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Time-frequency distribution has received a growing utilization for analysis and interpretation
of nonlinear and nonstationary processes in a variety of fields. Among them, two methods,
such as, the empirical mode decomposition (EMD) with Hilbert transform (HT) which is
termed as the Hilbert-Huang Transform (HHT) and the Hilbert spectrum based on maximal
overlap discrete wavelet package transform (MODWPT), are fairly noteworthy. Comparisons
of HHT and MODWPT in analyzing several typical nonlinear systems and examinations of the
effectiveness using these two methods are illustrated. This study demonstrates that HHT can
provide comparatively more accurate identifications of nonlinear systems than MODWPT.

1. Introduction

Time-frequency (TF) analysis has experienced a number of qualitative and quantitative
changes during the last three decades, and has gradually received growing attentions
and further applications in a variety of fields such as radar, water waves [1], fault
diagnose, geophysics, and biological signals. However, most traditional signal processing
methodologies, developed under rigorous mathematical rigor, are based on linear and
stationary assumptions. As the data from the real world are generally neither linear nor
stationary, the traditional data analysis methods aimed at linear and stationary signals and
processes are becoming glaringly inadequate. In recent years, several new methods have
been introduced to analyze nonlinear and nonstationary data. For instance, spectrogram and
Wigner-Ville distribution [2] were designed for linear but nonstationary data. In addition, to
accommodate for nonlinear but stationary and deterministic processes, Tong (1990), Kantz,
and Schreiber (1997), and Diks (1999) raised various time-series-analysis methods [3–5].
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Whereas most signals and processes, either natural or artificial ones, are most probably be
simultaneously nonlinear and nonstationary. Thus this makes finding a suitable approach to
such kind of data a dread in a way.

Huang and Shen put forward that all the analyses in terms of a priori established
basis have drained all the physics out of the analyzed results, because any a priori basis
could not possibly fit all the variety of data from different driving mechanisms [6]. As the
ultimate goal for data analysis is not only to find the mathematical properties of data, but
also to excavate the physical insights and implications hidden in the data, the adaptivity
becomes absolutely necessary for nonlinear and nonstationary data. Following with the two
historical views of nonlinear mechanics of Fourier and of Poincaré, Huang et al. proposed
the Hilbert view based on a new method, called empirical mode decomposition (EMD) and
Hilbert spectral analysis, which is termed as the Hilbert-Huang Transform (HHT) [7]. The
approach of combining EMD and HT differs from the Fourier transform and wavelet analysis.
It provides a faithful representation for the nonlinear and nonstationary data analysis. The
EMD is conceptualized as an alternative means to separate a multicomponent signal into
its monocomponent constituents through a progressive sifting process to yield an empirical
base consisting of intrinsic mode function (IMF) components. To ensure that these IMFs have
the well-behaved Hilbert transform and conform to a narrowband condition, more definitive
stopping criteria such as max sifting iteration are defined. In this way, the data are expanded
in a basis derived from the data itself.

Recently, the EMD algorithm, acting as a manner with highly data-driven charac-
teristic of data decomposition, plays a role of either nonlinear or nonstationary processes.
With these nice properties, the EMD has been used to calculate the Hurst index of long-
range dependence processes (LRD) and network traffic [8], additionally, being an approach
of synthesizing fractional processes [9]. In a number of studies, the combination of EMD
and HT has been applied and advocated in a variety of problems covering geophysical
[10], biomedical engineering [11], and also fluid mechanics as nonlinear water waves and
turbulence data [12]. Although several problems still exist in the EMD and the associated
Hilbert transform, such that the EMD method may produce mode mixing for some signals
[13, 14], the EMD + HT owes strength of being data dependent and provides a potentially
viable method and validity of both nonlinear and nonstationary data analyses. Furthermore,
it offers a new sight for nonlinear and nonstationary signal processing, that is, individual
component signal with physically meaningful instantaneous frequency can be obtained by
appropriate signal decomposition method.

