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1. Introduction

In recent years, much attention has been given to develop some analytical methods for
solving integral equations including the perturbation methods and decomposition
method. It is well known that perturbation methods [1, 2] provide the most versatile
tools available in nonlinear analysis of engineering problems. The major drawback in the
traditional perturbation technique is the over dependence on the existence of small pa-
rameter. This condition is overstrict and greatly affects the applications of the perturba-
tion techniques because most of the nonlinear problems (especially those having strong
nonlinearity) do not even contain the so-called small parameter; moreover, the determi-
nation of the small parameter is a complicated process and requires special techniques.
These facts have motivated to suggest alternative techniques such as the homotopy analy-
sis method [3, 4], decomposition and the variational iteration method [5–8]. In order to
overcome these drawbacks, combining the standard homotopy method and perturbation,
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we obtain a modified method, which is called the homotopy perturbation method. This
technique has been used by Noor and Mohyud-Din [9] for solving fifth-order boundary
value problems. Using the idea of Noor and Mohyud-Din [9], we develop a homotopy
perturbation method for solving a system of integral equations associated with fourth-
order boundary value problems. It is shown that this method provides the solution in a
rapid convergent series. We show that this method is easy to implement and it is more
efficient than the Adomian method. We remark that to apply the Adomian method, one
has to evaluate the derivative of the so-called Adomian polynomial, which is itself a com-
plicated problem. On the other hand, homotopy perturbation is very simple to apply,
which is the main characteristic of this method. Several examples are given to illustrate
the performance of the method.

In this paper, we consider the general fifth-order boundary value problems of the type

u(v)(x)= f (x,u,u′,u′′,u′′′), (1.1)

with boundary conditions

u(a)= α1, u′(a)= α2, u(b)= β1, u′(b)= β2, (1.2)

where f is continuous function on [a,b] and the parameters αi and βi, i = 1,2, are real
constants. Such type of boundary value problems arise in the mathematical modeling
of the viscoelastic flows, deformation of beams, and plate deflection theory and other
branches of mathematical, physical, and engineering sciences, see [10, 11, 7, 12, 8] and
the references therein. Several numerical methods including finite difference, B-spline
were developed for solving fourth-order boundary value problems, see [11]. Computa-
tional results have also been obtained in [12] for a special fourth-order boundary value
problems with nonlinear boundary conditions of third-order. Noor and Mohydu-Din [8]
used the variational iteration to solve the fourth-order boundary value problems. In this
paper, we use the homotopy perturbation method coupled with the integral equations to
solve the fourth-order boundary value problems. Several examples are given to illustrate
the performance and efficiency of the method developed in this paper. Our experience
shows that the homotopy perturbation technique can be considered as an alternative to
decomposition and variational iteration techniques.

2. Homotopy perturbation method

Consider the following system of the integral equations:

F(t)=G(t) + λ
∫ t

0
K(t,s)F(s)ds, (2.1)
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where

F(t)= ( f1(t), f2(t), . . . , fn(t)
)T

,

G(t)= (g1(t),g2(t), . . . ,gn(t)
)T

,

K(t,s)= [ki j(t,s)], i= 1,2,3, . . . ,n : j = 1,2,3, . . . ,n.

(2.2)

To convey an idea of the homotopy perturbation method, we consider a general equation
of the type

L(u)= 0, (2.3)

where L is an integral or differential operator. We define a convex homotopy H(u, p) by

H(u, p)= (1− p)F(u) + pL(u), (2.4)

where F(u) is a functional operator with known solutions v0, which can be obtained
easily. It is clear that

H(u, p)= 0, (2.5)

from which we have H(u,0)= F(u) and H(u,1)= L(u).
This shows that H(u, p) continuously traces an implicitly defined curve from a starting

point H(v0,0) to a solution H( f ,1). The embedding parameter increases monotonically
from zero to unit as the problem F(u)= 0 is continuously deforms the original problem
L(u) = 0. The embedding parameter can be considered as an expanding parameter [7].
The homotopy perturbation method uses the homotopy parameter p as an expanding
parameter [7] to obtain

u=
∞∑
i=0

piui = u0 + pu1 + p2u2 + ··· . (2.6)

