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This paper examines the effects of thermocapillarity and thermal radiation on the boundary layer
flow and heat transfer in a thin film on an unsteady stretching sheet with nonuniform heat source/
sink. The governing partial differential equations are converted into ordinary differential equations
by a similarity transformation and then are solved by using the homotopy analysis method
(HAM). The effects of the radiation parameter, the thermocapillarity number, and the temperature-
dependent parameter in this study are discussed and presented graphically via velocity and tem-
perature profiles.

1. Introduction

The analysis of heat transfer of boundary layer flow with thermal radiation is important in
electrical power generation, astrophysical flows, solar power technology, space vehicle reen-
try, and other industrial engineering processes.

Wang [1]was the pioneer in investigating the hydrodynamics of a flow in a thin liquid
film on an unsteady stretching surface. Later, Andersson et al. [2] studied the heat transfer
characteristics of the hydrodynamical problem solved by Wang [1]. Liu and Andersson [3]
examined the problem with a more general form of prescribed temperature variation of a
stretching sheet. Wang [4] investigated the same problem of Andersson et al. [2], presenting
analytic solutions. Several researchers have extended Wang’s [1] classical problem, taking
into consideration non-Newtonian [5–9], thermocapillarity [10–13], and magnetic effects [14,
15].
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Wang [4] was probably the first to analyze the flow and heat transfer in a thin liquid
film on an unsteady stretching surface using the homotopy analysis method (HAM). The
HAM is a general analytic method for obtaining series solutions for various types of nonlinear
equations [16]. Several studies have successfully applied HAM to various nonlinear prob-
lems in science and engineering [17–22]. Studies byDandapat et al. [10, 11] reported that ther-
mocapillarity generates surface-tension gradients along the horizontal interface between the
passive gas and the liquid film. Both Abd El-Aziz [23] and Mahmoud [24] have studied the
influence of thermal radiation on the flow and heat transfer on an unsteady stretching sheet.

Motivated by these studies, in this paper we extend the results of Wang [4] and
Mahmoud [24] for thin film flow on an unsteady stretching sheet with combined effects of
thermocapillarity, thermal radiation, and internal heating. Furthermore, we employ the simi-
larity transformation introduced byWang [4] to transform the extent of the independent var-
iable into a finite range 0-1. The solutions reached using HAM are presented and implications
discussed.

2. Problem Formulation

The fluid flow, modeled as an unsteady, two-dimensional, incompressible viscous laminar
flow on a horizontal thin elastic sheet, emerges from a narrow slot at the origin of a Cartesian
coordinate system. Fluid motion and heat transfer arise in the stretching of the horizontal
elastic sheet. It is assumed that the elastic sheet has internal heat generation/absorption and
that the sheet temperature varies with the coordinate x and time t. Under these assumptions,
the governing conservation equations of mass, momentum, and energy at unsteady state can
be expressed as

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u
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+Q − ∂qr

∂y
, (2.3)

subject to

u = U, v = 0, T = Ts at y = 0,

μ
∂u

∂y
=
∂σ

∂x
,

∂T

∂y
= 0, v =

dh
dt

at y = h,
(2.4)

where u and v are the velocity components of the fluid in the x- and y-directions, t is the time,
T is the temperature, ν is the kinematic viscosity, ρ is the density, κ is the thermal diffusivity,
Cp is the specific heat at constant pressure, μ is the viscosity, and h(t) is the uniform thickness
of the liquid film. Note that the surface tension varies linearly with temperature, defined as
σ = σ0[1−δ(T −T0)], where δ is a positive fluid property. The velocity of the stretching surface
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is defined as U = bx/(1 − αt), with α and b as positive constants. The Q term is the heat gen-
erated (>0) or absorbed (<0) per unit volume and is defined as

Q =
(
κU

xν

)
B∗(T − To), (2.5)

where B∗ is the temperature-dependent heat generation/absorption, that is, B∗ is positive in
the case of the elastic sheet’s generation of heat and negative in the case of the sheet’s absorp-
tion of heat from the fluid flow. The radiative heat flux qr under Rosseland approximation
(Brewster, 1992, cited in [23]) is given in the form

qr = −4σ∗
3k1

∂T4

∂y
, (2.6)

where σ∗ is the Stefan Boltzmann constant and k1 is the mean absorption coefficient. We
assume that the temperature difference within the flow is sufficiently small for T4 to be ex-
pressed as a linear function of temperature. This is accomplished by expanding T4 in a Taylor
series about T0 and neglecting higher-order terms, thus

