RPDs use more information should, in some
way, give G-RPDs advantage over L-RPDs. Hence, the following question is addressed.

A2: can G-RPDs outperform L-RPDs during the transients of a matrix game?
The rates of convergence in time are analyzed first. Given the payoff matrix defined in

(3.15), Figure 3.3 shows the behavior of the second largest eigenvalue, λ2, of matrix A as a
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Figure 3.1. Steady state probabilities κkl versus N for the collectives (C1)–(C3) with payoff matrix
(3.15).

function of N for the collectives (C1) and (C2). As it follows from this figure, it will take
an arbitrarily long time for the game to converge as N becomes large if both players are
L-RPDs, while this is not true if both players are G-RPDs. Moreover, when both players
are G-RPDs, the time required for convergence becomes shorter asN becomes larger and,
when N becomes arbitrarily large, that time tends to zero.

Next, consider a matrix game played by (C3). Let PG(n) and PL(n) denote the payoffs
to the G-RPD and L-RPD, respectively, at time n, and let

P
avg
G (n)= 1

n

n∑

i=0

PG(i), P
avg
L (n)= 1

n

n∑

i=0

PL(i). (3.17)
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Figure 3.2. Steady state probabilities κkl versus N for the collectives (C1)–(C3) with payoff matrix
(3.16).

Figure 3.4 shows P
avg
G (n) and P

avg
L (n) as a function of time n for the matrix game,

[
0 0.5

−0.5 0

]

, (3.18)

assuming N = 5 and players initially at the saddle point. Clearly, G-RPDs, being able to
converge faster, have advantage over L-RPDs during the transients of the game.

3.3. Zero sum matrix games having mixed optimal strategies. In this subsection, it is
assumed that the matrix game at hand has a mixed optimal strategy. Without loss of
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Figure 3.3. Second largest eigenvalue |λ2| versus N for (C1), (C2), and payoff matrix (3.15).
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Figure 3.4. Average payoffs P
avg
G (n) and P

avg
L (n) as a function of n.

generality, assume the payoff matrix (3.1) satisfies the relation,

m11 ≥m22 >m12 ≥m21. (3.19)
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Hence, the mixed optimal strategy is as follows: the first player selects action 1 with prob-
ability

κ1∗ = m22−m21(
m11 +m22

)− (
m12 +m21

) , (3.20)

and the second player selects action 1 with probability

κ2∗ = m22−m12(
m11 +m22

)− (
m12 +m21

) . (3.21)

The following analysis question is addressed.
A: can RPDs playing the matrix game find their mixed optimal strategies?

To answer this question, collectives (C1)–(C3) of Section 3.2.1 with N1 = N2 = N are
considered. Evaluating (3.11), one can see that none of the RPDs is able to find the mixed
optimal strategy. Specifically,

(i) for (C1), as N →∞, the game value converges to either the lower or upper value
of the game, depending on the payoff matrix, that is, to either m12 or m22;

(ii) for (C2), as N →∞, the game value converges to the average of the entries of the
payoff matrix, that is, to (m11 +m12 +m21 +m22)/4;

(iii) for (C3), the outcome of the matrix game always converges to the upper value,
m22, of the game as N →∞; this means that, when N is sufficiently large, the
G-RPD is always receiving more than the optimal payoff, and hence, has an ad-
vantage when playing against the L-RPD.

Since the players are not able to find their mixed optimal strategies when both are
RPDs, we consider the following additional collectives.

(C4) The first player is an L-RPD and the second is a human playing according to his
mixed optimal strategy.

(C5) The first player is a G-RPD and the second is a human playing according to his
mixed optimal strategy.

For (C4) and (C5), the transition matrix A in (3.7) becomes

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
1− a11

)
κ2∗ (

1− a11
)(

1− κ2∗) a11κ2∗ a11
(
1− κ2∗)

(
1− a12

)
κ2∗ (

1− a12
)(

1− κ2∗) a12κ2∗ a12
(
1− κ2∗)

a21κ2∗ a21
(
1− κ2∗) (

1− a21
)
κ2∗ (

1− a21
)(

1− κ2∗)

a22κ2∗ a22
(
1− κ2∗) (

1− a22
)
κ2∗ (

1− a22
)(

1− κ2∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.22)

The steady state probabilities in (3.11) become

κ11 =−Δ′11

Δ′
, κ12 =−Δ′12

Δ′
, κ21 =−Δ′21

Δ′
, κ22 =−Δ′22

Δ′
, (3.23)
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where

Δ′ = −a12− a22− a11κ
2∗ + a12κ

2∗ − a21κ
2∗ + a22κ

2∗,

Δ′11 = a22κ
2∗ + a21

(
κ2∗)2− a22

(
κ2∗)2

,

Δ′21 = a22 + a21κ
2∗ − 2a22κ

2∗ − a21
(
κ2∗)2

+ a22
(
κ2∗)2

,

Δ′21 = a12κ
2∗ + a11

(
κ2∗)2− a12

(
κ2∗)2

,

Δ′22 = a12 + a11κ
2∗ − 2a12κ

2∗ − a11
(
κ2∗)2

+ a12
(
κ2∗)2

.

(3.24)

The steady state probability of the RPD selecting action 1 is given by

κ1 = κ11 + κ12. (3.25)

We have the following theorem.

Theorem 3.1. Collectives (C4) and (C5) converge to the mixed optimal strategy, that is,

lim
N→∞

κ1 = κ1∗ (3.26)

if and only if m12 =m21.

