
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 152123, 12 pages
doi:10.1155/2012/152123

Research Article
Support-Vector-Machine-Based Reduced-Order
Model for Limit Cycle Oscillation Prediction of
Nonlinear Aeroelastic System

Gang Chen,1 Yingtao Zuo,2 Jian Sun,1 and Yueming Li1

1 State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace,
Xi’an Jiaotong University, Xi’an, Shannxi 710049, China

2 School of Aeronuatics, Northwestern Polytechnical University, Xi’an, Shannxi 710072, China

Correspondence should be addressed to Yingtao Zuo, zuoyingtao@nwpu.edu.cn

Received 25 June 2011; Accepted 3 November 2011

Academic Editor: Hamdy Nabih Agiza

Copyright q 2012 Gang Chen et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

It is not easy for the system identification-based reduced-order model (ROM) and even eigenmode
based reduced-order model to predict the limit cycle oscillation generated by the nonlinear
unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter
variation. In order to deal with this problem, a support vector machine- (SVM-) based ROM
was investigated and the general construction framework was proposed. The two-DOF aeroelastic
system for the NACA64A010 airfoil in transonic flow was then demonstrated for the new SVM-
based ROM. The simulation results show that the new ROM can capture the LCO behavior of
the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and
computational efficiency of the SVM-based ROM would provide a promising tool for real-time
flight simulation including nonlinear aeroelastic effects.

1. Introduction

Aeroelasticity is the science concerned with the fluid-structure interaction including the iner-
tial, elastic, and aerodynamic forces. The prediction of aeroelastic instability in the transonic
regime plays a very important role in the definition of the flight envelope for many high-
performance aircraft. For example, flutter and limit cycle oscillation (LCO) are the major
nonlinear aeroelastic unstable phenomena, which are very dangerous to the aircraft structure.
With the development of computational aeroelasticity, the nonlinear aeroelastic response can
be accurately predicted by the high-fidelity physics-based CFD/CSD couple solver. However,
the use of multistep time domain calculations for each aircraft state is computationally
expensive and provides limited insight into the dependence of the parameters on the type
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of response in the vicinity of the instability boundary. In order to reduce the expensive
computational cost, a novel conception called reduced-order model (ROM) based on high-
fidelity physics model has been put forward in recent years. ROM seeks to capture the
dominant nonlinear behavior of the aeroelastic system by constructing a simplemathematical
representative model, which is very convenient to be used in conceptual design, control, and
data-driven systems [1].

Different approaches for reduced-order modeling of aerodynamic systems have been
investigated, including linearization about a nonlinear steady-state flow data-driven model
such as Volterra theory of nonlinear systems [2] and linear model fitting ARMA model [3],
representation of the aerodynamic system in terms of its eigenmodes such as POD method
[4, 5], and representation of the nonlinear aerodynamic system using the nonlinear dynamic
theory [6]. Many approaches for constructing linear flow and aeroelastic ROMs have been
developed and shown to produce good numerical results that comparewell with high-fidelity
nonlinear solvers. Most aeroelastic phenomena such as flutter and gust response can be deal
with these ROMs based on the dynamically linearized equation. However, unfortunately,
some important strong nonlinear dynamic phenomena such as LCO cannot be simulated
by the small disturbance solvers. For modeling the cases where the amplitude of the flow
perturbation is large, the ROMs based dynamically nonlinear solvers are required. Thomas
et al. proposed a new nonlinear HB/ROMwhich can predict the LCO of the NLR 7301 airfoil
aeroelastic model very well in the transonic regime [7]. Badcock et al. put forward a fully
nonlinear ROM construction method based on bifurcation theory, which can predict LCO
very well [8]. Recently, we also proposed a new dynamically nonlinear NPOD/ROM, which
enables the rapid modeling of nonlinear unsteady flows for the prediction and control of
LCO [9, 10]. These recently developed high-order ROMs for LCO simulation are much more
complex than traditional ROMs and are also not easy to realize in code.

Nonlinear system-identification-based ROMs have been widely used to predict the
transonic flutter boundary such as Volterra series [11, 12] and neural network approaches [13,
14]. Because of the high efficiency and simplicity, it is an attractive idea to predict the LCO by
system-identification-based ROMs. Neural networks have been widely applied in nonlinear
system identification because of the ability of self-learning, strong parallel processing,
and fault tolerance [15, 16]. There are also successful applications in the LCO prediction
of the airfoil aeroelastic model [17, 18]. However, the disadvantages of getting stuck
into local minima, over-fitting, and low generalization performance prevent the practical
application of these methods. Recently, support vector machine introduced by Vapnik [19]
has become a promising tool for solving nonlinear regression problems including nonlinear
system identification. SVM is a newly emerging technique for learning relationships in
data within the framework of statistical learning theory and structural risk minimization.
Relying on statistical learning theory which enables learning machines to generalize well to
unseen data, SVM has been significantly highlighted in the areas of system identification
and parameter estimation [20, 21]. In comparison with neural networks, SVM has strict
theory and mathematical foundation. It does not have the problem of local optimization
and dimensional disaster and can achieve higher generalization performance for small
samples.

