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The problem of the stabilization of descriptor systems in continuous-time via static output-
feedback is studied in this paper and an approach to solve it is proposed. For this, sufficient con-
ditions are derived for the closed-loop system to be admissible (i.e., stable, regular, and impulse-
free). These conditions are expressed in terms of a strict Linear Matrix Inequality (LMI); so they are
tractable using numerical computations. The proposed controller design methodology is based on
two steps: the first is dedicated to synthesizing a classical state-feedback controller, which is used
as the initial value for the second step, which uses an LMI problem to obtain static output-feedback
controllers that give admissibility. Finally, a numerical example is given to illustrate the results.

1. Introduction

Descriptor systems result from a convenient modeling process (see [1–3]). It is fair to say that
descriptor system models give a more complete class of dynamical models than the state
variable systems, as a descriptor form also includes information about static constraints.
Applications of descriptor systems can be found in various fields such as electrical circuit
networks [1], robotics [4], and economics [5].

In recent years, considerable effort has been devoted to the analysis of stability (see [3,
6–8]), the development of stabilization techniques, and the study of robustness of descriptor
systems (see [9–16]).

Many results concerning LMI-based control use LMIs, but with additional equality
constraints, which, unfortunately, often cause numerical problems in computation (see
[10, 17–19]). This motivated the authors, following [9], to express the LMI conditions
for the analysis of admissibility and controller synthesis [6] in terms of a strict LMI
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(i.e., LMI without any additional equality constraints), so as to be more tractable and so the
numerical solution will be more reliable when using the available LMI software solvers.

In this paper, our main contribution is an approach for the synthesis of static output-
feedback controllers, based on solving a strict LMI (i.e., without additional constraints) for
a problem of admissibilization for Descriptor Systems. Uncertainty in Descriptor Systems
is a serious issue [9]; so an extension of the main results for uncertain singular systems is
also provided. In order to give the conditions of admissibility in LMI form, some relaxation
variables are introduced.

Robust control of linear state space systems has received much attention over the
last few decades and various aspects and approaches for analysis and control design, for
linear systems with uncertain parameters, have been investigated (see [20, 21]). It must be
pointed out that many important results on quadratic stability and stabilization approaches
have been proposed in the literature. For example, the quadratic stability and stabilization
problems have been studied, but they are usually characterized by the determination of a
unique Lyapunov matrix (see [22]), which gives the approach an inherent conservatism.
Recently, the Parameter Dependent Lyapunov (PDL) approach has been introduced to reduce
the conservatism of the quadratic approach. This PDL approach consists of expressing the
Lyapunov matrix as a function of uncertainty, with the use of some additional variables,
which allows a significant reduction of the conservatism [23]. Thus, the PDL approach is
used in this paper to solve the robust static output-feedback admissibility problem, for the
descriptor systems case.

This paper is organized as follows. Section 2 gives the problem formulation and
some preliminary definitions. Section 3 gives the main results for solving the static feedback
problems of nominal descriptor systems, whereas Section 4 presents an extension of the main
results for uncertain singular systems. Section 5 presents an illustrative example. Finally,
Section 6 gives some conclusions.

2. Preliminaries

Consider the following descriptor system in continuous-time:

Eẋ(t) = Ax(t), (2.1)

where x(t) ∈ �n is the state, the matrix E may be singular (so we assume that rank(E) = r ≤
n), and A is a known real constant matrix of appropriate dimension.

Definition 2.1 (see [1]). The pair (E,A) is said to be regular if det(sE − A) is not identically
zero.

Definition 2.2 (see [1]). The pair (E,A) is said to be impulse-free if deg(det(sE−A)) = rank(E).

In the rest of the paper, the notation is standard, unless specified otherwise. L > 0
(L < 0) means that the matrix L is a symmetric and positive defined matrix (symmetric and
negative defined). For a square matrix X, ���{X} is defined as ���{X} = X + X�, with �
denoting the transpose.
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It is worth noting that the stability properties for conventional systems are no longer
sufficient for singular systems, unless they are completed by the regularity condition and the
absence of impulses, which leads to the introduction of the notion of admissibility.

