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Recently, Zhang (2006) proposed a three-term modified HS (TTHS) method for unconstrained
optimization problems. An attractive property of the TTHS method is that the direction generated
by the method is always descent. This property is independent of the line search used. In order to
obtain the global convergence of the TTHS method, Zhang proposed a truncated TTHS method.
A drawback is that the numerical performance of the truncated TTHS method is not ideal. In this
paper, we prove that the TTHS method with standard Armijo line search is globally convergent
for uniformly convex problems. Moreover, we propose a new truncated TTHS method. Under
suitable conditions, global convergence is obtained for the proposed method. Extensive numerical
experiment show that the proposed method is very efficient for the test problems from the CUTE
Library.
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1. Introduction

Consider the unconstrained optimization problem:

min f(x), x ∈ Rn, (1.1)

where f is continuously differentiable. Conjugate gradient methods are very important
methods for solving (1.1), especially if the dimension n is large. The methods are of the form

xk+1 = xk + αkdk, k = 0, 1, . . . , (1.2)

dk =

⎧
⎨

⎩

−gk, if k = 0,

−gk + βkdk−1, if k > 0,
(1.3)
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where gk denotes the gradient of f at xk, αk is the step length obtained by a line search and
βk is a scalar. The strong Wolfe line search is to find a step length αk such that

f(xk + αkdk) ≤ f(xk) + δαkgTk dk, (1.4)
∣
∣
∣g(xk + αkdk)

Tdk
∣
∣
∣ ≤ −σgTk dk, (1.5)

where δ ∈ (0, 1/2) and σ ∈ (δ, 1). In the conjugate gradient methods field, it is also possible
to use the Wolfe line search [1, 2], which calculates an αk satisfying (1.4) and

g(xk + αkdk)
Tdk ≥ σgTk dk. (1.6)

In particular, some conjugate gradient methods admit to use the Armijo line search, namely,
the step length αk can be obtained by letting αk = max{βρj , j = 0, 1, 2, . . .} satisfy

f
(
xk + βρjdk

)
≤ f(xk) + δ1βρ

jgTk dk, (1.7)

where 0 < β ≤ 1, 0 < ρ < 1, and 0 < δ1 < 1. Varieties of this method differ in the way of
selecting βk. In this paper, we are interested in the HS method [3], namely,

βHS
k =

gT
k
yk−1

dT
k−1yk−1

. (1.8)

Here and throughout the paper, without specification, we always use ‖ · ‖ to denote the
Euclidian norm of vectors, yk−1 = gk − gk−1 and sk = αkdk.

We refer to a book [4] and a recent review paper [5] about progress of the global
convergence of conjugate gradient methods. We know that the study in the HS method has
made great progress. In practical computation, the HS method is generally believed to be
one of the most efficient conjugate gradient methods. Theoretically, the HS method has the
property that the conjugacy condition

dTkyk−1 = 0, (1.9)

always holds, which is independent of line search used. Expecting the fast convergence of the
method, Dai and Liao [6] modified the numerator of the HS method to obtain DL method by
using the secant condition of quasi-Newton methods. Due to Powell’s [7] example, the DL
method may not converge with exact line search for general function. Similar to the PRP+
method [8], Dai and Liao [6] proposed the DL+ method from a view of global convergence.
In a further development of this update strategy, Yabe and Takano [9] used another modified
secant condition in [10, 11] and proposed the YT and YT+ methods. Recently, Hager and
Zhang [5] modified the HS method to propose a new conjugate gradient method called
CG DESCENT method. A good property of the CG DESCENT method lies in that the
direction dk satisfies sufficient descent property gTk dk ≤ −(7/8)‖gk‖2 which is independent of
the line search used. Hager and Zhang [5] proved that the CG DESCENT method with Wolfe
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line search is globally convergent even for nonconvex problems. Zhang [12] proposed the
TTHS method. The sufficient descent property of the TTHS method is also independent of line
search used. In order to obtain the global convergence of the TTHS method, Zhang truncated
the search direction of the TTHS method. Numerical experiments in [12] show the truncated
TTHS method is not very effective. In this paper, we further study the TTHS method. We
prove that the TTHS method with standard Armijo line search is globally convergent for
uniformly convex problems. To improve the efficiency of the truncated TTHS method, we
propose a new truncated strategy to the TTHS method. Under suitable conditions, global
convergence is obtained for the proposed method. Numerical experiments show that the
proposed method outperforms the known CG DESCENT method.

