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This paper studies the chromosome information of twenty five species, namely, mammals, fishes,
birds, insects, nematodes, fungus, and one plant. A quantifying scheme inspired in the state space
representation of dynamical systems is formulated. Based on this algorithm, the information of
each chromosome is converted into a bidimensional distribution. The plots are then analyzed and
characterized by means of Shannon entropy. The large volume of information is integrated by
averaging the lengths and entropy quantities of each species. The results can be easily visualized
revealing quantitative global genomic information.

1. Introduction

Genome sequencing produced a huge volume of information that is now available for compu-
tational processing. Deschavanne et al. [1] explored DNA structures of genomes by means of
a tool derived from the chaos dynamics. Murphy et al. [2] studied the genome sequences
of four species to infer early events in placental mammal phylogeny. Ebersberger et al.
[3] developed a phylogenetic analysis of several DNA sequence alignments from human,
chimpanzee, gorilla, orangutan, and rhesus. Prasad et al. [4] analyzed a genomic sequence,
which we generated from 41 mammals and 3 other vertebrates. In [5], Bolshoy reported a
novel compositional complexity-based method for sequence analysis. The study shows that
the method indicated periodicities and related features in several sets of DNA sequences. In
[6], Liu et al. analyzed several aspects of the information content of the Homo sapiens, Mus
musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces
cerevisiae, and Escherichia coli genomes. In [7], Sims et al. used an alignment-free method in
which [-mer frequency profiles of whole genomes are used for comparison. Macropol et al.
[8] proposed an algorithm based on repeated random walks (RRWs) and apply the tech-
nique on a functional network of yeast genes identifying statistically significant clusters of
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proteins. Kozobay-Avraham et al. [9] performed a genome analysis of DNA curvature dis-
tributions in coding and noncoding regions of prokaryotic genomes to evaluate the assistance
of mathematical and statistical procedures. Two methods were applied producing similar
clustering reflecting genomic attributes and environmental conditions of the species” habitat.
Carkacioglu et al. [10] proposed the bi-k-bi clustering for finding association rules of
gene pairs that can easily operate on large scale and multiple heterogeneous data sets.
Kaplunovsky et al. [11] investigated correlations between certain properties of exons in a
gene and genomic trees obtained with different approaches of clustering based on exonic
parameters. They concluded that the best approach was based on distances among four prin-
cipal components obtained by factor analysis, and followed by application of clustering algo-
rithms. Sualp and Can [12] computed several graph theoretic measures on a protein-protein
interaction network of a target organism as indicators of network context. Machado et al. [13]
studied the human DNA from the perspective of system dynamics, associating entropy and
the Fourier transform.

Based on the genomic data, this paper studies the deoxyribonucleic acid (DNA)
code of twenty five species. Having in mind, the tools adopted in system and chaos ana-
lysis a state space representation and entropy measure are adopted. The state space plots
reveal complex evolutions, resembling those revealed by chaotic systems and suggesting that
the DNA information can be tackled by numerical tools. Given the large number of chro-
mosomes and species involved in the study, the information is synthesized by means of the
arithmetic averages of the entropy and the chromosome length. This strategy allows a simple
quantitative visualization of the global genomic information of each species. Bearing these
ideas in mind this paper is organized as follows. Section 2 presents the DNA code mapping
concepts and the Shannon entropy characterization of the resulting numerical data. Section 3
analyzes the DNA entropy content of 489 chromosomes corresponding to twenty five species,
including several mammals, fishes, birds, insects, nematodes, fungus, and one plant. Finally,
Section 4 outlines the main conclusions.

2. Mapping the DNA Code and Quantification by Means of Entropy

The DNA helix encodes information by means of four distinct nitrogenous bases {thymine,
cytosine, adenine, guanine} usually denoted by the symbols {T, C, A, G}. Besides the four
symbols, the chromosome data files include a fifth symbol {N} which is believed to have no
practical meaning for the DNA decoding. Each base connects with only one type of base on
the other side forming the base pairing A-T and C-G.