Definition 2.3 (see [1, 10]). The descriptor system (2.1) is said to be admissible if it is regular,
impulse-free, and Hurwitz stable.

In order to characterize the admissibility of a singular system, let us recall that for a
pair (E,A) there exists a transformation pair (U,V ) such that

E = UEV =

[
I 0

0 0

]
, A = UAV =

⎡
⎣A11 A12

A21 A22

⎤
⎦. (2.2)

To solve the static output-feedback admissibilitation problem, the following theorem is
introduced.

Theorem 2.4 (see [6]). The continuous singular system (E,A) is admissible if and only if there exist
three matrices X, Y , and Z such that

EXE� + ���
{
E†Z

}
> 0, (2.3)

���
{
A
(
XE� + E⊥Y

)}
< 0, (2.4)

with E† .= U−1(I −UEV )U and E⊥ .= V (I −UEV )U, that fulfil EE⊥ = 0 and E†E = 0.

It must be pointed out that if the singular system defined by the pair (E,A) is
admissible, then its dual, defined by the pair (E�, A�), is also admissible; so Theorem 2.4
can also be written as follows.

Corollary 2.5. The continuous singular system is admissible if and only if there exist matrices X, Y
and Z such that

���

{
A�

(
XE + E‡Y

)}
< 0, (2.5)

with E‡ .= U�(I −UEV )U−� (which fulfills E�E‡ = 0).

3. Admissibilization by Static Output-Feedback Control

In this section we address the problem of admissibility by static output-feedback for the
descriptor system given by

Eẋ(t) = Ax(t) + Bu(t), (3.1)

y(t) = Cx(t), (3.2)

where x(t) ∈ �
n is the state, u(t) ∈ �

m is the control input, and y(t) ∈ �
p is the output.
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E, A, B, and C are real matrices that, in this section, are assumed to be known and constant
(this restriction will be lifted in Section 3).

The control law given by a static output-feedback is then

u(t) = Ky(t), (3.3)

where the constant gain K, of appropriate dimensions, is computed in such a way that the
(singular) closed-loop system is admissible.

As the goal of this paper is to find gains K such that the closed-loop system is
admissible, we present the main result in this section: a solution of admissibilization problem
by static output-feedback, where the solvability will be given by some LMI conditions.
This approach is summarized by Lemmas 3.1 and 3.2. If the system contains polytopic
uncertainties, the results can be extended to the robust static output-feedback admissibility
problem, which is dealt with in Section 4.

For this, we note that the descriptor system (3.1) in closed-loop under feedback (3.3)
is given by

Eẋ(t) = (A + BKC)x. (3.4)

This closed-loop system is admissible if the following inequality is verified:

���

{
(A + BKC)�

(
XE + E‡Y

)}
< 0, (3.5)

where the matrix X satisfies condition (2.3).
From this result, the static output-feedback controller can be synthesized, guarantee-

ing that the closed-loop system (3.4) is admissible. We will propose a solution in two steps.
The first step is devoted to establishing a relation between a classical state feedback controller
design and static output feedback. In the second step, we include some relaxed variables and
so the design of the controller gain is formulated as an LMI problem. The following lemmas
give LMI-based conditions for the solvability of the problem.

Lemma 3.1. (relation between state-feedback and static output-feedback). The following statements
are equivalent.

(1) There exist matrices X, Y , and Z, a state-feedback gainKo, and an output-feedback gainK
such that

���
{
(A + BKC)�

(
XE + E‡Y

)}
< 0,

���
{
(A + BKo)�

(
XE + E‡Y

)}
< 0.