The paper is organized as follows. In Section 2, we propose our algorithm.
Convergence analysis is provided under suitable conditions. Preliminary numerical results
are presented in Section 3.

2. Global Convergence Analysis

Recently, Zhang [12] proposed a three-term modified HS method as follows

dk =

⎧
⎨

⎩

−gk, if k = 0,

−gk + βHS
k dk−1 − θkyk−1, if k > 0,

(2.1)

where θk = gT
k
dk−1/d

T
k−1yk−1. An attractive property of the TTHS method is that the direction

always satisfies

gTk dk = −∥∥gk
∥
∥2
, (2.2)

which is independent of the line search used. In order to obtain the global convergence of the
TTHS method, Zhang truncated the TTHS method as follows

dk =

⎧
⎨

⎩

−gk, if sT
k
yk < ε1

∥
∥gk
∥
∥rsT

k
sk,

−gk + βHS
k
dk−1 − θkyk−1, if sT

k
yk ≥ ε1

∥
∥gk
∥
∥rsT

k
sk,

(2.3)

where ε1 and r are positive constants. Zhang proved that the truncated TTHS method
converges globally with the Wolfe line search (1.4) and (1.6). However, numerical results
show the truncated TTHS method is not very effective. In this paper, we will study the TTHS
method again. In the rest of this section, we will establish two preliminary convergent results
for the TTHS method.

(i) Uniformly convex functions: converge globally with the standard Armijo line
search (1.7).

(ii) General functions: converge globally with the strong Wolfe line search (1.4) and
(1.5) by using a new truncated strategy to the TTHS method.

In order to establish the global convergence of our method, we need the following
assumption.



4 Mathematical Problems in Engineering

Assumption 2.1. (i) The level set Ω = {x ∈ Rn | f(x) ≤ f(x0)} is bounded.
(ii) In some neighborhood N of Ω, f is continuously differentiable and its gradient is

Lipschitz continuous, namely, there exists a constant L > 0 such that

∥
∥g(x) − g(y)∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈N. (2.4)

Under Assumption 2.1, It is clear that there exist positive constants B and γ such that

∥
∥x − y∥∥ ≤ B ∀x, y ∈ Ω, (2.5)
∥
∥g(x)

∥
∥ ≤ γ ∀x ∈ Ω. (2.6)

Lemma 2.2. Suppose that Assumption 2.1 holds. Consider {xk} be generated by the TTHS method,
where αk is obtained by the Armijo line search (1.7), one has

∞∑

k=0

∥
∥gk
∥
∥4

‖dk‖2
<∞. (2.7)

Proof. If αk = β, then

δ1
∥
∥gk
∥
∥2 = −δ1g

T
k dk ≤ 1

β

[
f(xk) − f(xk+1)

]
. (2.8)

Combining with

∥
∥
∥gTk dk

∥
∥
∥

2 ≤ ∥∥gk
∥
∥2‖dk‖2, (2.9)

yields

∥
∥gk
∥
∥4

‖dk‖2
≤ ∥∥gk

∥
∥2 ≤ 1

βδ1

(
f(xk) − f(xk+1)

)
. (2.10)

On the other hand, if αk /= β, by the line search rule, then ρ−1αk does not satisfy (1.7). This
implies

f
(
xk + ρ−1αkdk

)
> f(xk) + δ1ρ

−1αkg
T
k dk. (2.11)

By the mean-value theorem, there exists μk ∈ (0, 1) such that

f
(
xk + ρ−1αkdk

)
= f(xk) + ρ−1αkg

(
xk + μkρ−1αkdk

)T
dk. (2.12)
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This together with (2.11) implies

(
g
(
xk + μkρ−1αkdk

)
− gk

)T
dk ≥ −(1 − δ1)gTk dk. (2.13)

Since g is Lipschitz continuous, the last inequality shows

αk ≥ −(1 − δ1)ρgTk dk

L‖dk‖2
=

(1 − δ1)ρ
∥
∥gk
∥
∥2

L‖dk‖2
. (2.14)

That is

f(xk+1) − f(xk) ≤ δ1αkg
T
k dk = − (1 − δ1)δ1ρ

L

∥
∥gk
∥
∥4

‖dk‖2
. (2.15)

This implies that there is a constant M1 > 0 such that

∥
∥gk
∥
∥4

‖dk‖2
≤M1

(
f(xk) − f(xk+1)

)
. (2.16)

Inequality (2.10) together with (2.16) shows that

‖gk‖4

‖dk‖2
≤M2

(
f(xk) − f(xk+1)

)
, (2.17)

with some constant M2 > 0. Summing these inequalities, we obtain (2.7).