If p→ 1, then (2.5) corresponds to (2.3) and becomes the approximate solution of the
form

f = lim
p→1

u=
∞∑
i=0

ui. (2.7)

It is well known that the series (2.7) is convergent for most of the cases and also the rate
of convergence is dependent on L(u), see [7]. We assume that problem (2.1) has a unique
solution.



4 Mathematical Problems in Engineering

Consider the ith equation of (2.1), take

f1(t)=
∞∑
i=0

piui,

f2(t)=
∞∑
i=0

pivi,

f3(t)=
∞∑
i=0

piwi,

...

(2.8)

The comparison of like powers of p gives solution of various orders.

3. Applications

In this section, we first show that the fourth-order boundary value problems of the type
(1.1) can be reformulated as a system of integral equations. We then use the homotopy
perturbation method developed in Section 2 to solve the resultant system of integral
equations. To illustrate the implementation of the homotopy method, we consider the
following examples.

Example 3.1 [8]. Consider the following nonlinear initial boundary value problem:

u(iv) = u2− x10 + 4x9− 4x8− 4x7 + 8x6− 4x4 + 120x− 48, (3.1)

with boundary conditions

u(0)= 0, u′(0)= 0, u(1)=A, u′(1)= B. (3.2)

The exact solution of this problem is

u(x)= x5− 2x4 + 2x2. (3.3)

Using the transformation du/dx = q(x), dq/dx = f (x), df /dx = z(x), we can rewrite the
boundary value problem (3.1) and (3.2) as a system of differential equations:

du

dx
= q(x),

dq

dx
= f (x),

df

dx
= z(x),

dz

dx
= u2− x10 + 4x9− 4x8− 4x7 + 8x6− 4x4 + 120x− 48,

(3.4)
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with u(0)= 0, q(0)= 1, f (0)= A, z(0)= B, which can be written as a system of integral
equations:

u(x)= 0 +
∫ x

0
q(k)(t)dt,

q(x)= 0 +
∫ x

0
f (k)(t)dt,

f (x)=A+
∫ x

0
z(k)(t)dt,

z(x)= B+
∫ x

0

(
u(k)(t)− t10 + 4t9− 4t8− 4t7 + 8t6− 4t4 + 120t− 48

)
dt.

(3.5)

Using (2.4) and (2.6) for (3.5), we have

u0 + pu1 + p2u2 + ··· = 0 + p
∫ x

0

(
v0 + pv1 + p2v2 + ···)dx,

v0 + pv1 + p2v2 + ··· = 0 + p
∫ x

0

(
s0 + ps1 + s2a2 + ···)dx,

s0 + ps1 + p2s2 + ··· = 0 + p
∫ x

0

(
t0 + pt1 + p2t2 + ···)dx,

t0 + pt1 + p2t2 + ··· =A+ p
∫ x

0

((
u0 + pu1 + p2u2 + ···)

+
(− x10 + 4x9− 4x8− 4x7 + 8x6− 4x4 + 120x− 48

))
dx.

(3.6)

Comparing the coefficient of like powers of p, we have

p(0) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0 = 0,

v0 = 0,

s0 =A,

t0 = B,

p(1) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u1 = 0,

v1 =Ax,

s1 = Bx,

t1 =−x11

11
+

4x10

10
− 4x9

9
− 4x8

8
+ 60x− 48x,

p(2) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2 = A

2
x2,

v2 = Bx2

2
,

s2 =− x12

132
+

2x11

55
− 2x10

45
− x9

18
+ 20x3− 24x2,

t2 = 0,
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p(3) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u3 = Bx3