T4 ∼= 4T3
0T − 3T4

0 . (2.7)

According to Wang [4], the surface temperature Ts of the stretching sheet varies with the
distance x from the slot and time t in the form

Ts = To − Tref bx
2

2ν
(1 − αt)−3/2, (2.8)

where To is the temperature at the slit, Tref is the constant reference temperature for all t < 1/α.
The surface of the planar liquid film is assumed to be smooth and free of surface waves while
viscous shear stress and heat flux are assumed to vanish at the adiabatic free surface. Liu and
Andersson [3] developed similarity transformations, which are given as

ψ = βx
[

νb

1 − αt
]1/2

f
(
η
)
,

T = To − Tref
[

dx2

ν(1 − αt)3/2
]
θ
(
η
)
,

η =
1
β

[
b

ν(1 − αt)
]1/2

y,

(2.9)

where β is the dimensionless film thickness and ψ(x, y) is the stream function defined by

u =
∂ψ

∂y
=

bx

1 − αtf
′(η),

v = −∂ψ
∂x

= −
(

νb

1 − αt
)1/2

βf
(
η
)
,

(2.10)



4 Mathematical Problems in Engineering

where a prime denotes differentiation with respect to η. Apparently, (2.10) have already sat-
isfied (2.1). Consequently, (2.1)–(2.4) are transformed to the following nonlinear boundary
value problem:

f ′′′ + γ
(
ff ′′ − 1

2
Sηf ′′ − (

f ′)2 − Sf ′
)

= 0, (2.11)

1
Pr

(1 +NR)θ′′ + γ
(
fθ′ − 2f ′θ − 1

2
Sηθ′ − 3

2
Sθ +

1
Pr
B∗θ

)
= 0, (2.12)

subject to

f(0) = 0, f ′(0) = 1, θ(0) = 1, (2.13)

f(1) =
1
2
S, f ′′(1) =Mθ(1), θ′(1) = 0, (2.14)

where a prime denoting differentiation with respect to η, S = α/2 is the dimensionless meas-
ure of unsteadiness, Pr is the Prandtl number,NR is the radiation parameter defined asNR =
16σ∗T3

0/κk1, and γ = β2 is an unknown constant which must be determined as a part of the
present problem. The thermocapillarity numberM is given as

M =
βδσ0Tref

μ
√
bν

. (2.15)

It is worth noting that themomentum boundary layer problem defined by (2.11) subject to the
relevant boundary conditions (2.13) is decoupled from the thermal boundary layer problem,
while the temperature field θ(η) is on the other hand coupled to the velocity field. The most
important characteristics of flow and heat transfer are shear stress τs and heat flux qs of the
stretching sheet, which are defined as

τs = μ
(
∂u

∂y

)
y=0

,

qs = −κ
(
∂T

∂y

)
y=0

,

(2.16)

where μ is the fluid dynamic viscosity. The local skin-friction coefficient Cf and the local
Nusselt number Nux can be defined as

Cf =
2τs
ρu2

,

Nux = − xqs
κTref

.

(2.17)
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Thus, the skin friction and the rate of heat transfer for fluid flow in a thin film can be expressed
as

1
2
CfRe1/2x =

1
β
f ′′(0),

NuxRe−1/2x =
dx2

βν(1 − αt)1/2
θ′(0),

(2.18)

where Rex = Ux/ν is the local Reynolds number.