Hence, when the payoff matrix is symmetric, the RPDs can find their mixed optimal
strategies if N is large enough. Figures 3.5 and 3.6 illustrate Theorem 3.1 for the nonsym-
metric payoff matrix,

[
0.4 0.2
0.1 0.3

]

, (3.27)

and the symmetric payoff matrix,

[
0.4 0.2
0.2 0.3

]

, (3.28)

respectively.
The results presented in this section are a characterization of RPDs behavior in zero

sum 2× 2 matrix games.

4. Collectives of RPDs under fractional interactions

4.1. Environment and steady state probabilities. Consider a collective of M RPDs de-
scribed as follows.

(i) � j = {x1,x2} for j = 1,2, . . . ,M.
(ii) Function φ j in (2.1) satisfies

φ j
(
x1,x2, . . . ,x j , . . . ,xM

)= φ(ν,x j
)
, (4.1)
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Figure 3.5. Steady state probabilities κ1 versus N for the collectives (C4) and (C5) and payoff matrix
in (3.27).
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Figure 3.6. Steady state probabilities κ1 versus N for the collectives (C4) and (C5) and payoff matrix
in (3.28).

where xi, i = 1,2, . . . ,M, is the state of the ith member of the collective and ν is
the fraction of x1,x2, . . . ,x j , . . . ,xM being in state x1 and

0 < φ
(
ν,x j

)
< 1. (4.2)

(iii) Equation (3.5) or (3.6) holds if the jth RPD is L-RPD or G-RPD, respectively.
(iv) N j =N , j = 1,2, . . . ,M, where N ∈ (0,∞).
(v) The RPDs make state transitions according to the sequential mode of operation.

We analyze the behavior of collectives consisting of all L-RPDs or all G-RPDs.
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Let κ(n)= [κ1(n) κ2(n) ··· κM(n)] be a row vector, where κk(n) is the probabil-
ity that k RPDs are in state x1 at time n, and νk = k/M. Then, by assumptions (i)–(v), the
dynamics of the collective is described by an ergodic Markov chain,

κ0(n+ 1)= κ0(n)
(
1− p

(
ν0,x2,N

))
+ κ1(n)

(
ν1p

(
ν1,x1,N

))
,

κM(n+ 1)= κM−1(n)
(
ν1p

(
νM−1,x2,N

))
+ κM(n)

(
1− p

(
νM ,x1,N

))
,

κk(n+ 1)= κk−1(n)
(
νM−k+1p

(
νk−1,x2,N

))

+ κk(n)
(
νk
(
1− p

(
νk,x1,N

))
+ νM−k

(
1− p

(
νk,x2,N

)))

+ κk+1(n)
(
νk+1p

(
νk+1,x1,N

))
, for 0 < k <M,

(4.3)

where

p
(
νk,xi,N

)= (
φ
(
νk,xi

))N
,

p
(
νk,xi,N

)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
φ
(
νk,x1

))N

(
φ
(
νk,x1

))N
+
(
φ
(
νk−1,x2

))N if i= 1,

(
φ
(
νk,x2

))N

(
φ
(
νk,x2

))N
+
(
φ
(
νk+1,x1

))N if i= 2,

(4.4)

for L-RPDs and G-RPDs, respectively.
More compactly, the dynamics can be written as

κ(n+ 1)= κ(n)A, (4.5)

where A is a transition matrix defined by (4.3).
Let κ= [κ1 κ2 ··· κM] be a row vector, where κk denotes the steady state proba-

bility of k RPDs being in state x1. Then, (4.3) implies

κk = CM
k

∏k−1
n=0 p

(
νn,x2,N

)

∏k
l=1 p

(
νl,x1,N

) κ0 ∀1≤ k ≤M, (4.6)

where

κ0 = 1

1 +
∑M

n=1

(
CM
n

∏n−1
k=0 p

(
νk,x2,N

)
/
∏n

l=1 p
(
νl,x1,N

)) . (4.7)

4.2. Homogeneous fractional interaction. In this subsection, we assume

φ
(
ν,x j

)= f (ν), x j ∈ {
x1,x2

}
, (4.8)

where

f : [0,1]−→ (0,1), (4.9)



16 Mathematical Problems in Engineering

is a continuous function with a unique global minimum at ν∗ ∈ (0,1). Relationship (4.8)
implies that all the RPDs have the same penalty, which depends on the fraction of the
collective in state x1. For both cases, where the collective consists of all L-RDPs and all
G-RPDs, the steady state probabilities in (4.6) reduce to the same expression,

κk = CM
k

f N
(
νk
)∑M

l=0

(
CM
l / f

N
(
νl
)) ∀0≤ k ≤M. (4.10)

4.2.1. Steady state behavior. The following analysis question is addressed.
A1: can the RPDs distribute themselves between x1 and x2 optimally, that is, so that

f (ν) reaches its global minimum, f (ν∗)?
Let I = {0,1, . . . ,M} and T ⊂ I so that for all k ∈ T ,

f
(
νk
)=min

l∈I
f
(
νl
)
. (4.11)

The following theorems answer this question.

Theorem 4.1. Consider a collective of M L-RPDs or G-RPDs with homogeneous fractional
interactions. Then,

lim
a→∞

∑

k∈T
κk = 1. (4.12)

Hence, for a collective with fixed size, the RPDs are able to distribute themselves be-
tween states x1 and x2 optimally if N is large enough.

Let ν(n) be the fraction of the collective in state x1 at time n. We have the following
theorem.

Theorem 4.2. Consider a collective of L-RPDs or G-RPDs with homogeneous fractional
interactions and fixed N . Moreover, assume the penalty function f is Lipschitz. Then,

lim
M→∞

lim
n→∞ν(n)= 1

2
in probability. (4.13)

Therefore, as the size of a collective becomes arbitrarily large whileN is fixed, the RPDs
distribute themselves equally between the two states. This behavior is similar to that of a
statistical mechanical gas and is referred to as convergence to maximum entropy.