3!
,

v3 =− x13

1716
+

2x12

330
− 2x11

495
− x10

180
+ 5x4− 8x3,

s3 = 0,

t3 = 0,

p(4) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u4 =− x14

24024
+

x13

4290
− x12

4290
− x11

1980
+ x5− 2x4,

v4 = 0,

s4 = 0,

t4 = 0,

p(5) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u5 = 0,

v5 = 0,

s5 = 0,

t5 = A2x5

20
,

p(6) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u6 = 0,

v6 = 0,

s6 = A2

120
x6,

t6 = ABx6

36
,

p(7) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u7 = 0,

v7 = A2x7

840
,

s7 = ABx7

252
,

t7 = .

(3.7)

Combining all the terms, (3.7) gives

u(x)= A

2!
x2 +

B

3!
x3− 24x4 + x5− 1

420
x8 +

A8x8

6720
+
A2Bx9

18144

+
(
B2− 72A
181440

)
x10− x11

1980
− x12

2970
− x14

24024
+

Ax20

2793510786

+
x13

4290
+

Ax19

399072960
··· .

(3.8)

Using the boundary conditions at x = 1, we have

A= 3.0000000000008983, B = 3.193397011756958X1013. (3.9)
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Table 3.1. Error estimates.

x Exact solution Series solution ∗Errors

0.0 0.0000000 0.0000000 0.00000000

0.1 0.0198100000 0.0198099999 4.579E-16

0.2 0.0771200000 0.0771199999 1.5959E-15

0.3 0.1662300000 0.16622999999 3.1641E-15

0.4 0.2790400000 0.279039999 4.7739E-15

0.5 0.4062500000 0.4062499999 6.0507E-15

0.6 0.5385599999 0.538559999 6.6613E-15

0.7 0.6678700000 0.6678699999 6.6613E-15

0.8 0.7884800000 0.7884799999 5.2180E-15

0.9 0.8982900000 0.8982899999 2.5535E-15

1 1.00000000000 0.999999999 3.3306E-16
∗Error = analytical solution − numerical solution.

The series solution is given by

u(x)= 1.9999999999999492x2 + 5.32233× 10−14x3− 2x4 + x5

− 1.21431× 10−16x8 +O
(
x9), (3.10)

which is exactly the same solution as obtained in [8] by using the variational iteration
technique.

Table 3.1 exhibits a comparison between the exact solution and the series solution
obtained by using the homotopy perturbation method. Higher accuracy can be obtained
by evaluating more terms of u(x).

Example 3.2 [8]. Consider the following nonlinear fifth-order boundary value problem:

u(iv)(x)= u(x) +u′′(x) + ex(x− 3), (3.11)

with boundary conditions

u(0)= 1, u′(0)= 0, u(1)= 0, u′(1)=−e. (3.12)

The exact solution is u(x)= (1− x)ex.
Using the transformation dy/dx = q(x), dq/dx = f (x), df /dx = z(x), we can rewrite

the fifth-order boundary value problem (3.11) and (3.12) as the system of differential
equations

dy

dx
= q(x),

dq

dx
= f (x),

df

dx
= z(x),

dz

dx
= u(x) + f (x) + ex(x− 3),

(3.13)
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with u(0)= 1, q(0)= 0, f (0)= A, z(0)= B, which can be written as a system of integral
equations:

u(x)= 1 +
∫ x

0
q(t)dt, q(x)= q(0) +

∫ x

0
f (t)dt,

f (x)=A+
∫ x

0
z(t)dt, z(x)= B+

∫ x

0

(
u(t) + f (t) + et(t− 3)

)
dt.

(3.14)

Using (2.4) and (2.6) for (3.14), we have

a0 + pa1 + p2a2 + ··· = 0 + p
∫ x

0

(
b0 + bv1 + p2b2 + ···)dx,

b0 + pb1 + p2b2 + ··· = 0 + p
∫ x

0

(
c0 + pc1 + p2c2 + ···)dx,

c0 + pc1 + p2c2 + ··· = A+ p
∫ x

0

(
d0 + pd1 + p2d2 + ···)dx,

d0 + pd1 + p2d2 + ··· = B+ p
∫ x

0

{(
a0 + pe1 + p2a2 + ···)

+
(
c0 + pc1 + p2c2 + ···) + et(t− 3)

}
dt.