3. Solution Approach

In this section we apply HAM to solve system (2.11)–(2.14). We assume that the solutions
of f(η) and θ(η) can be expressed by a set of base functions {ηm | m = 0, 1, 2, . . .} with the
following forms:

f
(
η
)
=

+∞∑
m=0

amη
m,

θ
(
η
)
=

+∞∑
m=0

cmη
m,

(3.1)

where am and cm are constants. Under the rule of solution expression given by (2.11) and
(2.12), subject to the boundary conditions (2.13) and (2.14), it is straightforward to choose

f0
(
η
)
= η +

3S − 6 −Mθ0
(
η
)

4
η2 +

2 − S +Mθ0
(
η
)

4
η3,

θ0
(
η
)
= 1,

(3.2)

as the initial guesses of f(η) and θ(η). The auxiliary linear operators Lf = ∂3/∂η3 and Lθ =
∂2/∂η2 are chosen with the following properties:

Lf
[
C1 + C2η + C3η

2
]
= 0,

Lθ
[
C4 + C5η

]
= 0,

(3.3)

whereC1,C2,C3,C4, andC5 are constants of integration. From (2.11) and (2.12), the nonlinear
operators are defined as

Nf

[
F
(
η, q

)
,Γ
(
q
)]

= F ′′′ + Γ
[
FF ′′ − 1

2
SηF ′′ − (

F ′)2 − SF ′
]
,

Nθ

[
F
(
η, q

)
,Θ

(
η, q

)
,Γ
(
q
)]

=
1
Pr

(1 +NR)Θ′′ + Γ
[
FΘ′ − 2F ′Θ − 1

2
SηΘ′ − 3

2
SΘ +

1
Pr
B∗Θ

]
,

(3.4)
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where F(η, q) and Θ(η, q) are both unknown functions of η and q, while Γ is a function de-
pendent on q. The prime denotes differentiation with respect to η. Let �f and �θ denote the
nonzero auxiliary parameters, whereas Hf and Hθ denote nonzero auxiliary functions. The
zero-order deformation equation can be constructed as

(
1 − q)Lf[F(η, q) − f0(η)] = q�fHfNf

[
F
(
η, q

)
,Γ
(
q
)]
,

(
1 − q)Lθ[Θ(

η, q
) − θ0(η)] = q�θHθNθ

[
F
(
η, q

)
,Θ

(
η, q

)
,Γ
(
q
)]
,

(3.5)

subject to the boundary conditions

F
(
0, q

)
= 0, F ′(0, q) = 1, Θ

(
0, q

)
= 1,

F
(
1, q

)
=

1
2
S, F ′′(1, q) =Mθ(1), Θ′(1, q) = 0,

(3.6)

where q is an embedding parameter. From (3.2), it is straightforward to show that when q = 0,
the solutions of (3.5) and (3.6) are

F
(
η, 0

)
= f0

(
η
)
, Θ

(
η, 0

)
= θ0

(
η
)
. (3.7)

Since �f , �θ /= 0 and Hf,Hθ /= 0 when q = 1, (3.5) and (3.6) are equivalent to (2.11)–(2.14),
respectively, provided that

F
(
η, 1

)
= f

(
η
)
, Θ

(
η, 1

)
= θ

(
η
)
, Γ(1) = γ. (3.8)

Thus, as q increases from 0 to 1, F(η, q) and Θ(η, q) vary from the initial guesses f0(η) and
θ0(η) to the solutions f(η) and θ(η) in (2.11)–(2.14). Γ also varies from the initial guess

Γ(0) = γ0, (3.9)

to the time-scale parameter γ . Applying the Taylor series to (3.7) and (3.9), F(η, q), Θ(η, q),
and Γ(q) can be expanded as series of q,

F
(
η, q

)
= f0

(
η
)
+

+∞∑
m=1

fm
(
η
)
qm,

Θ
(
η, q

)
= Θ0

(
η
)
+

+∞∑
m=1

θm
(
η
)
qm,

Γ
(
q
)
= γ0 +

+∞∑
m=1

γmq
m,

(3.10)
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where

fm
(
η
)
=

1
m!

[
∂mF

(
η, q

)
∂qm

]
q=0

,

θm
(
η
)
=

1
m!

[
∂mΘ

(
η, q

)
∂qm

]
q=0

,

γm =
1
m!

[
∂mΓ

(
q
)

∂qm

]
q=0

.

(3.11)

Thus, using (3.8), we have

f
(
η
)
= f0

(
η
)
+

+∞∑
m=1

fm
(
η
)
,

θ
(
η
)
= θ0

(
η
)
+

+∞∑
m=1

θm
(
η
)
,

γ = γ0 +
+∞∑
m=1

γm.