Wavelet transforms are one of the fast-evolving mathematical and signal processing
tools [15, 16]. A wavelet transform is complete, orthogonal (in the discrete form), and local
[17]. A continuous wavelet transform (CWT) decomposes a function by band-pass filtering
of the original signal at different bandwidths, while a discrete wavelet transform (DWT)
is implemented by using quadrature mirror filter (QMF) banks [18]. The basic operation of
wavelet transform consists of the procedures of dilation and translation [19, 20], which lead to
a multiscale analysis of a signal. All these vital advantages make wavelet transforms capable
of analyzing nonlinear and nonstationary signals. Nevertheless, the deficiencies including
the interference terms, border distortion, and energy leakage may generate a lot of undesired
small spikes all over the frequency scales and make the results confusing and difficult to
be interpreted. To deal with these shortcomings, Olhede and Walden developed another
self-adaptive wavelet-based algorithm also via Hilbert transform, namely, maximal-overlap
discrete wavelet packet transform (MODWPT) [21]. The ordinary DWT requires the sample
size to be exactly a power of 2 for the full transform [22]. Besides, the scaling coefficient of
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DWT is not circularly shift equivariant. By avoiding down sampling, MODWPT overcomes
these disadvantages of DWT. With optimum decomposition scale and disjoint dyadic
decomposition, the complicated signal could be decomposed into a number of components
with instantaneous frequencies physically meaningful at different levels. Furthermore, each
single component obtained by MODWPT has desirable statistical characteristics, which are
desirable properties to deal with nonstationary time series in practice [21].

Duffing equation, Lorenz system, and Rössler system are three of the typical nonlinear
examples. The network traffic data is also one kind of practical nonlinear processes [23–30].
Several TF analyses and spectral analyses in network traffic have been used [31]. To discuss
the applicability of nonlinear data analysis on HHT and on MODWPT, we will enumerate
these several typical nonlinear systems and examine the effectiveness of these two methods in
the following representation. The organization of this paper is given as follows. The rationale
of HHT and MODWPT will be elaborated separately in Sections 2 and 3. Characteristics of
three typical nonlinear systems using HHT and MODWPT will be discussed in Section 4 and
the efficiency of each approach will also be demonstrated. In Section 5, we give the future
works that are under investigation and exploration. Finally, we will offer the conclusion in
Section 6.

2. Rationale of HHT

The development of HHT provides an alternative view of the time-frequency-energy
paradigm of nonlinear and nonstationary data. To examine data from real-world nonlinear
and nonstationary processes, the detailed dynamics in the processes from the data need to be
determined because the intrawave frequency modulation, which indicates the instantaneous
frequency changes within one oscillation cycle, is one of the typical characteristics of a
nonlinear system. As Huang et al. [7] pointed out, the intrafrequency variation is the
hallmark of nonlinear systems. One way to express the nonlinearity is to find instantaneous
frequency, which reveals the intrawave frequency modulations. But actually, the detailed
frequency representation cannot be obtained from a priori approach hampered by a collection
of the endless harmonics [6]. Thus, as an easier approach, the Hilbert Transform is used,
which is defined as

y(t) =
1
π
P

∫∞
−∞

x(τ)
t − τ dτ, (2.1)

where P is the Cauchy principal value of the singular integral and in which y(t) is the Hilbert
transform of the function x(t). The analytic signal is defined as

z(t) = x(t) + iy(t) = a(t)eiθ(t), (2.2)

where

a(t) =
√
x2 + y2, φ(t) = arctan

(y
x

)
, (2.3)



4 Mathematical Problems in Engineering

where a(t) is the instantaneous amplitude, and φ is the instantaneous phase function. The
instantaneous frequency is

ω =
dφ

dt
. (2.4)

The purpose is to separate function x(t) into a set of nearly monocomponent signals
called IMFs. An IMF is a single frequency component within the length of the signal. The way
of extracting instantaneous frequencies is called EMD [7].

2.1. Empirical Mode Decomposition

Physically speaking, the necessary conditions to define a meaningful instantaneous frequency
are that the signal must be symmetric concerning the local zero mean, and have the same
numbers of zero crossings and extrema. This means that, in an IMF function, the number of
extrema and the number of zero crossings must be either equal or different at most by one in
the whole data set, and the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero at every point. All these conditions are so strict
that the determined IMF may not satisfy them precisely. Consequently, the resultant IMF is
nearly a monocomponent function.