The problem of DNA decoding is addressed in this paper using an algorithm inspired
in system dynamical analysis using state space representation. This method was formulated
by Roy et al. [14] and later addressed in conjunction with fractal dimension by Machado [15].
In the present paper, the scheme is improved by connecting the state plane with the entropy
measure. The proposed strategy consists of implementing the translation scheme: (i) the A-T
and C-G pairs are represented in the horizontal and vertical Cartesian axes, respectively, and
(ii) each base along the DNA strand is converted to a one-step increment 6 > 0, being +6
(=0) for the first (second) base in each bonding pair. In the case of symbol {N}, no action is
taken. Therefore, the DNA information, corresponding to the succession of bases, is converted
into a trajectory representative of the dynamical evolution. Furthermore, the translation pre-
serves the based pairing logic and does not introduce any preconception biasing the DNA
information. In [15], it was adopted the box counting method for characterizing the fractal
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image in the state plane. However, the box counting is an approximate method that requires
large images in order to have a reasonable precision and does not quantify the case of
successive trajectories passing through the same points. Having this fact in mind, in this
paper, it is proposed an alternative method that takes into account the number of trajectories
passing through a given point in the state plane. First, as in the case of using images, the
minimum and maximum values along each axis are calculated and the trajectories are rescal-
ed in order to fit a matrix M of size n x n. Second, the points in the trajectories are quantified
and counted for each cell in matrix M. Third, the matrix M is converted to a bidimensional
histogram by dividing each cell counting (that represents the number of trajectory points that
fit inside the cell boundaries) by the total number of trajectory points.

The characterization of bidimensional histograms can be accomplished by several
indices. In the paper, it is adopted the Shannon entropy [16-21]. Statistical indices based
on moments can be used but that option requires a high number of measures. In fact,
describing the frequency distribution of 25 species using the mean, variance, skewness, and
kurtosis goes in the opposite direction of designing an assertive characterization and visu-
alizing methodology. Furthermore, the histograms reveal irregular shapes, which preclude
alleviating the total number and considering only a limited set of indices.

The concept of entropy was developed by Ludwig Boltzmann when analyzing the
statistical behavior of system’s microscopic components. In information theory, entropy was
devised by Claude Shannon to study the amount of information in a transmitted message.
The Shannon entropy H, satisfying the Shannon-Khinchin axioms, is defined as

H(X)=- ) p(x)In[p(x)], (2.1)

xeX

where p(x) is the probability that event x € X occurs.
For bidimensional probability distributions, the expression becomes

HX,Y)=-> > p(xy)In[p(xy)], (2.2)

xeX yeYy

where p(x, y) is the joint probability distribution function of (X, Y’).
The entropy index H is applied to 25 species having the main characteristics depicted
in Table 1 and totalizing 489 chromosomes.

3. DNA Entropy and Chromosome Length

The code in each of the 489 chromosomes is converted to a state plane portrait, and the
bidimensional histogram is described in the light of the entropy measure. Several experi-
ments varying the number of cells of the n x n matrix M demonstrated that there are only
minor numerical differences once large values are adopted, and it was found that n = 100 is
a good compromise between precision and computational requirements.

Figure 1 shows, for example, the two-dimensional state plane plots and the corre-
sponding bidimensional distribution of relative frequency of the chromosomes Am1, Hul,
Tgl, and Zf1. The horizontal and vertical axes are not represented since they have no useful
contribution for the calculations.
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Table 1: Species and chromosomes.

