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1. Introduction: difference schemes

It is known that (see, e.g., [1–5] and the references given therein) many applied problems
in fluid mechanics and other areas of physics and mathematical biology were formulated
into nonlocal mathematical models. However, such problems were not well investigated
in general.

In [6], the well-posedness in the spaces of smooth functions of the nonlocal boundary
value problem

v′(t) +Av(t)= f (t) (0≤ t ≤ 1), v(0)= v(λ) +μ (0 < λ≤ 1) (1.1)

for differential equation in an arbitrary Banach space E with the strongly positive oper-
ator A was established. The importance of coercive (well-posedness) inequalities is well
known [7, 8].
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For the construction of difference schemes, we consider the uniform grid space

[0,1]τ =
{
tk = kτ, 0≤ k ≤N , Nτ = 1

}
. (1.2)

Assume that τ ≤ λ. We consider the first order of accuracy implicit Rothe difference
scheme

uk −uk−1

τ
+Auk = ϕk, ϕk = f (tk), tk = kτ, 1≤ k ≤N ,

u0 = u[λ/τ] +μ,
(1.3)

and the second order of accuracy implicit difference scheme

uk −uk−1

τ
+A

(
I +

τA

2

)
uk =

(
I +

τA

2

)
ϕk, ϕk = f

(
tk − τ

2

)
, tk = kτ, 1≤ k ≤N ,

u0 =
(
I −
(
λ−

[
λ

τ

]
τ
)
A
)
u[λ/τ] +μ+

(
λ−

[
λ

τ

]
τ
)
ϕ[λ/τ],

(1.4)

approximately solving the boundary value problem (1.1).
Let Fτ(E) be the linear space of mesh functions ϕτ = {ϕk}N1 with values in the Banach

space E. Next on Fτ(E), we introduce the Banach spaces Cτ(E)= C([0,1]τ ,E), C
β,γ
τ (E)=

Cβ,γ([0,1]τ ,E) (0≤ γ ≤ β < 1) with the norms

∥
∥ϕτ

∥
∥
Cτ (E) = max

1≤k≤N
∥
∥ϕk

∥
∥
E,

∥
∥ϕτ

∥
∥
C
β,γ
τ (E)

= ∥∥ϕτ
∥
∥
Cτ (E) + sup

1≤k<k+r≤N

∥
∥ϕk+r −ϕk

∥
∥
E

(
(k+ r)τ

)γ

(rτ)β
.

(1.5)

We introduce the fractional space Eα = Eα(E,A) (0 < α < 1), consisting of all v ∈ E for
which the following norm is finite:

‖v‖Eα = sup
λ>0

λα
∥
∥A(λ+A)−1v

∥
∥
E. (1.6)

The difference scheme (1.3) or (1.4) is said to be coercively stable (well-posed) in Fτ(E)
if we have the coercive inequality

∥
∥
∥
{
τ−1(uk −uk−1

)}N
1

∥
∥
∥
Fτ (E)

≤M
[‖Aμ‖E′ +

∥
∥ϕτ

∥
∥
Fτ (E)

]
, E′ ⊂ E, (1.7)

where M is independent not only of ϕτ , μ but also of τ.
In [9, 10], the stability and coercive stability of the difference schemes (1.3) and (1.4)

in Cα,α
τ (E) and Cτ(Eα) (0 < α < 1) spaces and almost coercive stability (with multiplier

min{ln1/τ,1 + | ln‖A‖E→E|}) of the difference schemes (1.3) and (1.4) in Cτ(E) spaces
are established.
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In the present paper, the coercive stability of difference schemes (1.3) and (1.4) in

C
β,γ
τ (E) (0≤ γ ≤ β < 1) and C

β,γ
τ (Eα−β) (0≤ γ ≤ β ≤ α < 1) spaces under the assumption

that the operator −A generates an analytic semigroup exp{−tA} (t ≥ 0) with exponen-
tially decreasing norm,when t→ +∞,

∥
∥exp{−tA}∥∥E→E ≤Me−δt,

∥
∥Aexp{−tA}∥∥E→E ≤

M

t
, t > 0, δ,M > 0, (1.8)

is established. In applications, this abstract result permits us to obtain the almost coerciv-
ity inequality and the coercive stability estimates for the solutions of difference schemes
of the first and second orders of accuracy over time and of an arbitrary order of accuracy
over space variables in the case of the nonlocal boundary value problem for the 2m-order
multidimensional parabolic equation.