(3.12)

By differentiating (3.5) m times with respect to q, then setting q = 0, and finally dividing by
m!, themth-order deformation equations are obtained:

Lf
[
fm

(
η
) − χmfm−1

(
η
)]

= �fHf

(
η
)
R1,m

(
η
)
,

Lθ
[
θm

(
η
) − χmθm−1

(
η
)]

= �θHθ

(
η
)
R2,m

(
η
)
,

(3.13)

subject to the boundary conditions

fm(0) = 0, f ′
m(0) = 0, θm(0) = 0,

fm(1) = 0, f ′′
m(1) =Mθm(1), θ′m(1) = 0,

(3.14)

form ≥ 1, where

R1,m
(
η
)
= f ′′′

m−1 +
m−1∑
n=0

γm−1−n
n∑
i=0

(
fif

′′
n−i − f ′

i f
′
n−i

) − 1
2
Sη

m−1∑
n=0

γnf
′′
m−1−n − S

m−1∑
n=0

γnf
′
m−1−n,

R2,m
(
η
)
=

1
Pr
θ′′m−1 +

NR

Pr
θ′′m−1 +

m−1∑
n=0

γm−1−n
n∑
i=0

(
fiθ

′
n−i − 2f ′

n−iθi
)

− 1
2
Sη

m−1∑
n=0

γnθ
′
m−1−n −

3
2
S
m−1∑
n=0

γnθm−1−n +
1
Pr
B∗

m−1∑
n=0

γnθm−1−n,

χm =

{
1 m > 1,
0 m = 1.

(3.15)
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Let f∗
m and θ∗m denote the particular solutions of (3.13) as

f∗
m =

∫∫∫η

0
�fHf(s)R1,m(s)dsdηdη + χmfm−1,

θ∗m =
∫∫η

0
�θHθ(s)R2,m(s)dsdη + χmθm−1.

(3.16)

The general solutions for (3.3) are

fm
(
η
)
= f∗

m + C1 + C2η + C3η
2,

θm
(
η
)
= θ∗m + C4 + C5η.

(3.17)

It should be pointed out that f∗
m and θ∗m contain the unknown parameter γm−1, which should

be determined along with C1, C2, C3, C4, and C5 by the boundary conditions (3.14). We solve
(3.13) for m = 1, 2, 3, . . . successfully, and the mth-order approximations of f(η), θ(η), and γ
are given, respectively, by

f
(
η
) ≈

m∑
n=0
fn
(
η
)
,

θ
(
η
) ≈

m∑
n=0

θn
(
η
)
,

γ ≈
m−1∑
n=0

γn.

(3.18)

4. Convergence of the HAM Solution

We note the presence of the auxiliary parameters �f and �θ in (3.13). Liao [16, 25] indicates
that the convergence and rate of approximation of such series depend on the values of �f and
�θ. For the purpose of choosing the proper values for �f and �θ, we set S = 1.4, Pr = 1,M = 1,
NR = 1, and B∗ = 0.05. Figure 1(a) shows the variation of γ with �f using the tenth-order
approximation. From the figure, it is seen that convergent result can be obtained when −0.8 ≤
�f ≤ −0.35. Thus, we can choose an appropriate value for �f in this range to get convergent
solution for γ . In Figure 1(b), we observe that convergent results of f ′′(0) can be obtained by
choosing a value of �f in the range of −0.78 ≤ �f ≤ −0.16 under the tenth-order approxima-
tion. From (2.13), we can see that �θ depends on �f . Figure 1(c) shows the appropriate value
for �θ in the range of −0.75 ≤ �θ ≤ −0.25 when �f = −0.6 under the tenth-order approximation.
To see the accuracy of the solution, we define Ef(η) and Eθ(η) as the residual errors of the
system. Figure 2 shows the residual errors of the HAM solution in the case �f = −0.6 and
�θ = −0.4.