. . Arithmetic
Arithmetic average of
Speci Number of . average of
pecies Tag Group logarithm of chromosome
chromosomes length Av[In(L)] entropy
& Av(H)
Mosquito
(Anopheles Ag Insect 5 17.59 7.57
gambiae)
Honeybee Am Tnsect 16 16.24 6.92
(Apis mellifera) ’ ’
Arabidopsis At Plant 5 16.97 6.81
thaliana
Caenorhabditis ) Nematode 6 16.64 7.07
briggsae
Caenorhabditis Nematode 6 16.64 7.07
elegans
Chimpanzee Ch Mammal 25 18.54 7.14
Dog Dg Mammal 39 17.90 6.94
Drosophila Ds Insect 6 16.29 7.36
simulans
Drosophila Dy Insect 10 14.57 6.93
yakuba
Horse Eq Mammal 32 18.02 7.02
Chicken Ck Bird 31 15.64 6.27
Human Hu Mammal 24 18.58 7.13
Medaka Me Fish 24 17.23 7.25
Mouse Mm Mammal 21 18.57 7.16
Opossum Op Mammal 9 19.63 747
Orangutan Or Mammal 24 18.57 7.12
Cow Ox Mammal 30 18.24 7.08
Pig Po Mammal 19 18.52 6.85
Rhesus Rm Mammal 21 18.69 6.99
Rat Rm Mammal 21 18.59 7.20
Yeast
(Saccharomyces Sc Fungus 16 13.41 6.91
cerevisiae)
Stickleback St Fish 21 16.75 7.10
Zebra Finch Tg Bird 32 16.18 6.31
Tetraodon Tn Fish 21 16.19 7.14
Zebrafish Zf Fish 25 17.79 6.83

The charts of the 489 chromosomes were analyzed, and it was concluded that (i) the
plots vary considerably and are a signature of each case, (ii) there were significant areas of
the state plane that were not visited by the trajectories, and (iii) there were parts of the charts
constituted by lines or by part of lines along the +45 or —45 degree direction.

For each chromosome, the Shannon entropy was calculated. For example, in the
bidimensional histograms of Figure 1 were obtained the values Hym1 = 7.092, Hyy1 = 7.242,
Hrg1 = 6.240, and Hzs = 6.676.
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Figure 1: Continued.



6 Mathematical Problems in Engineering

Zf1

Relative frequency

0 S 100

100 0

Figure 1: State plane portraits and relative frequency distribution of the chromosomes: (a) Am1, (b) Hul,
(c) Tgl, (d) Zf1.

The quality of the entropy index was verified by two sets of experiments, namely, by
comparing it with two alternative measures, and by assessing three artificial test files. In the
first set of experiments, the fractal dimension (FD) of the two-dimensional state portraits
and the Mutual information (I) of the bidimensional relative frequency distribution were
calculated as alternative measures.

For estimating the fractal dimension, the box counting method was adopted [22-24].
For a set S in a n-dimensional and any & > 0, if there is a number FD so that N,(S) ~ 1/ as
¢ — 0, where N,(S) is the minimum number of n-dimensional cubes of side-length & needed
to cover S, we say that the box counting dimension of S is FD. This reasoning leads to the
expression:

FD = —lim MNe(9)]

e—0 In(e) 7 (3-1)

which can be implemented with image processing algorithms.

In our case, S consists of the state plane monochrome images and small values of ¢ are
reached by accessing images at the pixel level.

The mutual information (I) of two random variables measures the dependence
between two random variables and is defined as

p(x,y)
I(X,Y) = y)In T 3.2
) éyép(x ) " pop(y) G2

where p(x) and p(y) are the marginal probability distribution functions of X and Y, respec-
tively.
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Figure 2: Entropy H versus (a) fractal dimension FD, (b) mutual information I. The black circles represent
the 489 chromosomes. The white markers, namely, the square, triangle, and diamond, represent the test
sequences of 1, 2 and 3 symbols.

The mutual information can be expressed as
IX,Y)=HX)+H(Y)-H(X,Y), (3.3)

where H(X) and H(Y) are the marginal entropies.

In the second set of experiments three files with random permutations of 1, 2, and 3
symbol sequences of {T, C, A, G} were generated and treated as if they were chromosome
files. For these files, the probabilities are identical (i.e., 1/4, 1/16 and 1/64, for the 1, 2, and
3 symbol sequences) and the number of generating iterations adjusted so that they were 1
megabyte length.