The following theorem establishes the global convergence of the TTHS method with
the standard Armijo line search (1.7) for uniformly convex problems.

Theorem 2.3. Suppose that Assumption 2.1 holds and f is a uniformly convex function. Consider
the TTHS method, where αk is obtained by the Armijo line search (1.7), one has that

lim
k→∞

inf
∥
∥gk
∥
∥ = 0. (2.18)

Proof. We proceed by contradiction. If (2.18) does not hold, there exists a positive constant ε
such that for all k

∥
∥gk
∥
∥ ≥ ε. (2.19)

From Lemma 2.2, we get

∞∑

k=0

1

‖dk‖2
<∞. (2.20)
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Since f is a uniformly convex function, there exists a constant μ > 0 such that

(
g(x) − g(y))T(x − y) ≥ μ∥∥x − y∥∥2

, ∀x, y ∈N. (2.21)

This means

dTk−1yk−1 ≥ μαk−1‖dk−1‖2. (2.22)

By (2.1), (2.4), (2.6), and (2.22), one has

‖dk‖ ≤ ∥∥gk
∥
∥ +
∣
∣
∣βHS

k

∣
∣
∣‖dk−1‖ + |θk|

∥
∥yk−1

∥
∥

≤ ∥∥gk
∥
∥ +
∣
∣
∣βHS

k

∣
∣
∣‖dk−1‖ +

∥
∥gk
∥
∥‖dk−1‖

∣
∣dT

k−1yk−1
∣
∣

∥
∥yk−1

∥
∥

≤ ∥∥gk
∥
∥ + 2

∥
∥gk
∥
∥‖dk−1‖

∣
∣dTk−1yk−1

∣
∣

∥
∥yk−1

∥
∥

≤ ∥∥gk
∥
∥ + 2

L
∥
∥gk
∥
∥‖sk−1‖

μαk−1‖dk−1‖2 ‖dk−1‖

≤ 2L + μ
μ

γ.

(2.23)

This implies

∞∑

k=0

1

‖dk‖2
≥

∞∑

k=0

μ2

(
μ + 2L

)2
γ2

−→ ∞. (2.24)

This yield a contradiction with (2.20).

We are going to investigate the global convergence of the TTHS method with the
strong Wolfe line search (1.4) and (1.5). Similar to the PRP+ method [8], we restrict βHS

k
=

max{βHS
k
, 0}. In this case, the search direction (2.1) may not be a descent direction. Noting the

search direction (2.1) can be rewritten as

dk =

⎧
⎪⎪⎨

⎪⎪⎩

−gk, if k = 0,

−gk + βkdk−1 − βk
gT
k
dk−1

gT
k
yk−1

yk−1, if k > 0,
(2.25)
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where βk = βHS
k . Since the term gTk yk−1 may be zero in practice computation, we consider the

following search direction

dk =

⎧
⎪⎪⎨

⎪⎪⎩

−gk, if
∣
∣gT

k
yk−1

∣
∣ < c

∥
∥gk
∥
∥2
,

−gk + βHS+
k dk−1 − βHS+

k

gTk dk−1

gTk yk−1
yk−1, if

∣
∣gTk yk−1

∣
∣ ≥ c∥∥gk

∥
∥2
,

(2.26)

where c is a positive constant and βHS+
k

= max{βHS
k
, 0}. It is clear that the relation (2.2) always

holds. For simplicity, we regard the method defined by (1.2) and (2.26) as the method (2.26).
Now, we describe a lemma for the search directions, which shows that they change

slowly, asymptotically. The lemma is similar to [8, Lemma 3.4].

Lemma 2.4. Suppose that Assumption 2.1 holds. Consider {xk} be generated the method (2.26),
where αk is obtained by the strong Wolfe line search (1.4) and (1.5). If there exists a constant ε > 0
such that for all k

∥
∥gk
∥
∥ ≥ ε, (2.27)

then dk /= 0 and

∑

k≥0

‖uk+1 − uk‖2 <∞, (2.28)

where uk = dk/‖dk‖.