Finally, methods for numerical solutions of the evolution differential equations have
been studied extensively by many researchers (see [8, 11–32] and the references therein).

2. Well-posedness of (1.3) and (1.4)

Theorem 2.1. Let τ be a sufficiently small number. Then the solutions of the difference

schemes (1.3) and (1.4) in C
β,γ
τ (E) (0≤ γ ≤ β, 0 < β < 1) obey the coercivity inequality

∥
∥
∥
{
τ−1(uk −uk−1

)}N
1

∥
∥
∥
C
β,γ
τ (E)

+
∥
∥
∥
{
τ−1(uk −uk−1

)}N
1

∥
∥
∥
Cτ (E

β,γ
1 )

≤ M1

β(1−β)

∥
∥ϕτ

∥
∥
C
β,γ
τ (E)

+M1
∣
∣μ+A−1(ϕ[λ/τ]−ϕ1

)∣∣β,γ
1 ,

(2.1)

where M1 is independent not only of ϕτ , μ, β, γ, but also of τ.

Here, the space of traces E
β,γ
1 = Eβ,γ(E) which consist of the elements w ∈ E for which the

norm

|w|β,γ
1 = sup

0<τ≤τ0

[
max

1≤i≤N
∥
∥τ−1(I −R)Ri−1w

∥
∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −R)
(
Ri+r−1−Ri−1)w

∥
∥
E

] (2.2)

is finite, where R= (I + τA)−1 for (1.3) and R= (I + τA+ (τA)2/2)−1 for (1.4).

Proof. Let us prove (2.1) for difference scheme (1.3). By [7, formula (0.2) in Chapter 2],

uk = Rku0 +
k∑

j=1

Rk− j+1ϕjτ, k = 1, . . . ,N , (2.3)
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for the solution of the first order of accuracy implicit difference scheme for the approxi-
mate solutions of Cauchy problem

u′(t) +Au(t)= f (t) (0≤ t ≤ 1) u(0)= u0. (2.4)

From this formula and the condition u0 = u[λ/τ] +μ, it follows that

u0 = R[λ/τ]u0 +
[λ/τ]∑

j=1

R[λ/τ]− j+1ϕjτ +μ. (2.5)

Since the semigroup exp{−tA} obeys the exponential decay estimate (1.8), we have that

∥
∥Rk

∥
∥
E→E ≤M(1 + δτ)−k,

∥
∥kτARk

∥
∥
E→E ≤M, k ≥ 1. (2.6)

From this estimate, it follows that the operator I − R[λ/τ] has a bounded inverse Tτ =
(I −R[λ/τ])−1 and

∥
∥Tτ

∥
∥
E→E ≤M(λ,δ). (2.7)

Actually, we have that

Tτ −
(
I − exp{−λA})−1 = Tτ

(
I − exp{−λA})−1(

R[λ/τ]− exp{−λA}),

R[λ/τ]− exp{−λA} =
∫ 1

0
(I + sτA)−([λ/τ]+1)

((
λ−

[
λ

τ

]
τ
)
A+ sτλA2

)
exp

{− λ(1− s)A
}
ds.

(2.8)

Then, using the triangle inequality and the estimates

∥
∥(I − exp{−λA})−1∥∥

E→E ≤M(λ,δ), (2.9)

∥
∥R[λ/τ]− exp{−λA}∥∥E→E ≤M(λ,δ)τ, (2.10)

we obtain estimate (2.7). The proof of (2.9) is based on the estimate (1.8) and it was
proved in [33]. The proof of (2.10) is based on the estimates (1.8) and (2.6) and it was
proved in [34].

So, we have the formula

uk = Rku0 +
k∑

j=1

Rk− j+1ϕjτ, k = 1, . . . ,N ,

u0 = Tτ

{ [λ/τ]∑

j=1

R[λ/τ]− j+1ϕjτ +μ

} (2.11)
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for the solution of problem (1.3). By [7, Theorems 5.1 and 5.2 in Chapter 2],

∥
∥
∥
{
τ−1(uk −uk−1

)}N
1

∥
∥
∥
C
β,γ
τ (E)

≤M
[

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(u0−A−1ϕ1

)∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −R)
(
Ri+r−1−Ri−1)(u0−A−1ϕ1

)∥∥
E

+
M

β(1−β)