Figure 2 shows the entropy H of the state plane histogram versus the fractal dimension
FD and the mutual information I. The black circles represent the 489 chromosomes, while
the white markers at the right corners, namely, the square, the triangle, and the diamond,
represent the test sequences of 1, 2, and 3 symbols. We verify that there is a strong correlation
in both cases, and, therefore, results are expected to be qualitatively of the same type. In the
case of FD, this is due to the fact that the relative frequency distribution concentrates into a
few spots, making the information along the z-axis less significant than the one represented
by the x- and y-axes. Nevertheless, also due to that same reason, H is slightly superior to FD.
Since the relative frequency of the four symbols is approximately identical, in the case of I
the marginal entropies are almost constant and expression (3.1) leads to a linear relationship
with H. In what concerns the three test files, we observe the white markers are located at
the right limits of the set of points, and, consequently, the proposed scheme is capable of
distinguishing between the natural and the artificial data files.

Figure 3 shows the relationship between the entropy H and the length L of the 489
chromosomes. Analyzing individually each of the species we observe some grouping that
reflects the qualitative analysis held initially for each separate plot. For each species, an indi-
vidual map can be plotted, showing the relative similarities of the chromosomes. For
example, Figure 4 represents the locus of H versus L for the 24 and the 16 chromosomes of
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Figure 3: Entropy H versus chromosome length L for the 25 species.
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Figure 4: Entropy H versus logarithm of chromosome length In(L) the 24 and the 16 chromosomes of Hu
and Am, respectively. The white markers represent the arithmetic average of the horizontal and vertical
coordinates for each set of chromosomes.

Hu and Am, respectively. The white markers represent the arithmetic average of the hori-
zontal and vertical coordinates for each species and can be interpreted as the “center” of each
set of chromosomes. For the Hu, we observe that the chromosomes 4 and Y are in opposite
parts of the set, while, for the Am, chromosomes 4 and 8 are the most distant ones.
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Figure 5: Arithmetic averages of entropy versus logarithm of chromosome length, Av(H) versus
Av[In(L)], for the 25 species.

Figure 3 includes a considerable number of points, and, therefore, some sort of integ-
ration action is necessary. In this perspective, for each species, the arithmetic averages of
the entropy and the logarithm of chromosomes lengths (i.e., Av(H) versus Av[In(L)]) are
applied. The plot depicted in Figure 5 reveals the emergence of patterns that are in accord-
ance with phylogenetics. The corresponding numerical values are depicted in the two right
columns of Table 1.

At the left are located the less complex species and at right are plotted the mammals.
Within the cluster of mammals, the primates {Ho, Ch, Or} form a subcluster. Among the
mammals, it is interesting to notice Mm close to the primates and the extreme position of the
marsupial Op, relatively distant from the placental mammals. In what concerns the remaining
points, we verify Cb to be almost indistinguishable from Ce. In a middle position, we have
the clusters of birds {Ck, Tg} and fishes {Tn, St, Me, Zf}. It is interesting to see that the plant
At is located between the insect Am and the fish Zf. Finally, at the extreme left, we have Sc.

Since the mammals have a relative close position in a narrow region of the map, it is
important to analyze the zoom represented in Figure 6 where it is clear the close position not
only of the primates {Ho, Ch, Or} but also of Mm and Rn.

4. Conclusions

Chromosomes have a code based on a four-symbol alphabet, and the information can be
analyzed with tools adopted in dynamical systems. In this paper, a translation scheme for
converting the DNA sequence into a state plane trajectory was adopted. The application to the
489 data files of 25 species revealed bidimensional histograms representative of each chromo-
some. The results were processed by means of Shannon entropy, and, in order to obtain a
simple visualization, the values were averaged for each species. The map of entropy versus
chromosome length revealed the emergence of comprehensive patterns of the species relative
characteristics. It was verified that the mammals form a cluster located in a narrow area of
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Figure 6: Averages of entropy versus logarithm of chromosome length, Av(H) versus Av[In(L)], for the 11
mammals.

the map and that the mouse and rat are relatively close to the primates, while the marsupial
is far from the rest of the placental species.
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