(3.15)

Comparing the coefficient of like powers of p, we have

p(0) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0 = 1,

b0 = 0,

c0 = A,

d0 = B,

p(1) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1 = 0,

b1 = Ax,

c1 = Bx,

d1 = 4 + x+Ax− 4ex + xex,

p(2) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = Ax2

2
,

b2 = Bx2

2
,

c2 = 5 + 4x+
1
2
x2 +

1
2
Ax2− 5ex + xex,

d2 = 1
2
Bx2,
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p(3) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 = Bx3

6
,

b3 = 6 + 5x+ 2x2 +
1
6
x3 +

1
6
Ax3− 6ex + xex,

c3 = Bx3

6
,

d3 = 6 + 5x+ 2x2 +
1
6
x3 +

1
6
Ax3− 6ex + xex,

p(4) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a4 = 7 + 6x+
5
2
x2 +

2
3
x3 +

1
24

x4 +
1

24
Ax4− 7ex + xex,

b4 = 1
24

Bx4,

c4 = 7 + 6x+
5
2
x2 +

2
3
x3 +

1
24

x4 +
1

24
Ax4− 7ex + xex,

d4 = 1
12

Bx4,

p(5) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a5 = 1
120

Bx5,

b5 = 8 + 7x+ 3x2 +
5
6
x3 +

1
6
x4 +

1
120

x5 +
1

60
Ax5− 8ex + xex,

c5 = 1
60

Bx5,

d5 = 16 + 14x+ 6x2 +
10
6
x3 +

4
120

x5 +
3

120
Ax5− 16ex + 2xex,

p(6) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a6 = 9 + 8x+
7
2
x2 + x3 +

5
24

x4 +
1

30
x5 +

1
720

x6

+
1

300
x4− 9ex + xex,

b6 = 1
360

Bx6,

c6 = 18 + 16x+ 7x2 + 2x3 +
5

12
x4 +

x5

5
+

x6

360
+
Ax6

240
− 18ex + 2xex,

d6 = 1
240

Bx6.

(3.16)

Adding up all the terms, (3.16) gives

u(x)= 512 + 480x+
1
2

(499 + a)x2 +
1
6

(418 +B)x3 +
1

24
(385 +A)x4 +

1
120

(354 +B)x5

+
1

360
(161 +A)x6 +

(
146 +B

2520

)
x7 +

(
259 + 3A

40320

)
x8 +

(
230 + 3B
362880

)
x9

+
(

197 + 5A
3628800

)
x10 +O

(
x11).

(3.17)
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Table 3.2. Error estimates.

Analytical solution Series solution ∗Errors

0.0 1.0000000000 1.0000000000 0.0000E+00

0.1 0.9946538262 0.9946538264 2.0038E-10

0.2 0.9771222065 0.9971222072 7.0052E-10

0.3 0.944011653 0.9449011666 13508E-9

0.4 0.8950948185 0.8950948205 2.0025E-9

0.5 0.8243606353 0.8243606378 2.5085E-9

0.6 0.7288475201 0.72884752228 2.722E-9

0.7 0.6041258122 0.6041258147 2.5125E-9

0.8 0.4451081856 0.4451081875 1.8035E-9

0.9 0.2459603111 0.2459603118 7.2528E-10

1 0.0000000000 −9.9475983006E-14 9.9476E-14
∗Error = analytical solution − numerical solution.