∥
∥ϕτ

∥
∥
C
β,γ
τ (E)

]

(2.12)

for the solution of the first order of accuracy implicit difference scheme for the approxi-
mate solutions of Cauchy problem (2.4). The proof of estimate (2.1) for difference scheme
(1.3) is based on the estimate (2.12) and the following estimate:

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(u0−A−1ϕ1

)∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −R)
(
Ri+r−1−Ri−1)(u0−A−1ϕ1

)∥∥
E

≤M1

[∣
∣μ+A−1(ϕ[λ/τ]−ϕ1

)∣∣β,γ
1 +

M

β(1−β)

∥
∥ϕτ

∥
∥
C
β,γ
τ (E)

]

(2.13)

for the solution of problem (1.3). Using formula (2.11) and estimate (2.7), we obtain

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(u0−A−1ϕ1

)∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −R)
(
Ri+r−1−Ri−1)(u0−A−1ϕ1

)∥∥
E

≤M(λ,δ)

[

max
1≤i≤N

∥
∥
∥
∥
∥τ

−1(I −R)Ri−1

( [λ/τ]∑

j=1

R[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ

+μ− (I −R[λ/τ])A−1(ϕ1−ϕ[λ/τ]
)
)∥∥
∥
∥
∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ
∥
∥
∥
∥
∥τ

−1(I −R)
(
Ri+r−1−Ri−1)

×
( [λ/τ]∑

j=1

R[λ/τ]− j+1(ϕj−ϕ[λ/τ]
)
τ+μ−(I−R[λ/τ])A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
E

]

.

(2.14)
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By [7, Theorem 5.2 in Chapter 2],

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −R)
(
Ri+r−1−Ri−1)(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

≤ sup
0<τ≤τ0

[
max

1≤i≤N
∥
∥τ−1(I −R)Ri−1(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ∥∥τ−1(I−R)
(
Ri+r−1−Ri−1)(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

]

= ∣∣μ+A−1(−ϕ1 +ϕ[λ/τ]
)∣∣β,γ

1 .
(2.15)

Similar to estimate (2.12) and using estimates (2.6), we can show that

max
1≤i≤N

∥
∥
∥
∥
∥τ

−1(I −R)Ri−1

( [λ/τ]∑

j=1

R[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ +R[λ/τ]A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ

×
∥
∥
∥
∥
∥τ

−1(I −R)
(
Ri+r−1−Ri−1)

( [λ/τ]∑

j=1

R[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ +R[λ/τ]A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
E

≤ M

β(1−β)

∥
∥ϕτ

∥
∥
C
β,γ
τ (E)

.

(2.16)

From this estimate and (2.15), estimate (2.13) follows. Now let us consider the differ-
ence scheme (1.4). In a similar manner with the difference scheme (1.3), we can obtain
the formula

uk =Dku0 +
k∑

j=1

(
I +

τ

2
A
)
Dk− j+1ϕjτ, k = 1, . . . ,N ,

u0 = Tτ

{(
I −
(
λ−

[
λ

τ

]
τ
)
A
) [λ/τ]−1∑

j=1

(
I +

τ

2
A
)
D[λ/τ]− j+1ϕjτ

+μ+D
((

1 +
λ

τ
−
[
λ

τ

])
I +

τ

2
A
)
τϕ[λ/τ]

}

(2.17)

for the solution of problem (1.4). Here

Tτ =
(
I −
(
I −
(
λ−

[
λ

τ

]
τ
)
A
)
D[λ/τ]

)−1

, D =
(
I + τA+

(τA)2

2

)−1

. (2.18)
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By [7, Theorem 5.1 in Chapter 3],

∥
∥{τ−1(uk −uk−1

)}N
1

∥
∥
C
β,γ
τ (E)

≤M
[

max
1≤i≤N

∥
∥
∥
∥A
(
I +

τ

2
A
)
Di
(
u0−A−1ϕ1

)
∥
∥
∥
∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ
∥
∥
∥
∥A
(
I +

τ

2
A
)
(
Di+r −Di

)(
u0−A−1ϕ1

)
∥
∥
∥
∥
E

+
M

β(1−β)

∥
∥ϕτ

∥
∥
C
β,γ
τ (E)

]