In this study, we develop an SVM-based ROM for predicting the LCO induced by
the nonlinear aerodynamics with high efficiency and good accuracy. Firstly, we gave a
brief introduction about the regression SVM machine; secondly, we proposed a general
construction framework of the SVM-based ROM for the aeroelastic system; finally, we
demonstrated the ROM by the two-DOF NACA 64A010 airfoil aeroelastic model in detail.
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2. Support Vector Machine-Based Nonlinear System Identification

The basic idea of SVM theory is to map the data to a higher-dimensional feature space via
nonlinear mapping functions and then do the linear regression in this space. SVM-based
nonlinear system identification approaches have taken advantage of both the kernel trick and
the well-developed SVR algorithmic implementations [19, 22].After introducing ε-insensitive
loss function, SVMs extend to the regression case, named support vector regression (SVR),
whose key idea is to replace regression line with a ε-tube. Geometrically, the samples located
outside this tube will not be considered in regression model. The goal of SVR is to find a
decision function f(x)which has at most ε deviation from actually obtained observations and
at the same time is as flat as possible. Therefore, in the process of minimizing the empirical
errors, SVRs also try to maximize the generalization ability.

Based on statistical learning theory, SVRs can be applicable especially to small-sample
learning problems. Here, we give a brief summary of SVR. Given an input-output data set
{(x1, y1), . . . , (xl, yl)} ⊂ Rd × R, such as the time response series of the unsteady aerodynamic
coefficient of the aeroelastic system, SVR can be formulated as [19]

min
w,b,ξ,ξ∗

1
2
‖w‖2 + C

l∑

i=1

(
ξi + ξ∗i

)

subject to

⎧
⎪⎪⎨
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∗
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(2.1)

where the w is the weighting vector and ε-insensitive loss function is defined as

L
(
yi, f(xi)

)
=

{
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∣∣yi − f(xi)
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(2.2)

The slack variables ξi, ξ∗i determine the sample’s deviation from ε-tube, and the regularization
parameterC > 0 determines the trade-off between empirical risk and generalization term and
punishes the samples which violate the ε-tube. Applying the method of Lagrange multipliers
to (2.1), equation (2.1) is transformed into the following equation:
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(2.3)

where αi, α
∗
i are the introduced Lagrange multipliers and denoted by α

(∗)
i .
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After calculating the partial derivatives of L(w, b,α) with respect to (w, b, ξi, ξ
∗
i ), the

dual optimization problem can be obtained as follows [23]:

min
α,α∗
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∗
i ≤ C, i = 1, 2, . . . , l.

(2.4)

Equation (2.4) is a quadratic programming problem. After calculating the values of α
and α∗ for all samples, the decision function is obtained as follows:

f(x) =
l∑

i=1

(
αi − a∗

i

)
K(xi, x) + b. (2.5)

In (2.5), only some samples come with nonzero α(∗), which is called the support
vector and provide sparsity. Moreover, K(xi, x) = 〈Φ(xi),Φ(xj)〉 is kernel function which
only depends on dot products between observations xi and xj and does not have to know
nonlinear mapping Φ explicitly. Any function satisfying Mercer’s condition can be used as
the kernel function. The widely used kernel functions are including polynomial kernel, the
Gaussian kernel, and Radial Basis kernel. From the implementation point of view, training
SVM is equivalent to solving a linearly constrained quadratic programming problem with
the number of variables twice that of the training data points. Many effective optimization
algorithms were proposed for solving the regression problem such as the solution path
algorithm [24, 25].

3. SVM-Based Reduced-Order Model for Aeroelastic System

3.1. Numerical Couple Simulation Method of
the Nonlinear Aeroelastic System

The full-coupled nonlinear semi-discrete aeroelastic equation is given as

(A(u)w),t + F(w,u, v) = 0,

Mv,t + f int(u, v) = fext(u,w).
(3.1)

Equations (3.1) represent the fluid and structure dynamics, respectively, where w is
conservative flow field value, F is flow flux residual,A is flow cell volume, u is the structural
general displacement, v is structure general displacement derivatives, M is mass matrix,
and f int is structure inner force. Also, fext is the aerodynamic force acting on the structure
which is dependent on the flow state values and the structure state values. Many kinds
of accurate CFD/CSD couple numerical algorithms have been developed to predict the
response of structure and aerodynamics simultaneously [26]. The procedure of the popular
loosely couple numerical simulation algorithm is illustrated in Figure 1. A general multiblock
structure mesh-based CFD/CSD loosely coupled solver was developed by the authors and
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Figure 1: CFD/CSD couple algorithm.

successfully predicted the flutter and LCO for many aeroelastic models with good accuracy,
including NLR 7301 airfoil section aeroelastic model, the AGARD 445.6 wing, and Goland+
wing models [5, 9, 10].