5. Results and Discussion

We solved (3.13) and (3.14)with the aid of Maple, a symbolic computation software. The aux-
iliary functions Hf and Hθ in (3.13) were set to be equal to 1 in all calculations reported in
this paper.
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Figure 1: (a) �f -curve of f ′′(0), (b) �f -curve of γ , and (c) �θ-curve of θ′(0) (�f = −0.6) using 10th-order
HAM approximation for the case of S = 1.4, Pr = 1,M = 1,NR = 1, and B∗ = 0.05.
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Figure 2: The residual errors for the solution using 15th-order HAM approximation for the case of S = 1.4,
Pr = 1,M = 1,NR = 1, and B∗ = 0.05.

In order to assess the accuracy of the numerical method, Table 1 compares our present
results with those of previous investigations. We can claim that our numerical results are in
excellent agreement with those of [4, 14, 24] under some limiting cases.

In Table 2, a good agreement was found in comparisons of values of free surface tem-
perature θ(1) between [24] and present work.

The effects of the radiation parameterNR on the film thickness β, surface shear stress
f ′′(0), free surface temperature θ(1), and heat flux −θ′(0) at a specific thermocapillarity
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Table 1: Values of dimensionless film thickness β and skin friction f ′′(0) when Pr = 1, M = 0, NR = 0,
�f = −0.6, and �θ = −0.4 for different values of unsteadiness parameter S. The value of f ′′(0)/β in Wang
[4] and the present work is the same as that of Abel et al. [14] despite different similarity transformations
used.

Wang [4] Abel et al. [14] Mahmoud [24] Present work

S β f ′′(0)/β β f ′′(0) β f ′′(0) β f ′′(0)/β

0.4 5.122490 −1.307785 4.981455 −1.134098 — — 5.126821 −1.040765
0.6 3.131250 −1.195155 3.131710 −1.195128 — — 3.131668 −1.193654
0.8 2.151990 −1.245795 2.151990 −1.245805 2.1519950 −1.245810 2.151994 −1.245793
1.0 1.543617 −1.277762 1.543617 −1.277769 — — 1.543616 −1.277768
1.2 1.127780 −1.279177 1.127780 −1.279171 1.1277815 −1.279170 1.127780 −1.279172
1.4 0.821032 −1.233549 0.821033 −1.233545 — — 0.821032 −1.233549
1.6 0.567173 −1.114937 0.576176 −1.114941 — — 0.576173 −1.114937
1.8 0.356389 −0.867414 0.356390 −0.867416 — — 0.356389 −0.867414

Table 2: Values of free surface temperature θ(1) using 10th-order HAM approximation for several values
ofM,NR with Pr = 0.1, B∗ = 0, and S = 1.2.

M NR
θ(1)

Mahmoud [24] Present work

0 0.2 0.86681 0.866844
0.1 0.2 0.85184 0.854257
0.5 0.2 0.78815 0.810103
0.1 0 0.82693 0.829606
0.1 0.2 0.85184 0.854257
0.1 1.0 0.90594 0.907657

number M are shown in Table 3. It is concluded that the film thickness and the free surface
temperature increase as the radiation parameter increases and consequently the surface shear
stress and dimensionless heat flux decrease.

Table 4 shows the effects of thermocapillarity number on the film thickness β, surface
shear stress f ′′(0), free surface temperature θ(1), and heat flux −θ′(0). We agree with [24] that
the thermocapillarity parameter has the effect of enhancing the velocity and the local Nusselt
number while decreasing the temperature and the surface shear stress.

The heat absorption sink (B∗ < 0) leads to a decrease in the thermal boundary layer
whereas the boundary layer thickness increases with increase in B∗. These effects can be ob-
served in Table 5. As the temperature-dependent parameter B∗ increases for both cases (heat
source or heat sink), the free surface temperature increases while the surface shear stress and
wall heat flux decrease.

The effects of the different values of radiation parameter NR on the temperature pro-
files are depicted in Figure 3. By fixingM = 1, S = 1.4, Pr = 1, and B∗ = 0.05, the thin film flow
swings from slight deceleration to higher velocity while the temperature increases as NR

increases.
Thermocapillarity produced an outward flow along the free surface. Figure 4 shows

that by increasing the value of the thermocapillarity number, the velocity decreases until it
arrives at a minimum and then increases to its free surface value while the temperature con-
sistently cools down.
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Figure 3: Effects of the radiation parameter NR on (a) f ′(η) and (b) θ(η) using 10th-order HAM
approximation for the case of �f = −0.6, �θ = −0.8, S = 1.4, Pr = 1,M = 1, and B∗ = 0.05.
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Figure 4: Effects of M on (a) f ′(η) and (b) θ(η) using 10th-order HAM approximation for the case of
�f = −0.6, �θ = −0.8, S = 1.4,NR = 1, Pr = 1, and B∗ = 0.05.