The EMD is developed based on the assumption that any signal consists of a set of
different IMFs. The procedures to decompose signal x(t) can be enumerated as following
steps.

(a) Find all the local maxima from x(t) and connect them with the cubic spline to form
the upper envelope denoted by xup(t).

(b) Find all the local minima from x(t) and connect them with the cubic spline to form
the lower envelope denoted by xlow(t).

(c) Let the mean m1(t) = [xup(t) + xlow(t)]/2.

(d) Subtract the difference h1(t) between the signal x(t) and the mean m1(t) : h1(t) =
x(t) −m1(t).

(e) Ideally, the difference h1(t) should be an IMF. Repeat step (d) as a sifting process
by treating h1(t) as the signal: h11(t) = h1(t) −m11(t).

(f) Repeat the sifting process k times until h1k(t) becomes a true IMF as

h1k(t) = h1(k−1)(t) −m1(k−1)(t), (2.5)

and it is designated as: c1(t) = h1k(t).

(g) The criterion suggested by Huang for stopping the sifting process is

SD =
N∑
t=0

[∣∣h1(k−1)(t) − h1k(t)
∣∣2

h2
1(k−1)(t)

]
, (2.6)

and the SD value is regularly 0.2∼0.3.
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(h) Remove c1(t) from the rest of the signal by r1(t) = x(t) − c1(t) and treat r1(t) as a
new signal and repeating step (a) to (f) as described above. Thus, we can obtain a
series of IMFs ci (i = 1, 2, ..., n) and the final residue rn(t).

Summing up all the IMFs and the final residue, we should be able to reconstruct the
original signal x(t) by [7]

x(t) =
n∑
i=1

ci(t) + rn(t). (2.7)

Then, the HT of ci(t) yields

x(t) = Re

(
n∑
i=1

ai(t)ejφi(t)
)

+ rn(t) = Re

(
n∑
i=1

ai(t)ej
∫
ωi(t)dt

)
+ rn(t). (2.8)

In the polar coordinates system, x(t) is expressed by

x(t) = Re

(
n∑
i=1

ai(t) exp
[
j

∫
ωi(t)dt

])
+ rn(t). (2.9)

Practically, the residue rn(t) can be ignored.
Let ai(ω, t) be the combination of the amplitude ai(t) and the instantaneous frequency

ωi(t) of the ith IMF. The HHT of x(t) is given by

HHT(ω, t) =
n∑
i=1

ai(ω, t). (2.10)

3. Hilbert Spectrum via MODWPT

Assume that we sample a continuous-time signal at intervals Δt = 1 to a sequence of the
observation X = [X0, X1, . . . , XN−1] and N is a power of 2. For the class of discrete compactly
supported Daubechies wavelets, we denote the scaling (low-pass) filter by {gl : l = 0, . . . , L −
1} and the wavelet (high-pass) filter by {hl : l = 0, . . . , L − 1}. These even-length filters satisfy

L−1∑
l=0

g2
l = 1,

L−1∑
l=0

glgl+2n =
∞∑

l=−∞
glgl+2n = 0 (3.1)

for all nonzero integers n, and are related by being quadrature mirror filters:

hl = (−1)lgL−l−1 or gl = (−1)l+1hL−l−1 for l = 0, . . . , L − 1. (3.2)
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For t = 0, . . . ,N − 1, the jth level wavelet and scaling coefficients are given by

Vj,t =
l−1∑
l=0

glVj−1,(2t+1−l) mod Nj−1
(
t = 0, . . . ,Nj − 1

)
,

Wj,t =
l−1∑
l=0

hlVj−1,(2t+1−l) mod Nj−1
(
t = 0, . . . ,Nj − 1

)
,

(3.3)

where mod means modulus after division.
The maximal overlap discrete wavelet transform (MODWT) can be considered as a

revised version of the DWT [21]. As previously mentioned, the DWT of level j restricts the
sample size to a power of 2. However, the MODWT of level j is well defined for any sample
size. To conserve energy, we define

g̃l =
gl√

2
, h̃l =

hl√
2
. (3.4)

Thus, (3.1) becomes

L−1∑
l=0

g̃2
l =

1
2
,

L−1∑
l=0

g̃lg̃l+2n =
∞∑

l=−∞
g̃lg̃l+2n = 0 (3.5)

and the quadrature mirror filters are defined likewise

h̃l = (−1)lg̃L−l−1 or g̃l = (−1)l+1h̃L−l−1 for l = 0, . . . , L − 1. (3.6)