(3.6)
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(2) There exist matrices X, Y , and Z, a nonsingular matrix G, a state-feedback gain Ko, and
an output-feedback gainK such that

⎡
⎣���

{
(A + BKo)�

(
XE + E‡Y

)}
(KC −Ko)�G� +

(
XE + E‡Y

)�
B

G(KC −Ko) + B�(XE + E‡Y
) −G +G�

⎤
⎦ < 0, (3.7)

where the matrix X satisfies the condition (2.3):

EXE� + ���

{
E†Z

}
> 0. (3.8)

Proof. First, note that inequality (3.7) can be written as follows:

φ + ���

{[
0

I

]
G
[
S −I]

}
< 0, (3.9)

with S = KC −Ko and

φ =

⎡
⎣���

{
(A + BKo)�

(
XE + E‡Y

)} (
XE + E‡Y

)�
B

B�(XE + E‡Y
)

0

⎤
⎦. (3.10)

A direct application of the Elimination Lemma [24] allows us to state that the above condition
is equivalent to

[
I 0

]
φ

[
I

0

]
= ���

{
(A + BKo)�

(
XE + E‡Y

)}
< 0,

[
I S�]φ

[
I

S

]
= ���

{
(A + BKC)�

(
XE + E‡Y

)}
< 0,

(3.11)

to obtain the inequalities (3.6) of Lemma 3.1.

Lemma 3.1 shows the existence of a relation between the state-feedback and the
output-feedback, in the sense that they have the same Lyapunov matrix verifying (2.3). Thus,
the output-feedback gain can be calculated by determining a solution of the inequality (3.7).
For this, we introduce supplementary variables that allow us to deduct a sufficient condition
for the development of the gain of the output-feedback, given by the following lemma.

Lemma 3.2. For a descriptor system defined by (3.4), the following are equivalent.
(1) There exist matrices X and Y , a nonsingular matrix G, a state-feedback gain Ko, and an

output-feedback gainK such that

⎡
⎣���

{
(A + BKo)�

(
XE + E‡Y

)}
(KC −Ko)�G� +

(
XE + E‡Y

)�
B

G(KC −Ko) + B�(XE + E‡Y
) −G −G�

⎤
⎦ < 0. (3.12)
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(2) There exist matricesX, Y , Z, F1, F2, F3, and L, and a nonsingular matrixG, such that the
following condition is satisfied for all given Ko:

H + ���

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
F1

F2

F3

⎤
⎥⎥⎦[Ao B −I]

⎫⎪⎪⎬
⎪⎪⎭ < 0, (3.13)

with A0 = A + BKo, and

H =

⎡
⎢⎢⎣

0 (LC −GKo)�
(
XE + E‡Y

)�
LC −GKo −G −G� 0

XE + E‡Y 0 0

⎤
⎥⎥⎦, (3.14)

and where matrix X satisfies condition (2.3): EXE� + ���{E†Z} > 0.
Thus, if the LMI (3.13) is feasible, then the singular closed-loop system with the static output-

feedback gain K = G−1L is admissible.

Proof. According to the Elimination Lemma [24], condition (3.12) holds if and only if there
exists a matrix F satisfying the following condition:

φ + ���{FQ} < 0, (3.15)

with

φ =

⎡
⎢⎢⎣

0 (LC −GKo)� XE� + E⊥Y

LC −GKo −(G +G�) 0(
XE� + E⊥Y

)� 0 0

⎤
⎥⎥⎦, (3.16)

Q = [A0 B −I ]� and F partitioned as F = [ F1 F2 F3 ]�, with F3 nonsingular.
Making the change of variable L = GK in this condition yields directly condition

(3.13), which completes the proof.

4. Robust Admissibilization by Static Output-Feedback

In this section, we consider the output-feedback admissibilization problem for systems
containing uncertainties, which are assumed to lie in a bounded convex domain. The
results developed in Section 3 will be applied to solving the robust static output-feedback
admissibility problem in this section.
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Assume that the uncertain descriptor system is characterized by

Eẋ(t) = A(α)x(t) + B(α)u(t), (4.1)

y(t) = C(α)x(t), (4.2)

where the matricesA(α), B(α), and C(α) are given as follows:

A(α)=̇
N∑
i=1

αiAi, B(α)=̇
N∑
i=1

αiBi, C(α)=̇
N∑
i=1

αiCi, (4.3)

with

α
.= [α1 · · ·αN]�,

N∑
i=1

αi = 1, αi ≥ 0, for i = 1, . . . ,N. (4.4)

That is, the system matrices [A(α) B(α) C(α) ] belong to a polytope whose vertices are [ Ai Bi Ci ]
for i = 1, . . . ,N.