Proof. Noting that dk = 0, for otherwise (2.2) would imply gk = 0. Therefore, uk is well
defined. Now, let us define rk = vk/‖dk‖ and δk = βHS+

k
(‖dk−1‖/‖dk‖), where

vk = −
(

1 + βHS+
k

gTk dk−1

gTk yk−1

)

gk. (2.29)

From (2.26), we have

uk = rk + δkuk−1. (2.30)

Since uk are unit vectors, we have

‖rk‖ = ‖uk − δkuk−1‖ = ‖δkuk − uk−1‖. (2.31)

Since δk > 0, it follows that

‖uk − uk−1‖ ≤ ‖(1 + δk)(uk − uk−1)‖
≤ ‖uk − δkuk−1‖ + ‖δkuk − uk−1‖
= 2‖rk‖.

(2.32)
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Then we have

‖uk − uk−1‖2 ≤ 4r2
k. (2.33)

Now, we evaluate the quantity vk. If gT
k
yk−1 ≥ c‖gk‖2, by (1.5), we have

dTk−1yk−1 = dTk−1

(
gk − gk−1

) ≥ (σ − 1)gTk−1dk−1 = (1 − σ)∥∥gk−1
∥
∥2
. (2.34)

By the strong Wolfe condition (1.5) and the relation (2.2), we obtain

∣
∣
∣gTk dk−1

∣
∣
∣ ≤ σ

∣
∣
∣gTk−1dk−1

∣
∣
∣ = σ

∥
∥gk−1

∥
∥2
. (2.35)

Inequalities (2.34) and (2.35) yield

∣
∣gTk dk−1

∣
∣

∣
∣dT

k−1yk−1
∣
∣
≤ σ

1 − σ . (2.36)

This implies

‖vk‖ ≤
(

1 + βHS+
k

∣
∣
∣
∣
∣

gTk dk−1

gTk yk−1

∣
∣
∣
∣
∣

)
∥
∥gk
∥
∥ ≤
(

1 +

∣
∣
∣
∣
∣

gT
k dk−1

dTk−1yk−1

∣
∣
∣
∣
∣

)
∥
∥gk
∥
∥ ≤ 1

1 − σ
∥
∥gk
∥
∥. (2.37)

If gTk yk−1 < c‖gk‖2, then ‖vk‖ = ‖gk‖. The relation (2.37) also holds. It follows from the
definition of rk, Lemma 2.2, (2.27) and (2.37) that

∑

k≥0

r2
k ≤
∑

k≥0

∥
∥gk
∥
∥4

(1 − σ)2ε2‖dk‖2
<∞. (2.38)

By (2.33), we get the conclusion (2.28).

The next theorem establishes the global convergence of method (2.26) with the strong
Wolfe line search (1.4) and (1.5). The proof of the theorem is similar to [15, Theorem 3.2].

Theorem 2.5. Suppose that Assumption 2.1 holds. Consider {xk} be generated by the method (2.26),
where αk is obtained by the strong Wolfe line search (1.4) and (1.5), one has

lim
k→∞

inf
∥
∥gk
∥
∥ = 0. (2.39)

Proof. We assume that the conclusion (2.39) is not true, then there exists a constant ε > 0 such
that for all k

∥
∥gk
∥
∥ ≥ ε. (2.40)
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The proof is divided into the following three steps.

Step 1. A bound for βHS+
k

. From (2.4), (2.6), and (2.34), we get

∣
∣
∣βHS+

k

∣
∣
∣ ≤
∣
∣
∣
∣
∣

gT
k
yk−1

dTk−1yk−1

∣
∣
∣
∣
∣
≤ L
∥
∥gk
∥
∥ · ‖sk−1‖

(1 − σ)∥∥gk−1
∥
∥2

≤ Lγ‖sk−1‖
(1 − σ)ε2

� C1‖sk−1‖. (2.41)

Step 2. A bound on the steps sk. This is a modified version of [8, Theorem 4.3]. Observe that
for any l ≥ k,

xl − xk =
l−1∑

j=k

xj+1 − xj =
l−1∑

j=k

∥
∥sj
∥
∥uj =

l−1∑

j=k

∥
∥sj
∥
∥uk +

l−1∑

j=k

∥
∥sj
∥
∥
(
uj − uk

)
. (2.42)