From Theorems 4.1 and 4.2, one can see that the parameters N and M have opposing
effects. Increasing N increases the ability of the RPDs to sense the difference between the
two states, while increasing M reduces this ability. Thus, we ask the following question.

A2: can the RPDs distribute themselves between states x1 and x2 optimally as N and
M increase simultaneously?

Let Δ be a sufficiently small number and define the intervals,

A=
[

ν∗ − Δ

2
,ν∗ +

Δ

2

]
, (4.14)

B =
[

1
2
− Δ

2
,
1
2

+
Δ

2

]
. (4.15)
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Moreover, let IA ⊂ I and IB ⊂ I so that for all k ∈ IA and for all k ∈ IB, we have νk ∈ A and
νk ∈ B, respectively. We have the following theorems.

Theorem 4.3. Consider a collective of L-RPDs or G-RPDs with homogeneous fractional
interactions. Given interval A, there exists a constant CA such that if

lim
N→∞
M→∞

N

M
>CA, (4.16)

one has

lim
N→∞
M→∞

∑
k∈IA κk∑
k /∈IA κk

=∞. (4.17)

Hence, when both N and M grow without bound, N must grow fast enough so that
(4.16) holds in order for the RPDs to distribute themselves among x1 and x2 optimally
with high probability.

Theorem 4.4. Consider a collective of L-RPDs or G-RPDs with homogeneous fractional
interactions. Given interval B, there exists a constant CB such that if

lim
N→∞
M→∞

N

M
< CB, (4.18)

one has

lim
N→∞
M→∞

∑
k∈IB κk∑
k /∈IB κk

=∞. (4.19)

Therefore, when both N and M grow without bound and M is growing so fast that
(4.18) holds, the convergence to maximum entropy will take place.

4.2.2. Transient behavior. Next, the convergence rates of the collectives are analyzed. As-
suming M = 10 and f in (4.9) is given by

f (ν)= 80
49

(ν− 0.3)2 + 0.1, (4.20)

Figure 4.1 shows the second largest eigenvalue, λ2, of A in (4.5) as a function of N for
collectives with all L-RPDs and all G-RPDs. Clearly, as N becomes large, it will take an
arbitrary long time for L-RPDs to converge while this is not true for G-RPDs.

4.3. Nonhomogeneous fractional interaction. In this subsection, we assume

φ
(
ν,x j

)=
⎧
⎨

⎩
f1(ν) if x j = x1,

f2(ν) if x j = x2,
(4.21)

where

f1 : [0,1]−→ (0,1) (4.22)
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Figure 4.1. Second largest eigenvalue |λ2| versus N for collectives consisting of all L-RPDs and all
G-RPDs.

is a continuous strictly increasing function,

f2 : [0,1]−→ (0,1) (4.23)

is a continuous strictly decreasing function, and f1 and f2 intersect at a single point ν∗ ∈
(0,1). Thus, RPDs in different states are penalized differently while RPDs in the same
states have the same penalties, which depend on the fraction of the collective in state x1.
Moreover, when the fraction of the RPDs in x1 is ν∗, no RPD can decrease its penalty by
changing its state while others stay in their states. Hence, ν∗ is a Nash equilibrium [7]. For
both cases, where the RPDs are all L-RPDs and all G-RPDs, the steady state probabilities
in (4.6) become

κk = CM
k

∏k−1
n=0 f

N
2

(
νn
)

∏k
l=1 f

N
1

(
νl
) κ0 ∀1≤ k ≤M, (4.24)

where

κ0 = 1

1 +
∑M

n=1

(
CM
n

∏n−1
k=0 f

N
2

(
νk
)
/
∏n

l=1 f
N

1

(
νl
)) . (4.25)

4.3.1. Steady state behavior. The following analysis question is addressed.
A1: can the RPDs distribute themselves between x1 and x2 optimally, that is, in the

neighborhood of ν∗?
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Let k∗ be the smallest number in {1,2, . . . ,M} such that

f1
(
νk∗+1

)≥ f2
(
νk∗

)
. (4.26)

We have the following theorem.

Theorem 4.5. Consider a collective of M L-RPDs or G-RPDs with nonhomogeneous frac-
tional interaction. If f1(νk∗+1) > f2(νk∗), then

lim
N→∞

κk∗ = 1. (4.27)

If f1(νk∗+1)= f2(νk∗), then

lim
N→∞

κk∗+1 = M− k∗
M + 1

, lim
N→∞

κk∗ = k∗ + 1
M + 1

. (4.28)

In other words, this theorem states that if f1(νk∗+1) > f2(νk∗), then, when the fraction
of the RPDs in x1 is νk∗ , none of the RPDs can decrease its penalty by changing its state
while others stay in their states. Convergence to νk∗ is optimal. Similarly, if f1(νk∗+1) =
f2(νk∗), then, when the fraction of the RPDs in x1 is νk∗ or νk∗+1, none of the RPDs can
decrease its penalty by changing its state while others stay in their states. Convergence to
νk∗ or νk∗+1 is optimal. Hence, for a collective of fixed size and N sufficiently large, the
RPDs can find an optimal distribution. Furthermore, |ν∗ − νk∗| ≤ 1/M. So, if M is large,
the distribution is close to ν∗ if N is sufficiently large.

Let Δ be a sufficiently small number and define the interval,

D =
[

ν∗ − Δ

2
,ν∗ +

Δ

2

]
. (4.29)

Moreover, let ID ⊂ I so that for all k ∈ ID, we have νk ∈D. We have the following theorem.