Using the boundary conditions at x = 1, we have

A=−0.9999999547881531, B =−2.00000154679945. (3.18)

The series solution is

y(x)= 512 + 480x+ 224.00000000226055x2 + 69.33333308x3 + 16.00000000029x4

+ 02.933333320443x5 + 0.44444444570033x6 + 0.057142857081477x7

+ 0.00634920635267x8 + 0.000617284x9 +O
(
x10),

(3.19)

which is exactly the same solution as obtained in [8] by using the variational iteration
technique.

Table 3.2 shows the comparison between exact solution and the series solution ob-
tained using the proposed homotopy perturbation method. Higher accuracy can be ob-
tained by evaluating some more terms of the solution u(x).

Example 3.3 [8]. Consider the following nonlinear boundary value problem:

u(iv)(x)= sinx+ sin2 x− (u′′(x)
)2

, (3.20)

with boundary conditions

u(0)= 0, u′(0)= 1, u(1)= sin(1), u′(1)= cos(1). (3.21)
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Using the transformations du/dx = q(x), dq/dx = f (x), df /dx = z(x), we can rewrite the
above nonlinear boundary value problem as a system of differential equations:

du

dx
= q(x),

dq

dx
= f (x),

df

dx
= z(x),

dz

dx
= sinx+ sin2 x− ( f (x)

)2
,

(3.22)

with u(0)= 0, q(0)= 1, f (0)= A, z(0)= B, which can be written as a system of integral
equations:

u(x)= 0 +
∫ x

0
q(k)(t)dt, q(x)= 1 +

∫ x

0
f (k)(t)dt,

f (x)= A+
∫ x

0
z(k)(t)dt, z(x)= B+

∫ x

0

(
sinx+ sin2 x− ( f (x)

)2)
dt.

(3.23)

Using (2.4) and (2.6) for (3.23), we have

u0 + pu1 + p2u2 + ··· = 0 + p
∫ x

0

(
v0 + bv1 + p2v2 + ···)dx,

v0 + pv1 + p2v2 + ··· = 1 + p
∫ x

0

(
s0 + ps1 + p2s2 + ···)dx,

s0 + ps1 + p2s2 + ··· = A+ p
∫ x

0

(
t0 + pt1 + p2t2 + ···)dx,

t0 + pt1 + p2t2 + ··· = B+ p
∫ x

0

{(
sinx+

1− cos2x
2

)
− (s0 + ps1 + p2s2 + ···)2

}
dx.

(3.24)

Comparing the coefficient of like powers of p, we have

p(0) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u0 = 1,

v0 = x,

s0 = Ax,

t0 = Bx,

p(1) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = x,

v1 = Ax,

s1 = Bx,

t1 = 1 +
1
2
x−Ax− cosx− 1

4
sin2x,

p(2) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2 = A

2
x,

v2 = B

2
x2,

s2 =−1
2

+ x+
1
4
x2− sinx+

1
8

cos2x,

t2 =−B2

2
x2,
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p(3) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u3 = B

3!
x3,

v3 =−1− 1
8
x+

1
2
x2 +

1
3!

(
1− 2A

2

)
x3 + cosx+

1
16

sin2x,

s3 =− B

3!
x3,

t3 = +1 +
1
8
x− 1

2
x2− 1

3!

(
1− 2A

2

)
x3− cosx− 1

16
sin2x,

p(4) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u4 = 1
32
− x− 1

16
x2 +

1
6
x3 +

1
4!

(
1− 2A

2

)
x4 + sinx− 1

32
cos2x,

v4 =− B

32
x4,

s4 =− 1
32

+ x+
1

16
x2− 1

6
x3− 1

4!

(
1− 2A

2

)
x4− sinx− 1

32
sin2x,

t4 = B

32
x4,

p(5) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u5 =− B

5!
x5,

v5 = 31
32

+
1

32
x+

1
2
x2− 1

48
x3− 1

4!
x4

− 1
5!

(
1− 2A

2

)
x5− cosx+

1
32

cos2x,

s5 = B

5!
x5,

t5 =−31
32
− 1

32
x− 1

2
x2 +

1
48

x3 +
1
4!
x4

+
1
5!