Taking norms and by the triangle inequality to the last equality, we get from (2.5) that

l−1∑

j=k

∥
∥sj
∥
∥ ≤ ‖xl − xk‖ +

l−1∑

j=k

∥
∥sj
∥
∥
∥
∥uj − uk

∥
∥ ≤ B +

l−1∑

j=k

∥
∥sj
∥
∥
∥
∥uj − uk

∥
∥. (2.43)

Let Δ be a positive integer, chosen large enough that

Δ ≥ 4BC, (2.44)

where C = (1 + σγ2/ε2)C1. By Lemma 2.4, we can chose k0 large enough that

∑

i≥k0

‖ui+1 − ui‖2 ≤ 1
4Δ

. (2.45)

If j > k ≥ k0 and j − k ≤ Δ, then by (2.45) and the Cauchy-Schwarz inequality, we have

∥
∥uj − uk

∥
∥ ≤

j−1∑

i=k

‖ui+1 − ui‖

≤
√

j − k
(

j−1∑

i=k

‖ui+1 − ui‖2

)1/2

≤
√
Δ
(

1
4Δ

)1/2

=
1
2
.

(2.46)

Combining this with (2.43) yields

l−1∑

j=k

∥
∥sj
∥
∥ ≤ 2B, (2.47)

where l > k ≥ k0 and l − k ≤ Δ.
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Figure 1: Performance based on the number of iteration.

Step 3. A bound on the direction dl determined by (2.26). If gT
l
yl−1 ≥ c‖gl‖2, from (2.26),

(2.27), (2.35), and (2.41), we have

‖dl‖2 ≤
(
∥
∥gl
∥
∥ + βHS+

l ‖dl−1‖ + βHS+
l

∣
∣gT

l
dl−1
∣
∣

∥
∥gl
∥
∥2

yl−1

)2

≤
(
∥
∥gl
∥
∥ +

(

1 +
LBσγ2

ε2

)

βHS+
l ‖dl−1‖

)2

≤ 2γ2 + 2

(

1 +
LBσγ2

ε2

)2

C2
1‖sl−1‖2.

(2.48)

If gT
l
yl−1 < c‖gl‖2, then dl = −gl, we know that the relation (2.48) also holds. Define Si =

2C2‖si‖2, we conclude that for l > k0,

‖dl‖2 ≤ 2γ2

⎛

⎝
l∑

i=k0+1

l−1∏

j=i

Sj

⎞

⎠ + ‖dk0‖2
l−1∏

j=k0

Sj. (2.49)

Proceeding the similar proof as the case III of [15, Theorem 3.2], we get the conclusion.

3. Numerical Experiments

In this section, we report some numerical results. We tested 111 problems that are from
the CUTE [13] library. We compared the performance of the method (2.26) with the
CG DESECENT method. The CG DESECNT code can be obtained from Hager’s web page
at http://www.math.ufl.edu/hager/papers/CG.
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Figure 2: Performance based on the number of function evaluations.
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Figure 3: Performance based on the number of gradient evaluations.

In the numerical experiments, we used the latest version—Source code Fortran 77
Version 1.4 (November 14, 2005) with default parameters. We implemented the method (2.26)
with the approximate Wolfe line search in [5]. Namely, the method (2.26) used the same line
search and parameters as the CG DESECENT method. The stop criterion is that the inequality
‖g(x)‖∞ ≤ max{10−8, 10−12‖∇f(x0)‖∞} is satisfied or the iteration number exceeds 4×104. All
codes were written in Fortran 77 and run on a PC with PIII 866 processor and 192 RAM
memory and Linux operation system. Detailed results are posted at the following web site:
http://hi.814e.com/wanyoucheng/results.htm.

We adopt the performance profiles by Dolan and Moré [14] to compare the
performance between different methods. That is, for each method, we plot the fraction P of
problems for which the method is within a factor τ of the best time. The left side of the figure
gives the percentage of the test problems for which a method is the fastest; the right side gives
the percentage of the test problems that are successfully solved by each of the methods. The
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Figure 4: Performance based on CPU time.

top curve is the method that solved the most problems in a time that is within a factor τ of
the best time.

The curves in Figures 1, 2, 3, and 4 have the following meaning:

(i) cg-descent: the CG DSCENT method with the approximate Wolfe line search
proposed by Hager and Zhang [15];

(ii) mhs+: the method (2.26) with the same line search as “cg-descent” and c = 10−8.

From Figures 1–4, it is clear that the “mhs+” method outperforms the “cg-descent”
method.
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