Theorem 4.6. Consider a collective of L-RPDs or G-RPDs with nonhomogeneous fractional
interactions. Given the interval D, there exists a constant CD so that if

N > CD, (4.30)

one has

lim
M→∞

∑
k∈ID κk∑
k /∈ID κk

=∞. (4.31)

Therefore, as long as N is large enough so that (4.30) is satisfied, the RPDs, unlike
under homogeneous fractional interactions, do distribute themselves close to the Nash
equilibrium even if the size of the collective is growing without bound.

4.3.2. Transient behavior. Next, the convergence rates of the collectives are analyzed. As-
suming M = 10 and f1 and f2 in (4.22) and (4.23) are given by

f1(ν)= 0.8ν + 0.1,

f2(ν)=−12
35

ν +
31
70

,
(4.32)
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Figure 4.2. Second largest eigenvalue |λ2| versus N for collectives consisting of all L-RPDs and all
G-RPDs.

respectively, Figure 4.2 shows the second largest eigenvalue, λ2, of A in (4.5) as a function
of N for collectives consisting of all L-RPDs and all G-RPDs. Similar to collectives with
homogeneous fractional interactions, as N becomes large, it will take an arbitrarily long
time for L-RPDs to converge while this is not true for G-RPDs.

4.4. Discussion. The theory presented above may be used for designing autonomously
reconfigurable systems. To illustrate this, consider a robot with two operating modes, it
can either perform the required work or assemble new robots. The robot is referred to
as a worker or a self-reproducer when it is performing work or assembling other robots,
respectively. Suppose we have a colony of such robots. For the colony to operate efficiently,
there must be a right ratio between the workers and self-reproducers, depending on the
environment.

To use the above theory to maintain this ratio, associate each robot with an RPD as
a controller, where the states of the RPD correspond to the two operating modes of the
robot. Assume the interactions of the robots are modeled as homogenous fractional with
the penalty function f defined by the allocation of the robots between the worker and
self-reproducer castes. The above theory suggests how the relation of the level of ratio-
nality and the size of population should be in order for the colony to sustain itself. Specif-
ically, if the robots are not rational enough as the population becomes large, then the
colony will fail to optimally distribute their operating modes. However, if the interac-
tions of the robots are modeled as nonhomogeneous fractional with functions f1 and f2,
as long as the level of rationality of the robots are sufficiently large, the colony will still
perform optimally even if the size of the colony becomes large.
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Figure 5.1. Edgeworth box describing the exchange economy.

5. Collective behavior of RPDs in Edgeworth exchange economy

5.1. Edgeworth exchange economy. Following [6], consider an exchange economy with
two individuals, A and B, and two products, P1 and P2. The total amount of the prod-
ucts, P1 and P2, are fixed at Y1 and Y2 units, respectively. The allocation of the products
between the two individuals exhausts the amounts of the products and is traditionally
described by the Edgeworth box [6] shown in Figure 5.1. Any point in the Edgeworth
box specifies a certain allocation of the products between the individuals. For example,
the point D in Figure 5.1 specifies that individual A has wD

1 and wD
2 units of P1 and P2,

respectively, and B has zD1 and zD2 units of P1 and P2, respectively, so that

wD
1 + zD1 = Y1, wD

2 + zD2 = Y2. (5.1)

Note that the coordinates of D can be specified by OA(wD
1 ,wD

2 ) (with respect to the coor-
dinate system with origin OA) or OB(zD1 ,zD2 ) (with respect to the coordinate system with
origin OB).

The satisfaction of the individuals with a given allocation of the products is measured
by two penalty functions. Suppose the allocation of the products between individuals A
and B is at OA(w1,w2). Then, the penalties incurred by A and B are

VA
(
w1,w2

)
, VB

(
Y1−w1,Y2−w2

)
, (5.2)

respectively, where

VA :
[
0,Y1

]× [
0,Y2

]−→ (0,∞), VB :
[
0,Y1

]× [
0,Y2

]−→ (0,∞). (5.3)

The larger the penalty incurred, the less satisfied the individual.
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Figure 5.2. Edgeworth box showing level curves of VA and VB defined in (5.4).

Remark 5.1. In the economics literature, the satisfactions of the individuals are specified
by utility functions [6]. The larger the value of the utility function, the greater the sat-
isfaction of the individual. The penalty functions described above can be obtained from
these utility functions, for example, by taking the reciprocal.

Figure 5.2 gives an example of the level curves of the penalty functions for A and B
when

VA
(
w1,w2

)= (
w1w2

)−0.5
, VB

(
Y1−w1,Y2−w2

)= [(
Y1−w1

)(
Y2−w2

)]−0.5
,
(5.4)

and Y1 = Y2 = 5. These penalty functions are reciprocals of the commonly used so-called
Cobb-Douglas utility functions [8].

In Figure 5.2, the dash-dotted diagonal straight line, which consists of points where the
level curves of VA and VB are tangent, is the Pareto line in the sense that when the allo-
cation is on this line, neither A nor B can decrease its penalty by changing the allocations
of the products without increasing the penalty of the other. Under classical assumptions
of the Edgeworth exchange economy, the individuals are assumed to know their penalty
functions exactly and never agree on exchanges that increase their penalty. Hence, in the
classical model, if the allocation is initially, for instance, at point E in Figure 5.2, no matter
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Figure 5.3. Decision space S for Y1 = 5, Y2 = 5, and m= 2.

how individuals A and B decide to exchange their products, the results of the exchanges
are always in the dark grey region. Moreover, under any exchange policy, the resulting
allocation will eventually converge to a point on the segment of the Pareto line, denoted
in Figure 5.2 as FG. When the allocation is on the Pareto line, it cannot change any-
more since there will be no agreement on any exchange [6]. (The roles of sets R1–R3 in
Figure 5.2 will become clear in Section 5.4.)