(2.19)

for the solution of the second order of accuracy implicit difference scheme for the ap-
proximate solutions of Cauchy problem (2.4). The proof of estimate (2.1) for difference
scheme (1.4) is based on the estimate (2.19) and the following estimate:

max
1≤i≤N

∥
∥τ−1(I −D)Di−1(u0−A−1ϕ1

)∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −D)
(
Di+r−1−Di−1)(u0−A−1ϕ1

)∥∥
E

≤M1

[∣
∣μ+A−1(ϕ[λ/τ]−ϕ1

)∣∣β,γ
1 +

M

β(1−β)

∥
∥ϕτ

∥
∥
C
β,γ
τ (E)

]

(2.20)

for the solution of problem (1.4). We have that

∥
∥Tτ

∥
∥
E→E ≤M(λ,δ). (2.21)

Actually, we can write

Tτ −
(
I − exp{−λA})−1 = Tτ

(
I − exp{−λA})−1

×
((

I −
(
λ−

[
λ

τ

]
τ
)
A
)
D[λ/τ]− exp{−λA}

)
.

(2.22)

Then, using the triangle inequality and estimates (2.9),

∥
∥
∥
∥

(
λ−

[
λ

τ

]
τ
)
AD[λ/τ]

∥
∥
∥
∥
E→E

≤M(λ,δ)τ, (2.23)

∥
∥D[λ/τ]− exp{−λA}∥∥E→E ≤M(λ,δ)τ, (2.24)

we obtain estimate (2.7). Estimate (2.23) follows from

∥
∥Dk

∥
∥
E→E ≤M,

∥
∥kτADk

∥
∥
E→E ≤M, k ≥ 1. (2.25)

The proof of (2.24) is based on estimates (1.8) and (2.25) and it was proved in [34].
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Using formula (2.17) and estimate (2.21), we obtain

max
1≤i≤N

∥
∥τ−1(I −D)Di−1(u0−A−1ϕ1

)∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −D)
(
Di+r−1−Di−1)(u0−A−1ϕ1

)∥∥
E

≤M(λ)

[

max
1≤i≤N

∥
∥
∥
∥
∥τ

−1(I −D)Di−1

( [λ/τ]∑

j=1

D[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ

+μ− (I −D[λ/τ])A−1(ϕ1−ϕ[λ/τ]
)
)∥∥
∥
∥
∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ
∥
∥
∥
∥
∥τ

−1(I −D)
(
Di+r−1−Di−1)

×
( [λ/τ]∑

j=1

D[λ/τ]−j+1(ϕj−ϕ[λ/τ]
)
τ+μ−(I−D[λ/τ])A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
E

]

.

(2.26)

By [7, Theorem 5.2 in Chapter 3],

max
1≤i≤N

∥
∥τ−1(I −D)di−1(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I−D)
(
Di+r−1−Di−1)(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

≤ sup
0<τ≤τ0

[

max
1≤i≤N

∥
∥τ−1(I −D)Di−1(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ∥∥τ−1(I−D)
(
Di+r−1−Di−1)(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

]

= ∣∣μ+A−1(−ϕ1 +ϕ[λ/τ]
)∣∣β,γ

1 .
(2.27)

Similar to estimate (2.19) and using estimates (2.25), we can show that

max
1≤i≤N

∥
∥
∥
∥
∥τ

−1(I −D)Di−1

( [λ/τ]∑

j=1

D[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ +D[λ/τ]A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ

×
∥
∥
∥
∥
∥τ

−1(I−D)
(
Di+r−1−Di−1)

( [λ/τ]∑

j=1

D[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ

+D[λ/τ]A−1(ϕ1−ϕ[λ/τ]
)
)∥∥
∥
∥
∥
E

≤ M

β(1−β)

∥
∥ϕτ

∥
∥
C
β,γ
τ (E)

.

(2.28)

From these estimates, estimate (2.20) follows. �
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Remark 2.2. The parameter γ can be chosen freely in [0,β), which increases the number

of spaces C
β,γ
τ (E) (0 ≤ γ ≤ β, 0 < β < 1) of grid functions in which difference schemes

(1.3) and (1.4) are well-posed.