The MODWT creates new filters at each stage by inserting 2j−1 − 1 zeros between
the elements of {g̃l} and {h̃l} to avoid downsampling. The MODWT pyramid algorithm
generates the MODWT wavelet coefficients {W (M)

j,t } and the scaling coefficients {V (M)
j,t },

respectively by

Vj,t =
l−1∑
l=0

g̃lVj−1,(t−2j−1l) mod N

(
t = 0, . . . ,Nj − 1

)
,

Wj,t =
l−1∑
l=0

h̃lVj−1,(t−2j−1l) mod N

(
t = 0, . . . ,Nj − 1

)
.

(3.7)
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The coefficients at level j and frequency-index n can be expressed as Wj,n = {Wj,n,t,
t = 0, . . . ,N − 1}, and then we produce {Wj,n,t} using

Wj,n,t =
l−1∑
l=0

f̃n,lWj−1,[n/2],(t−2j−1l) mod N

(
t = 0, . . . ,Nj − 1

)
, (3.8)

when n mod 4 = 0 or 3, f̃n,l = g̃l; when n mod 4 = 1 or 2, f̃n,l = h̃l.
For any signal, the analytic form can be represented as

s(t) =Wj,n(t) + jH
[
Wj,n(t)

]
. (3.9)

Then the instantaneous amplitude is denoted by

aj,n(t) =
√
W2

j,n(t) +H
2
[
Wj,n(t)

]
, (3.10)

and the instantaneous phase function is

φj,n(t) = tg−1H
[
Wj,n(t)

]
Wj,n(t)

. (3.11)

Accordingly, the instantaneous frequency is

fj,n(t) =
1

2π
φ′j,n(t). (3.12)

4. Nonlinear System

Generally speaking, the instantaneous frequency changes within one oscillation cycle for
nonlinear systems, and can be used to describe intrawave frequency modulation. To discuss
the characteristics of data from a nonlinear system by EMD + HT and MODWPT, we will take
several typical examples to aid the discussions.

4.1. Duffing System

The Duffing oscillator under harmonic excitation described by a second-order differential
equation is one of the well-known nonlinear examples

d2x

dt2
+ x + εx3 = γ cosωt, (4.1)
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Figure 1: (a) Numerical solution of the Duffing equation (200s). (b) Power spectral density estimate.

where ε, γ = constants, and ω = harmonic forcing frequency. If we rewrite the equation in the
following form

d2x

dt2
+
(

1 + εx2
)
x = γ cosωt, (4.2)

the term in parenthesis could be interpreted as nonlinearity in the stiffness of the oscillator,
which will lead to a frequency that is ever changing with amplitude from location to location,
and time to time, even within a single period.

Embodied by a Duffing oscillator with ε = −1 and γ = 0.1, the system is allowed to
freely vibrate and with the initial conditions of x(0) = 1 and ẋ(0) = 1, as shown in Figure 1.

After subjected to the EMD, the numerical result yields the IMF components and
the corresponding Fourier spectrum of each IMFs as shown in Figure 2, where the first
IMF, indicating a concentration of energy near 0.12 Hz, represents the intrinsic frequency
of the system. The second IMF, identifying a weak concentration of energy around 0.04 Hz,
represents the forcing function, and a low-frequency component, with low energy at 0.017 Hz,
represents the very low-intensity subharmonics. Figure 3 illustrates the TF outcome of the
Duffing equation using EMD and MODWPT. Apparently, the HHT result reveals the intrinsic
frequency clearly, which shows strong introwave frequency modulation, presented as a
variable frequency oscillation between 0.06∼0.18 Hz. The forcing function is also perfect
shown at 0.04 Hz. The low frequency and low amplitude at 0.02 Hz are unexpected but
explicable, for they represent the slow aperiodic wobbling of the phase. The Hilbert marginal
spectrum of HHT shows the intrawave frequency modulation from 0.06 to 0.18 Hz and the
forcing function near 0.04 Hz likewise. Compared to the HHT, while the TF spectrum of
MODWPT indicates the frequency oscillation near 0.1 Hz, the forcing function at 0.04 Hz is
not displayed, just similar to the Hilbert marginal spectrum on right.
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Figure 2: The IMF components of the Duffing equation from EMD in (a) and the corresponding power
spectrum in (b).