5.2. Collective of RPDs in Edgeworth exchange economy. In order to introduce RPDs
in the Edgeworth exchange economy, it is convenient to discretize the decision space.
Namely, let

Δ= 1
2m

, (5.5)

where m∈N is given. The individuals can only have integer multiple of Δ units of both
products and must have at least Δ units of each product, that is, Δ is the unit of exchange.
Then, the decision space becomes

S=
{
OA(Δ× l,Δ×h) : l ∈

{
1,2, . . . ,

Y1

Δ
− 1

}
, h∈

{
1,2, . . . ,

Y2

Δ
− 1

}}
. (5.6)

For Y1 = 5 and Y2 = 5, Figure 5.3 shows S when m= 2.
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Assume the individuals in the Edgeworth exchange economy are modeled by G-RPDs
and form a collective satisfying the following.

(i) Both A and B are G-RPDs, as defined in Section 1.2, and are referred to as the
first and second G-RPD, respectively.

(ii) The G-RPDs consider only exchanges that result in at most one Δ change of
their possessions. To formalize this statement, assume that OA(w1(n),w2(n)) is
the allocation after n exchanges, and let

T
(
w1(n),w2(n)

)
:= {

OA
(
w1(n) +Δ× l, w2(n) +Δ×h) : l ∈ {−1,0,1}, h∈ {−1,0,1}}.

(5.7)

Then, the decision space of both G-RPDs is S(w1(n),w2(n))= T(w1(n),w2(n))∩
S. (See Figure 5.3 for an example of S(w1(n),w2(n)) when m = 2 and the al-
location is at point D.) Let the states in S(w1(n),w2(n)) be denoted by xni , i ∈
{1,2, . . . ,sn}, where xni =OA(wn

1,i,w
n
2,i) and sn is the number of states in S(w1(n),

w2(n)), for example, sn = 9 as long as the allocation is 2Δ away from the bound-
aries.

(iii) The penalties for selecting state xni ∈ S(w1(n),w2(n)) are VA(wn
1,i,w

n
2,i) and

VB(Y1−wn
1,i,Y2−wn

2,i) for the first and second G-RPD, respectively.
(iv) The level of rationality of the first and second G-RPD are denoted by N1 and N2,

respectively.
(v) The probabilities of the G-RPDs selecting the states are obtained by pairwise

comparison. To be more specific, let κ1
i be the probability of the first G-RPD

selecting state xni . Then,

κ1
i

κ1
j

= F
(
G
(
N1,VA

(
wn

1, j ,w
n
2, j

)
/VA

(
wn

1,i,w
n
2,i

)))

F
(
G
(
N1,VA

(
wn

1,i,w
n
2,i

)
/VA

(
wn

1, j ,w
n
2, j

))) , (5.8)

where functions F and G are defined in Section 1.2 and the numerator and de-
nominator on the right-hand side of the ratio are the probabilities of the first
G-RPD favoring xni and xnj , respectively, if there were only these two choices.
Assuming functions F and G are as shown in (1.9), we have

κ1
i

κ1
j

=
[
VA

(
wn

1, j ,w
n
2, j

)

VA
(
wn

1,i,w
n
2,i

)

]N1

. (5.9)

Since
∑sn

i=1 κ
1
i = 1, we have

κ1
i =

1/
(
VA

(
wn

1,i,w
n
2,i

))N1

∑sn
j=1

(
1/
(
VA

(
wn

1, j ,w
n
2, j

))N1
) . (5.10)
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Similarly, we have

κ2
i =

1/
(
VB

(
Y1−wn

1,i,Y2−wn
2,i

))N2

∑sn
j=1

(
1/
(
VB

(
Y1−wn

1, j ,Y2−wn
2, j

))N2
) , (5.11)

where κ2
i is the probability of the second G-RPD selecting state xni .

(vi) The n+ 1st exchange made by the G-RPDs is decided by the following rule.
(a) The first and second G-RPDs propose an exchange that results in xni with

probabilities κ1
i and κ2

i , respectively.
(b) If the proposed exchanges agree (i.e., both G-RPDs choose the same xni ), the

exchange is made and the allocation of the products changes accordingly.
Otherwise, step (a) is repeated.

The probability that the exchange results in xni is

1/
(
VA

(
wn

1,i,w
n
2,i

))N1
(
VB

(
Y1−wn

1,i,Y2−wn
2,i

))N2

∑sn
j=1

(
1/
(
VA

(
wn

1, j ,w
n
2, j

))N1
(
VB

(
Y1−wn

1, j ,Y2−wn
2, j

))N2
) . (5.12)

5.3. Scenarios. To analyze the behavior of G-RPDs in Edgeworth exchange economy, we
consider the following scenarios.

(a) The level of rationalities of the G-RPDs are identical,

N1 =N2 =N , (5.13)

NΔ= 1. (5.14)

(b) The level of rationalities of the G-RPDs are as in (5.13) but

NΔ2 = 1. (5.15)

Hence, the G-RPDs become more rational at a faster rate as Δ becomes small so
that the product of the level of rationality and Δ2 is kept at one.

(c) The level of rationalities of the G-RPDs are not identical,

N1 =N = 4N2, (5.16)

and N satisfies (5.15), that is, the first G-RPD is four times more rational than
the second G-RPD.