Theorem 2.3. Let τ be a sufficiently small number. Then the solutions of the difference

schemes (1.3) and (1.4) in C
β,γ
τ (Eα−β) (0 ≤ γ ≤ β ≤ α < 1) satisfy the following coercivity

inequalities:

∥
∥
∥
{
τ−1(uk −uk−1

)}N
1

∥
∥
∥
C
β,γ
τ (Eα−β)

≤ M1

α(1−α)

∥
∥ϕτ

∥
∥
C
β,γ
τ (Eα−β)

+M1
∣
∣μ+A−1(ϕ[λ/τ]−ϕ1

)∣∣β,γ
1+α−β, E

β,γ
α−β = Eβ,γ(Eα−β

)
,

(2.29)

where M1 is independent not only of ϕτ , ϕ, α, β, γ, but also of τ.

Proof. Let us prove (2.29) for difference scheme (1.3). By [7, Theorem 5.3 in Chapter 2],

∥
∥
∥
{
τ−1(uk −uk−1

)}N
1

∥
∥
∥
C
β,γ
τ (Eα−β)

≤M
[

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(u0−A−1ϕ1

)∥∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −R)
(
Ri+r−1−Ri−1)(u0−A−1ϕ1

)∥∥
Eα−β

+
M

α(1−α)

∥
∥ϕτ

∥
∥
C
β,γ
τ (Eα−β)

]

(2.30)

for the solution of the first order of accuracy implicit difference scheme for the approx-
imate solutions of Cauchy problem (2.4). The proof of estimate (2.29) for difference
scheme (1.3) is based on estimate (2.30) and the following estimate:

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(u0−A−1ϕ1

)∥∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −R)
(
Ri+r−1−Ri−1)(u0−A−1ϕ1

)∥∥
Eα−β

≤M1

[∣
∣μ+A−1(ϕ[λ/τ]−ϕ1

)∣∣β,γ
1+α−β +

M

α(1−α)

∥
∥ϕτ

∥
∥
C
β,γ
τ (Eα−β)

]

(2.31)
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for the solution of problem (1.3). Using formula (2.11) and estimate (2.7), we obtain

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(u0−A−1ϕ1

)∥∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −R)
(
Ri+r−1−Ri−1)(u0−A−1ϕ1

)∥∥
Eα−β

≤M(λ)

[

max
1≤i≤N

∥
∥
∥
∥
∥τ

−1(I −R)Ri−1

( [λ/τ]∑

j=1

R[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ

+μ− (I −R[λ/τ])A−1(ϕ1−ϕ[λ/τ]
)
)∥∥
∥
∥
∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ
∥
∥
∥
∥
∥τ

−1(I −R)
(
Ri+r−1−Ri−1)

×
( [λ/τ]∑

j=1

R[λ/τ]−j+1(ϕj−ϕ[λ/τ]
)
τ+μ−(I−R[λ/τ])A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
Eα−β

]

.

(2.32)

By [7, Theorem 5.2 in Chapter 2],

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ∥∥τ−1(I−R)
(
Ri+r−1−Ri−1)(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
Eα−β

≤ sup
0<τ≤τ0

[

max
1≤i≤N

∥
∥τ−1(I −R)Ri−1(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ∥∥τ−1(I−R)
(
Ri+r−1−Ri−1)(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
Eα−β

]

= ∣∣μ+A−1(−ϕ1 +ϕ[λ/τ]
)∣∣β,γ

1+α−β.
(2.33)

Similar to estimate (2.30) and using estimates (2.6), we can show that

max
1≤i≤N

∥
∥
∥
∥
∥τ

−1(I −R)Ri−1

( [λ/τ]∑

j=1

R[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ +R[λ/τ]A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ
∥
∥
∥
∥
∥τ

−1(I −R)
(
Ri+r−1−Ri−1)

×
( [λ/τ]∑

j=1

R[λ/τ]− j+1(ϕj−ϕ[λ/τ]
)
τ+R[λ/τ]A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
Eα−β

≤ M

α(1−α)

∥
∥ϕτ

∥
∥
C
β,γ
τ (Eα−β)

.