(
1− 2A

2

)
x5 + cosx− 1

32
cos2x,

p(6) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u6 = 31
32

x+
1

64
x2 +

1
3!
x3− 1

192
x4− 1

5!
x5

− 1
6!

(
1− 2A

2

)
x6− sinx+

1
64

sin2x,

v6 = B

6!
x6,

s6 =−31
32

x− 1
64

x2− 1
3!
x3 +

1
192

x4 +
1
5!
x5

+
1
6!

(
1− 2A

2

)
x6 + sinx− 1

64
sin2x,

t6 =− B

6!
x6,
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p(7) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u7 = B

7!
x7,

v7 = 127
128

− 31
62

x2− 1
192

x3− 1
4!
x4 +

1
960

x5 +
1
6!
x6

+
1
7!

(1− 2A)x7− cosx+
1

128
cos2x,

s7 =− B

7!
x7,

t7 =−127
128

+
31
62

x2 +
1

192
x3 +

1
4!
x4− 1

960
x5− 1

6!
x6

− 1
7!

(1− 2A)x7 + cosx− 1
128

cos2x,

p(8) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u8 = 127
128

− 31
186

x3− 1
768

x4− 1
5!
x5 +

1
5760

x6 +
1
6!
x6

+
1
8!

(1− 2A)x8− sinx+
1

256
sin2x,

v8 =− B

8!
x8,

s8 = 127
128

+
31
62

x3 +
1

768
x4 +

1
5!
x5− 1

5760
x6− 1

6!
x6

− 1
8!

(1− 2A)x8 + sinx− 1
256

sin2x,

t8 = B

8!
x8.

(3.25)

Adding all the terms (3.25) gives the solution

u(x)= 0.03125 + x+
A

2
x2 +

B

6
x3 +

x

48

(− 48− 3x+ 8x2 + x3)+ 0.03125cos2x

+ sinx− A

24
x4 +

B

120
x5 + ··· .

(3.26)

Using the boundary conditions at x = 1, we have

A= 0.00017529213456789, B =−1.000057468112352. (3.27)

Thus the series solution of the boundary value problem is given as

u(x)= 11.3472− 262.827x− 3.40768x3 + 0.142081x4− 0.0027763x5

− 0.00161889x6 + 0.00079363x7 + 0.0000414643x8

+ 7.28477× 10−10x9 +O
(
x10),

(3.28)

which is exactly the same as in [8] by using the variational iteration method.
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Table 3.3. Error estimates.

x Exact solution Series solution ∗Errors

0.0 0.0000000 9.592369E-14 9.592369E-14

0.1 0.0998334166 0.0998334945 7.7856E-8

0.2 0.1986693307 0.1986696031 2.723E-7

0.3 0.2955202066 0.2955207315 5.2489E-7

0.4 0.3894183423 0.3894191196 7.7730E-7

0.5 0.4794255386 0.4794265100 9.7145E-7

0.6 0.5646424733 0.564635236 1.0502E-6

0.7 0.6442176872 0.6442186501 9.6286E-7

0.8 0.7173560908 0.7173567749 6.8407E-7

0.9 0.7833269096 0.7833271803 2.7069E-7

1.0 0.8414709848 0.8414709848 1.5676E-13
∗Error = analytical solution − numerical solution.

Table 3.3 shows the comparison between exact solution and the series solution ob-
tained using the proposed homotopy perturbation method. Higher accuracy can be ob-
tained by evaluating some more terms of the solution u(x).

4. Conclusion

In this paper, we have shown that the homotopy perturbation method can be used suc-
cessfully for finding the solution of linear and nonlinear boundary value problems of
fourth-order by reformulating it as a system of integral equations. It may be concluded
that this technique is very powerful and efficient in finding the analytical solutions for a
large class of integral and differential equations. This technique provides more realistic
series solutions as compared with the Adomian decomposition and variational iteration
techniques.
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