5.4. Steady state behavior. The following analysis question is addressed.
A: will the allocation of the products converge to the Pareto line (and to which point

on the Pareto line) as n→∞?
To investigate this question, assume, for example, that there are five units of both P1

and P2, that is, Y1 = Y2 = 5, in the economy and the penalty functions for the G-RPDs are
as shown in (5.4). We investigate the allocation of the products as n→∞, whenm in (5.5)
varies from 0 to 4 in each of the scenarios (a)–(c). Although the analysis can be carried
out analytically using Markov chains, the number of states increases exponentially as Δ
becomes small. Hence, computer simulations are employed.
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Table 5.1. Simulation results for scenario (a).

m= 0 m= 1 m= 2 m= 3 m= 4 m= 5

Δ 1
1
2

1
4

1
8

1
16

1
32

N 1 2 4 8 16 32

PR1 0.2745 0.1448 0.2698 0.2937 0.3536 0.4457

Table 5.2. Simulation results for scenario (b).

m= 0 m= 1 m= 2 m= 3 m= 4

Δ 1
1
2

1
4

1
8

1
16

N 1 4 16 64 256

PR2 0 0.0590 0.2260 0.4678 0.8544

Table 5.3. Simulation results for scenario (c).

m= 0 m= 1 m= 2 m= 3 m= 4

Δ 1
1
2

1
4

1
8

1
16

N 1 4 16 64 256

PR3 0.0709 0.0672 0.2234 0.4615 0.8643

The results of the analysis are as follows.
(i) The data for scenario (a) are summarized in Table 5.1. The last row indicates the

frequencies of the allocation of the products converging inside R1 (see Figure
5.2), which is the region defined by |w1 −w2| ≤ 0.25. Thus, if N grows linearly
with the decrease of Δ, the collective does not converge reliably to the Pareto line.

(ii) The data for scenario (b) are summarized in Table 5.2. The last row indicates
the frequencies of the allocation of the products converging inside R2 (see Figure
5.2), which is the square region centered at OA(5/2,5/2) with area 1/8. Hence,
when N grows quadratically with the decrease of Δ, the product allocation con-
verges to a Pareto optimal and is “fair” in the sense that both G-RPDs have equal
amounts of each product.

(iii) The data for scenario (c) are summarized in Table 5.3. The last row indicates the
frequencies of the allocation of the products converging inside R3 (see Figure
5.2), which is the square region centered at OA(4,4) with area 1/8. Hence, the al-
location converges to the small region around OA(4,4), which is Pareto optimal,
when N is large. Thus, when N1 = 4N2, the first G-RPD takes advantage of the
second one in the sense that it ends up with four times as many of both products
as the second G-RPD.
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5.5. Discussion. Based on the results in Section 5.4, the following observations are made.

(i) The product allocation converges to a Pareto optimal one if the level of ratio-
nality of the G-RPDs is large enough relative to the reciprocal of the unit of
exchange. Furthermore, the allocation is a fair one if the G-RPDs have the same
level of rationality. However, if one of the G-RPDs has a larger level of rationality,
it will take advantage of the other and end up with more products than the other.

(ii) In the classical Edgeworth exchange economy, the individuals are tacitly assumed
to be of infinite rationality in the sense that they know precisely their utility func-
tions and never accept trades that decrease their utility. As a result, the system is
not ergodic, that is, the steady state depends on the initial product allocation. In
the RPD formulation, the rationality is bounded [9], the system is ergodic (due
to “mistakes” committed by the individuals in accepting disadvantageous trades)
and, therefore, the system converges to a unique equilibrium—the Pareto point
where both individuals have equal amount of products, if their rationality is the
same.

6. Conclusions

Paper [1] and the current paper comprise a theory of rational behavior based on rational
probabilistic deciders. This theory shows that under simple assumptions, RPDs exhibit
autonomous optimal reconfigurable behavior in a large variety of situations, both indi-
vidually and collectively. Among unexplored topics remains the issue of learning: in the
current formulation, RPDs explore the environment every time anew, without taking into
account their past experiences. Incorporating learning in RPD behavior is a major topic
of future research.

Appendices

A. Proofs for Section 3

Proof of Theorem 3.1. (a) For L-RPDs.
(Sufficiency). Suppose m12 =m21. Then, by (3.8) and (3.23)–(3.25), the steady state

probability that the L-RPD selects state 1 is

κ1=
−
(

1−m22

2

)N(
1−κ2∗)−

(
1−m21

2

)N
κ2∗

−
(

1−m12

2

)N
−
(

1−m22

2

)N
−
[(

1−m11

2

)N
−
(

1−m12

2

)N
+
(

1−m21

2

)N
−
(

1−m22

2

)N]
κ2∗

.

(A.1)

Equations, (3.2) and (3.19) imply that asN →∞, κ1 → κ2∗. Sincem12 =m21 implies κ1∗ =
κ2∗, sufficiency is proved.

(Necessity). Suppose m12 �=m21. Then, (3.2), (3.19), and (A.1) imply that as N →∞,
κ1 → 1, which is not equal to κ1∗ for any payoff matrix satisfying (3.19) and m12 �=m21.
Hence, necessity is proved.
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(b) For G-RPDs.
By (3.8) and (3.23)–(3.25), the steady state probability that the G-RPD selects state 1

is

κ1 =−Δ1

Δ
, (A.2)

where

Δ=−
(
1−m12

)N

(
1−m12

)N
+
(
1−m22

)N −
(
1−m22

)N

(
1−m12

)N
+
(
1−m22

)N

−
[ (

1−m11
)N

(
1−m11

)N
+
(
1−m21

)N −
(
1−m12

)N

(
1−m12

)N
+
(
1−m22

)N

+

(
1−m21

)N

(
1−m11

)N
+
(
1−m21

)N −
(
1−m22

)N

(
1−m12

)N
+
(
1−m22

)N

]

κ2∗,

(A.3)

Δ1 =
(
1−m22

)N

(
1−m12

)N
+
(
1−m22

)N
(
1− κ2∗)+

(
1−m21

)N

(
1−m11

)N
+
(
1−m21

)N κ
2∗. (A.4)