(2.34)
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From this estimate and (2.33), estimate (2.31) follows. Now let us consider the differ-
ence scheme (1.4). By [7, Theorem 5.3 in Chapter 3],

∥
∥
∥
{
τ−1(uk −uk−1

)}N
1

∥
∥
∥
C
β,γ
τ (Eα−β)

≤M
[

max
1≤i≤N

∥
∥
∥A
(
I +

τ

2
A
)
Di
(
u0−A−1ϕ1

)∥∥
∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥
∥A
(
I +

τ

2
A
)(
Di+r −Di

)(
u0−A−1ϕ1

)∥∥
∥
Eα−β

+
M

α(1−α)

∥
∥ϕτ

∥
∥
C
β,γ
τ (Eα−β)

]

(2.35)

for the solution of the second order of accuracy implicit difference scheme for the ap-
proximate solutions of Cauchy problem (2.4). The proof of estimate (2.29) for difference
scheme (1.4) is based on estimate (2.35) and the following estimate:

max
1≤i≤N

∥
∥τ−1(I −D)Di−1(u0−A−1ϕ1

)∥∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −D)
(
Di+r−1−Di−1)(u0−A−1ϕ1

)∥∥
Eα−β

≤M1

[∣
∣μ+A−1(ϕ[λ/τ]−ϕ1

)∣∣β,γ
1+α−β +

M

β(1−β)

∥
∥ϕτ

∥
∥
C
β,γ
τ (Eα−β)

]

(2.36)

for the solution of problem (1.4). Using formula (2.17) and estimate (2.21), we obtain

max
1≤i≤N

∥
∥τ−1(I −D)Di−1(u0−A−1ϕ1

)∥∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ∥∥τ−1(I −D)
(
Di+r−1−Di−1)(u0−A−1ϕ1

)∥∥
Eα−β

≤M(λ)

[

max
1≤i≤N

∥
∥
∥
∥
∥τ

−1(I −D)Di−1

( [λ/τ]∑

j=1

D[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ

+μ− (I −D[λ/τ])A−1(ϕ1−ϕ[λ/τ]
)
)∥∥
∥
∥
∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ
∥
∥
∥
∥
∥τ

−1(I −D)
(
Di+r−1−Di−1)

×
( [λ/τ]∑

j=1

D[λ/τ]− j+1(ϕj−ϕ[λ/τ]
)
τ+μ−(I−D[λ/τ])A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
Eα−β

]

.

(2.37)
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By [7, Theorem 5.3 in Chapter 3],

max
1≤i≤N

∥
∥τ−1(I −D)di−1(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
E

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ∥∥τ−1(I−D)
(
Di+r−1−Di−1)(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
Eα−β

≤ sup
0<τ≤τ0

[

max
1≤i≤N

∥
∥τ−1(I −D)Di−1(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+r)τ

)γ∥∥τ−1(I−D)
(
Di+r−1−Di−1)(μ+A−1(−ϕ1 +ϕ[λ/τ]

))∥∥
Eα−β

]

= ∣∣μ+A−1(−ϕ1 +ϕ[λ/τ]
)∣∣β,γ

1+α−β.
(2.38)

Similar to estimate (2.35) and using estimates (2.25), we can show that

max
1≤i≤N

∥
∥
∥
∥
∥τ

−1(I −D)Di−1

( [λ/τ]∑

j=1

D[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ +D[λ/τ]A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
Eα−β

+ sup
1≤i<i+r≤N

(rτ)−β
(
(i+ r)τ

)γ
∥
∥
∥
∥
∥τ

−1(I −D)
(
Di+r−1−Di−1)

×
( [λ/τ]∑

j=1

D[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ +D[λ/τ]A−1(ϕ1−ϕ[λ/τ]

)
)∥∥
∥
∥
∥
Eα−β

≤ M

α(1−α)

∥
∥ϕτ

∥
∥
C
β,γ
τ (Eα−β)

.

(2.39)

From these estimates, estimate (2.36) follows. �

Remark 2.4. The spaces C
β,γ
τ (Eα−β) of grid functions, in which coercive solvability has

been established, depend on the parameters α, β, and γ. However, the constants in the
coercive inequalities depend only on α. Hence, we can be choose the parameters β and γ
freely, which increases the number of spaces of grid functions in which difference schemes
(1.3) and (1.4) are well-posed.

Remark 2.5. Using the coercive stability estimates of Theorems 2.1–2.3 and by passing
to the limit for τ → 0, one can recover theorems on coercive solvability of the nonlocal-
boundary value problem (1.1) [6].
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3. Applications

We consider the boundary value problem on the range {0≤ t ≤ 1, x ∈Rn} for 2m-order
multidimensional parabolic equation

∂v(t,x)
∂t

+
∑

|τ|=2m

aτ(x)
∂|τ|v(t,x)

∂xτ1
1 ···∂xτnn

+ δv(t,x)= f (t,x), 0≤ t ≤ 1,

v(0,x)= v(λ,x) +μ(x), 0 < λ≤ 1, x ∈ Rn, |τ| = τ1 + ···+ τn,

(3.1)

where ar(x), f (t,x) and μ(x) are given sufficiently smooth functions and δ > 0 is a suffi-
ciently large positive constant.