The output-feedback stabilization of system (4.1) consists of an adequate choice of a
feedback gainK such that the closed-loop system

Eẋ(t) = (A(α) + B(α)KC(α))x(t) (4.5)

is admissible for every α satisfying (4.4).
Then the admissibilization problem has a solution if there exists a static output-

feedback K such that, for every i, the closed-loop system characterized by [ E Ai Bi Ci ] is
admissible. The solution of this problem is summarized by the next Theorem 4.1.

Theorem 4.1. For the uncertain descriptor system characterized by E, A(α), and B(α), as given in
(4.1)–(4.4), if there exist matrices Xi, Yi, Z, F1, F2, F3, and L, and a nonsingular matrix G such that
the following LMIs are feasible for given Ko

Hi + ���

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
F1

F2

F3

⎤
⎥⎥⎦[Ai + BiKo Bi −I]

⎫⎪⎪⎬
⎪⎪⎭ < 0, i = 1, . . . , N, (4.6)

with

Hi =

⎡
⎢⎢⎣

0 (LCi −GKo)�
(
XiE + E‡Yi

)�
LCi −GKo −G −G� 0

XiE + E‡Yi 0 0

⎤
⎥⎥⎦, (4.7)
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and matrices Xi satisfying condition (2.3), then, an admissible static output-feedback gain is given by

K = G−1L. (4.8)

Proof. First, multiply each condition in (4.6) by αi, as defined in (4.4) and then sum them up
(from i = 1 to i = N). Then, substituting in the result

∑N
i=1 αiXi by X and

∑N
i=1 αiYi by Y gives

directly the condition (3.13); so applying Lemma 3.2 completes the proof.

5. Illustrative Example

Example 5.1. Consider a descriptor system in continuous-time as in (2.1), described by the
following system matrices [10]:

E =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦, A =

⎡
⎢⎢⎣

0 1 1

−1 3 0

0 0 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0 0.2

1 0

−0.1 1

⎤
⎥⎥⎦, C =

[
1 0 1

0.5 1 0

]
.

(5.1)

It can be seen that the open-loop system is not admissible: poles are located at 0.3820 and
2.6180. To make this system admissible by output-feedback, it is first necessary to compute
a state-feedback gain that makes the closed-loop system admissible. For example, using the
method described in [6], we computed

Ko =

[
0.3864 −4.5658 −0.4861
−0.9965 −1.4100 −1.8631

]
. (5.2)

Then, the LMIs in Lemma 3.2 are feasible. One solution (given by the LMI toolbox in Matlab)
is

X =

⎡
⎢⎢⎣

0.8457 0.0958 −0.5277
0.0958 0.7172 24.9240

−0.5277 24.9240 0

⎤
⎥⎥⎦, Y =

⎡
⎢⎢⎣

0 0 0

0 0 0

0.9287 −24.7339 0.7066

⎤
⎥⎥⎦,

G =

[
0.2884 −0.2837
−0.2883 0.8003

]
, L =

[
0.6965 −1.0927
−1.1116 0.1593

]
, Z =

⎡
⎢⎢⎣
0 0 0

0 0 0

0 0 0.4998

⎤
⎥⎥⎦,

(5.3)

which gives the static output-feedback gain

K = G−1L =

[
1.6243 −5.5642
−0.8039 −1.8051

]
. (5.4)
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It can be seen that this feedback gain renders the resulting closed-loop system admissible,
with finite closed-loop poles located at −1.1159 and −5.2701.

6. Conclusion

The problem of robust admissibilization for continuous time descriptor systems has been
studied. Some conditions have been derived to ensure the admissibility of the closed loop via
a static output-feedback control law. These conditions are expressed in terms of strict Linear
Matrix Inequalities, without additional equality constraints. Based on this result, a robust
admissible output-feedback control law is proposed for continuous descriptor systems with
polytopic uncertainty. The proposed method consists of two steps. The first step is devoted
to a classical state feedback controller design, whereas the second one is the solution of the
LMI problem. A numerical example is provided to illustrate the usefulness of the proposed
methodology.
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