Equations (3.2), (3.19), and (A.2)–(A.4) imply that as N →∞, κ1 → κ2∗. Furthermore,
(3.20) and (3.21) imply that κ1∗ = κ2∗ if and only if m12 = m21. Thus, the theorem is
proved for G-RPDs. �

B. Proofs for Section 4

Proof of Theorem 4.1. Since (4.10) holds for collectives of all L-RPDs and all G-RPDs, the
following argument holds for both: by (4.10),

κi
κj
= CM

i

CM
j

(
f
(
ν j
)

f
(
νi
)

)N

for 0≤ i, j ≤M. (B.1)

Hence, if i∈ T and j /∈ T , κi/κj →∞ as N →∞. This implies κk → 0 as N →∞ if k /∈ T .
Thus, (4.12) is true. �

Proof of Theorem 4.2. (a) For L-RPDs.
The dynamics of the L-RPDs with homogeneous fractional interactions can be written

as

ν(n+ 1)= ν(n) +
1
M
ζ(n), (B.2)
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where

ζ(n)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 with probability
(
1− ν(n)

)
f N

(
ν(n)

)

−1 with probability ν(n) f N
(
ν(n)

)

0 with probability 1− f N
(
ν(n)

)
.

(B.3)

We note that the dynamics described above are the same as those treated in [10, 11], and
we follow the discussions in [11]. Consider the dynamic system described as follows:

ν̃(n+ 1)= ν̃(n) +
1
M

(
1− 2ν̃(n)

)
f N

(
ν̃(n)

)
, (B.4)

where ν̃(0)= ν(0). We note the following.
(i) The dynamic system in (B.4) has an equilibrium at ν∗ = 1/2 and, moreover, this

equilibrium is global asymptotically stable.
(ii) The penalty function f is Lipschitz by assumption.

(iii) The trajectories of ν(n) in (B.2) and (B.3) are bounded.
Hence, by [10, Theorem 1], for any δ > 0, we can find a number M0 such that for all
M ≥M0, we have,

Prob.
{∣∣ν̃(n)− ν(n)

∣
∣ < δ

}≤ 1− δ, n∈ [0,∞). (B.5)

Since ν̃(n)→ 1/2 as n→∞, (B.5) implies the theorem.
(b) For G-RPDs.
Note that for the same penalty function f , a collective of G-RPDs behave in the same

way as a collective of L-RPDs in the steady state. Hence, Theorem 4.2 is true for G-RPDs
since, by (a), it is true for L-RPDs. �

Proof of Theorem 4.3. Since (4.10) holds for collectives of all L-RPDs and all G-RPDs, the
following argument holds for both: (4.10) implies

κk = CM
k κ0

(
f
(
ν0
)

f
(
νk
)
)N

. (B.6)

Furthermore,

M∑

i=0

CM
i = 2M. (B.7)

Let

ν1 = arginf
ν /∈A

f (ν) (B.8)

and ν∗ be the global minimum of f . Then, by (B.6) and (B.7), when M is large,

∑

k∈IA
κk > κ0

(
f
(
ν0
)

f
(
ν∗
)
)N

,
∑

k /∈IA
κk < 2Mκ0

(
f
(
ν0
)

f
(
ν1
)
)N

. (B.9)
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Equation (B.9) implies

∑
k∈IA κk∑
k /∈IA κk

>
1

2M

(
f
(
ν1
)

f
(
ν∗
)
)N

, (B.10)

which gives

ln

∑
k∈IA κk∑
k /∈IA κk

> N
(

ln f
(
ν1)− ln f

(
ν∗
))−M ln2

=M
(
N

M

(
ln f

(
ν1)− ln f

(
ν∗
))− ln2

)
.

(B.11)

Hence, if N/M > ln2/(ln f (ν1)− ln f (ν∗)) as N →∞ and M→∞, (4.17) holds. Let

CA = ln2
ln f

(
ν1
)− ln f

(
ν∗
) (B.12)

and the theorem is proved. �

Proof of Theorem 4.4. Since (4.10) holds for collectives of all L-RPDs and all G-RPDs, the
following argument holds for both: let

0 < c < d <
1
2

, (B.13)

and [cM] and [dM] denote the integer nearest to cM and dM, respectively. Note that,

[cM]∑

i=0

CM
i < [cM]

M!
[cM]!

(
M− [cM]

)
!
,

M−[dM]∑

i=[dM]

CM
i >

(
M− 2[dM]

) M!
[dM]!

(
M− [dM]

)
!
.

(B.14)

To simplify nations below, define

S1 = [cM]
M!

[cM]!
(
M− [cM]

)
!
, S2 =

(
M− 2[dM]

) M!
[dM]!

(
M− [dM]

)
!
. (B.15)

Define c = (1−Δ)/2 (i.e., Δ= 1− 2c) and d = (2−Δ)/4, where Δ is as shown in (4.15).
Let

ν2 = argmax
ν∈B

f (ν), (B.16)

and ν∗ be the global minimum of f . Then, when M is large, (B.6), (B.14), (B.15), and the
definitions of c and d imply that

∑

i /∈IB
κi ≤ 2S1κ0

(
f
(
ν0
)

f
(
ν∗
)
)N

,
∑

i∈IB
κi ≥ S2κ0

(
f
(
ν0
)

f
(
ν2
)
)N

. (B.17)
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Hence,

∑
i∈IB κi∑
i /∈IB κi

≥ S2

2S1

(
f
(
ν∗
)

f
(
ν2
)
)N

. (B.18)

Note that

S2

2S1
= M− [dM] + 1

[cM] + 1
× M− [dM] + 2

[cM] + 2
×···× M− [cM]

[dM]

× 1− 2d
2c

≥ λ([dM]−[cM]) 1− 2d
2c

,

(B.19)

where λ=min{(M−[dM]+1)/([cM]+1),(M−[dM]+2)/([cM]+2), . . . , (M−[cM])/[dM]}.
Thus, as M becomes large, (B.18) and (B.19) imply

ln

∑
i∈IB κi∑
i /∈IB κi

≥ (
[dM]− [cM]

)
lnλ+ ln

1− 2d
2c

+N
(

ln f
(
ν∗
)− ln f

(
ν2))

≈M
[

(d− c) lnλ+
N

M

(
ln f

(
ν∗
)− ln f

(
ν2))

]
+ ln

1− 2d
2c

.