Now, the abstract theorems given above are applied in the investigation of difference
schemes for approximate solution of (3.1). The discretization of problem (3.1) is carried
out in two steps. Let us define the grid space Rn

h (0 < h≤ h0) as the set of all points of the
Euclidean space Rn whose coordinates are given by

xk = skh, sk = 0,±1,±2, . . . , k = 1, . . . ,n. (3.2)

In the first step, let us give the difference operator Ax
h by the formula

Ax
hu

h =
∑

2m≤|r|≤S
bxr D

r
hu

h + δuh. (3.3)

The coefficients are chosen in such a way that the operator Ax
h approximates in a specified

way the operator

∑

|r|=2m

ar(x)
∂|r|

∂xr1
1 ···∂xrnn

+ δ. (3.4)

We will assume that for |ξkh| ≤ π and fixed x, the symbol Ax(ξh,h) of the operator Ax
h− δ

satisfies the inequalities

(−1)mAx(ξh,h)≥M1|ξ|2m,
∣
∣argAx(ξh,h)

∣
∣≤ φ < φ0 ≤ π

2
. (3.5)

With the help of Ax
h, we arrive at the nonlocal boundary value problem

dvh(t,x)
dt

+Ax
hv

h(t,x)= f h(t,x), 0≤ t ≤ 1,

vh(0,x)= vh(λ,x) +μh(x), x ∈Rn
h,

(3.6)

for an infinite system of ordinary differential equations.
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In the second step, we replace problem (3.6) by the difference schemes

uhk(x)−uhk−1(x)

τ
+Ax

hu
h
k(x)= ϕh

k(x), ϕh
k(x)= f h

(
tk,x

)
, tk = kτ,

1≤ k ≤N , uh0(x)= uh[λ/τ](x) +μh(x), x ∈Rn
h,

uhk(x)−uhk−1(x)

τ
+Ax

h

(
I +

τAx
h

2

)
uhk(x)=

(
I +

τAx
h

2

)
ϕh
k(x),

ϕh
k(x)= f h

(
tk − τ

2
,x
)

, tk = kτ, 1≤ k ≤N ,

uh0(x)=
(
I −
(
λ−

[
λ

τ

]
τ
)
Ax
h

)
uh[λ/τ](x) +μh(x) +

(
λ−

[
λ

τ

]
τ
)
ϕh

[λ/τ](x), x ∈Rn
h.

(3.7)

Let us give a number of corollaries of the abstract theorems given above. To formulate

our result, we need to introduce the spaces Ch = C(Rn
h) and C

β
h = Cβ(Rn

h) of all bounded
grid functions uh(x) defined on Rn

h, equipped with the norms

∥
∥uh

∥
∥
Ch
= sup

xεRn
h

∣
∣uh(x)

∣
∣,

∥
∥uh

∥
∥
C
β
h
= sup

xεRn
h

∣
∣uh(x)

∣
∣+ sup

x,yεRn
h

∣
∣uh(x)−uh(x+ y)

∣
∣

|y|β .
(3.8)

Theorem 3.1. The solutions of the difference schemes (3.7) satisfy the coercivity estimates:

∥
∥
∥
{
τ−1(uhk −uhk−1

)}N−1
1

∥
∥
∥
C
β,γ
τ (Cν

h)

≤M(α,ν)

[
∑

|r|=2m

∥
∥Dr

hμ
h
∥
∥
Cν+2mα
h

+
∥
∥ϕτ,h

∥
∥
C
β,γ
τ (Cν

h)

]

, 0 < 2mα+ ν < 1, ν > 0,
(3.9)

where M(α,ν) does not depend on ϕτ,h, μh, h, and τ.

The proof of this theorem is based on the abstract theorems (Theorems 2.1 and 2.3)
and the positivity of the operator Ax

h in Ch [35] and on the coercivity inequality for an

elliptic operator Ax
h in C

β
h [7] and on the following theorem.

Theorem 3.2 (see [7]). For any 0 < β < 1/2m, the norms in the spaces Eβ(Ch,Ax
h) and C

2mβ
h

are equivalent uniformly in h.
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