Table 3: Variations of γ(η), β, f ′′(0), θ(1), and −θ′(0) using 10th-order HAM approximation when Pr = 1,
M = 1, B∗ = 0.05, S = 1.4, andNR is varied.

NR γ(η) β f ′′(0) θ(1) −θ′(0)
0 1.008941 1.004460 −1.201179 0.307714 1.841899
0.5 1.103655 1.050550 −1.252414 0.396179 1.512100
1.0 1.173616 1.083335 −1.289824 0.461740 1.299809
1.5 1.227240 1.107809 −1.318863 0.513259 1.147157
2.0 1.270251 1.127054 −1.341533 0.554268 1.031198

Table 4: Variations of γ(η), β, f ′′(0), θ(1), and −θ′(0) using 10th-order HAM approximation when Pr = 1,
NR = 1, B∗ = 0.05, S = 1.4, andM is varied.

M γ(η) β f ′′(0) θ(1) −θ′(0)
0 0.674094 0.821032 −1.012774 0.618739 0.873492
0.5 0.969091 0.984424 −1.172420 0.519700 1.140371
1.0 1.173616 1.083335 −1.299824 0.461740 1.299809
1.5 1.350054 1.161918 −1.382159 0.419534 1.425835
2.0 1.499933 1.224717 −1.459757 0.388086 1.524753
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Figure 5: Effects of B∗ on (a) f ′(η) and (b) θ(η) using 10th-order HAM approximation for the case of
�f = −0.6, �θ = −0.8, S = 1.4,M = 1.0,NR = 1, and Pr = 1.
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Figure 6: Effects of S on (a) f ′(η) and (b) θ(η) using 10th-order HAM approximation for the case of �f =
−0.6, �θ = −0.8,M = 1.0,NR = 1, Pr = 1, and B∗ = 0.05.
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Figure 7: Effects of Pr on (a) f ′(η) and (b) θ(η) using 10th-order HAM approximation for the case of
�f = −0.6, �θ = −0.8,M = 1.0,NR = 1, S = 1.4, and B∗ = 0.05.
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Table 5: Variations of γ(η), β, f ′′(0), θ(1), and −θ′(0) using 10th-order HAM approximation when Pr = 1,
NR = 1,M = 1, S = 1.4, and B∗ is varied.

B∗ γ(η) β f ′′(0) θ(1) −θ′(0)
−1.0 1.108464 1.052836 −1.254129 0.399346 1.485058
−0.5 1.137235 1.066412 −1.270027 0.426965 1.401209
0 1.170067 1.081696 −1.287906 0.458354 1.309486
0.5 1.206136 1.099152 −1.308352 0.494630 1.207863
1.0 1.253028 1.119387 −1.332192 0.537395 1.093403

Figure 5 shows that when the temperature-dependent parameter B∗ increases, the ve-
locity decreases while the temperature increases. This is due to the fact that the internal heat
source enhances or damps heat transport.

The unsteadiness parameter S has the effect of increasing both velocity profiles and
temperature distribution at a specific NR, B∗, and M, as shown in Figure 6. The effects of
Prandtl number Pr on temperature distribution is presented in Figure 7. As Pr increases, the
velocity profile increases and the temperature distribution decreases. The higher the Prandtl
number, the cooler the temperature of the fluid flow.

6. Concluding Remarks

The effects of thermal radiation and thermocapillarity in a thin liquid film on an unsteady
stretching sheet with nonuniform heat source/sink was analyzed successfully by means
of the homotopy analysis method (HAM). With the presence of internal heat generation/
absorption, the radiation parameter plays a significant role in controlling the temperature of
the fluid flow by enhancing the temperature of fluid flow and decreasing the dimensionless
heat flux. The thermocapillarity enhances the velocity and the dimensionless heat flux while
reducing the temperature and the surface shear stress.
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