(B.20)

Hence, ifN/M < (d− c) lnλ/(ln f (ν2)− ln f (ν∗)) asN →∞ andM→∞, (4.19) holds. Let

CB = (d− c) lnλ
ln f

(
ν2
)− ln f

(
ν∗
) (B.21)

and the theorem is proved. �

Proof of Theorem 4.5. Since (4.24) and (4.25) hold for collectives of all L-RPDs and all
G-RPDs, the following argument holds for both: by (4.24),

κk+1

κk
= M− k

k+ 1

(
f2
(
νk
)

f1
(
νk+1

)
)N

for 0≤ k ≤M− 1. (B.22)

(a) Suppose f1(νk∗+1) > f2(νk∗). Then, (B.22) implies that as N →∞,

κk+1

κk
−→

⎧
⎪⎨

⎪⎩

∞ if k < k∗,

0 if k ≥ k∗.
(B.23)

Equation (B.23), the properties of f1 and f2, and the definition of k∗ imply that,
as N →∞, κk → 0 for k �= k∗. Hence, (4.27) is true.

(b) Suppose f1(νk∗+1)= f2(νk∗). Then, (B.22) implies that as N →∞,

κk+1

κk
−→

⎧
⎪⎨

⎪⎩

∞ if k < k∗,

0 if k > k∗.
(B.24)
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Equation (B.24) the properties of f1 and f2, and the definition of k∗ imply that
as N →∞, κk → 0 for 0≤ k < k∗ and k∗ + 1 < k ≤M, that is,

κk∗ + κk∗+1 = 1 as N −→∞. (B.25)

Furthermore, f1(νk∗+1)= f2(νk∗) and (B.22) imply

κk∗+1

κk∗
= M− k∗

k∗ + 1
∀N. (B.26)

Equations (B.25) and (B.26) imply (4.28).
�

Proof of Theorem 4.6. Since (4.24) and (4.25) hold for collectives of all L-RPDs and all
G-RPDs, the following argument holds for both: let

ψ
(
νk
)=

νkM∑

i=1

[
ln f N2

(
νi−1

)− ln f N1
(
νi
)]
. (B.27)

Then, by (4.24),

κk = κ0CM
k exp

(
ψ
(
νk
))
. (B.28)

Furthermore,

1
M
ψ
(
νk
)= 1

M

νkM∑

i=1

[
ln f N2

(
νi−1

)− ln f N1
(
νi
)]

= 1
M

νkM∑

i=1

[
ln f N2

(
νi− 1

M

)
− ln f N1

(
νi
)
]
.

(B.29)

Hence, when M is large,

1
M
ψ
(
νk
)=

∫ νk

0

[
ln f N2 (ζ)− ln f N1 (ζ)

]
dζ + ρ

(
1
M

)
, (B.30)

or

ψ
(
νk
)=M

∫ νk

0

[
ln f N2 (ζ)− ln f N1 (ζ)

]
dζ +Mρ

(
1
M

)
,

=MN
∫ νk

0

[
ln f2(ζ)− ln f1(ζ)

]
dζ +Mρ

(
1
M

)
,

(B.31)

where ρ(1/M) is an error term or order 1/M. Let

ψ̂(ν)=MN
∫ ν

0

[
ln f2(ζ)− ln f1(ζ)

]
dζ. (B.32)
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Then, by the properties of f1 and f2 defined in Section 4.3, the global maximum of ψ̂(ν)
happens at the intersection of f1 and f2, which is at ν∗. Moreover, define

ν1 = argsup
ν /∈D

ψ̂(ν). (B.33)

Then, as M becomes large, (B.7), (B.28), (B.31), and (B.32) imply

∑

k /∈ID
κk ≤ κ02M exp

(
ψ̂
(
ν1)+Mρ

(
1
M

))
,

∑

k∈ID
κk ≥ κ0 exp

(
ψ̂
(
ν∗
)

+Mρ
(

1
M

))
.

(B.34)

Hence,
∑

k∈ID κk∑
k /∈ID κk

≥ 2−M exp
(
ψ̂
(
ν∗
)− ψ̂(ν1)+Mρ

(
1
M

))
. (B.35)

Note that, by the Mean Value theorem,

ψ̂
(
ν∗
)− ψ̂(ν1)=MN

∫ ν∗

ν1

[
ln f2(ζ)− ln f1(ζ)

]
dζ

=MN
(
ν∗ − ν1)[ ln f2

(
ν0
)− ln f1

(
ν0
)]

,

(B.36)

where ν0 is in between ν∗ and ν1. Equations (B.35) and (B.36) imply that as M becomes
large,

ln

∑
k∈ID κk∑
k /∈ID κk

≥M
(
− ln2 +N

(
ν∗ − ν1)[ ln f2

(
ν0
)− ln f1

(
ν0
)]

+ ρ
(

1
M

))
. (B.37)

Hence, as long as N > ln2/(ν∗ − ν1)(ln f2(ν0)− ln f1(ν0)) as M→∞, (4.31) holds. Let

CD = ln2
(
ν∗ − ν1

)(
ln f2

(
ν0
)− ln f1

(
ν0
)) (B.38)

and the theorem is proved. �
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