4.2. Duffing System

The Lorenz system has also been widely studied and is described by

ẋ = −σ
(
x − y

)
, ẏ = x(r − z) − y, ż = −bz + xy, (4.3)

where σ, r, and b = positive constants, assumed to be 10, 20, and 3, with initial position of
(10, 0, 0). The numerical result is shown in Figure 4. The IMFs are displayed in Figure 5 with
the corresponding Fourier spectrum on right. The comparisons of TF resolutions using HHT
and MODWPT are provided in Figure 6. The sharp peak that appears at 1.4 Hz in the Fourier
spectrum represents the main oscillating frequency.

In the diagram of HHT, the transient nature of both components is perfectly located,
with the main component being intrawave modulated and a fairly clear indication of the
nonlinear effect of the oscillation. Comparatively speaking, the result of MODWPT is not
so satisfactory. Only some blurry frequency components can be recognized near 1.4 Hz. The
oscillation of the frequency, supposed to be demonstrating the nonlinearity, is not represented
here in the spectrum of the MODWPT.
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equation separately; the corresponding Hilbert Marginal spectrum results of EMD and MODWPT are on
the right side.
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Figure 4: The numerical solution of the Lorenz equation (a) and the Fourier spectrum of the given x-
component (b).

4.3. Duffing System

Another example investigated here is the Rössler System denoted as

ẋ = −
(
y + z

)
, ẏ = x +

1
5
y, ż =

1
5
+ z

(
x + μ

)
, (4.4)
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Figure 5: The IMF components of the Lorenz equation from EMD in (a) and the corresponding power
spectrum in (b).
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Figure 7: The waveform of the x-component in diagram (a) and The Fourier spectrum of x (b).
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Figure 8: Comparison of the TF distribution of Rossler equation using HHT and MODWPT (level 3) on
left and the corresponding marginal spectrum on right.

where μ is a constant parameter which stands for the famous period-doubling event and
we let it be μ = 3.5. Also we assume the initial condition to be (−4,4,0). Wave form of the
x-component is displayed in Figure 7.

The result of the Fourier spectrum of x-component shows many harmonics at 0.27 Hz,
0.35 Hz, and 0.42 Hz, separately 3 times, 5 times, and 7 times of 0.07 Hz. The HHT spectrum
and the MODWPT distribution are given in Figure 8 on the left column. The corresponding
Hilbert marginal spectrum of each method is on the right column. The marginal spectrum
gives a low-frequency peak and a broad bimodal distribution near the main peak frequency,
which indicates a typical distribution of a periodic variable. None of the peaks in the marginal
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spectrum agree with the main peak in the Fourier spectrum in Figure 7. Comparatively, the
peak near 0.07 Hz in marginal spectrum of HHT does not appear in the marginal spectrum
of MODWPT. Similarly, the high bimodal frequency distribution around 0.18 Hz generated
by the intrawave frequency modulation in marginal spectrum of MODWPT agrees with
these in marginal spectrum of HHT, which indicates the two time scales involved in the
period doubling. As these results showed, the EMD decomposed the data into two nonlinear
components more successfully than the MODWPT.

5. Future Work

This paper focuses on the performance of nonlinear processes using the HHT and the
MODWPT with the aim of bringing a better choice of time-frequency decomposition in
nonlinear data analysis. Compared with the HHT, the MODWPT shows some weakness in
nonlinear data analysis and the study of identifying the computational burden required by
these two methods is still at the exploratory stage.

6. Conclusion

HHT, which decomposes data through EMD, offers a potentially viable method for nonlinear
and nonstationary data analysis. Verified by three typical nonlinear systems, the HHT can
not only perform and locate main frequency components but also force function frequency
details. Furthermore, the intrawave modulation, which is the important characteristic of
nonlinear system, can as well be obtained in the distribution of HHT. Compared with the
MODWPT that decomposes data into a number of components alike, the EMD gives results
much sharper and more supportable to nonlinear system identification.
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