The typical two degrees of freedom (2DOF) aeroelastic model with plunge and pitch
freedom has been widely used to validate the LCO prediction method [27, 28]. As illustrated
in Figure 2, defining the dimensionless time τ = ωαt, the aeroelastic equation can be rewritten
in the nondimensional form:

[
1 xα

xα r2α

][
ḧ
α̈

]
+

⎡

⎣

(
ωh

ωα

)2

0

0 r2α

⎤

⎦
[
h
α

]
=

1
π
V ∗2

[−CL

CM

]
, (3.2)

where h and α are the airfoil plunge and airfoil pitch angle, rα is the radius of gyration of
airfoil about elastic axis, and xα is the airfoil static dimensionless distance between the center
of gravity position and the hinge axis. Also, ωh and ωα are the uncoupled natural frequency
of plunge and pitch, μ = m/(πρ∞b2) is the mass ratio velocity of the free flow, and V ∗ =
U∞/(ωαb

√
μ) is the reduced velocity. In each simulation loop, after the unsteady lift CL and

pitch moment coefficients CM computed by the unsteady CFD solver, the structure response
(h, α) can then be calculated by the multistep Runge-Kutta algorithm at the same time.

3.2. Construction Framework of the SVM-Based ROM

For CFD/CSD couple simulation, most of the computational cost is spent in solving the
unsteady aerodynamics. The reduced-order model method is introduced for unsteady flow
to improve the computational efficiency in the aeroelastic simulation. In the aerodynamic
subsystem, the inputs are the structure state values u and v, and the outputs are the
generalized aerodynamic force coefficient vector f . The sampling time series data (u, v, f)
can be computed by the CFD/CSD couple solver. For example, the inputs of the 2-DOF
aeroelastic system are (h, α) and outputs are CL and CM. In order to construct the SVM-
based ROM according to (2.5) and obtain the SVR, the sampling data should be prepared
carefully. Considering the time delay effect of unsteady flow, the input features are selected
as xi = ((ui, vi), (ui−1, vi−1), . . . , (ui−r , vi−r), fi−1, . . . , fi−s). The r and s are the time delay orders
dependent on the users’ selection. Then, we could construct the new training sample (xi, fi)
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Figure 2: Two-DOF aeroelastic model.

for the SVRs from the unsteady CFD simulation results. The ε-path is selected as themodeling
algorithm for its better accuracy and lower computational cost than other methods [24, 25].

The flow chart of the construction procedure of the SVM-based aeroelastic ROM
is illustrated in Figure 3. There are five main steps in the framework. First, we construct
multiple groups of input signals and compute the corresponding nonlinear aerodynamic
responses by the unsteady CFD solver which is the full-order model. Here, white noise with
different amplitude is selected as the training signals, because white noise can represent
the natural dynamic characteristic of nonlinear system very well [27–29]. Second, the input
signals and time series unsteady aerodynamics are combined to create the training samples
(xi, fi). As indicated as before, the traditional ROMs such as POD/ROM and Volterra/ROM
are very sensitive to the flow parameters such as Mach number. In order to improve the
robustness of the SVM-based ROM, flow parameters such asMach number can also be treated
as extra system features which can be add to the training samples, for example, ((xi,Ma), fi).
Third, the SVM solution path algorithm is executed to obtain the identification model and
then validate the accuracy (xi, fi) with checking samplings. Fourth, the identification model
is used to predict the unsteady aerodynamic force in applied cases. Finally, coupling the
structure subsystem and aerodynamic subsystem represented by the SVM-based ROM, the
aeroelastic response can be predicted according to the virtual line loop in the Figure 3 with
good accuracy and high efficiency.

4. Simulation Results and Discussions

4.1. Unsteady Aerodynamics Validation

As the initial demonstration of the SVM-based ROM, the NACA 64A010 airfoil model was
selected. The structure parameters are xα = 1.8, r2α = 3.48, a = −2.0, μ = 60.0, ωh/ωα = 1.
The 240 × 120 O-type mesh was used for the Euler solver which is the full-order model. The
pitching angle is the input data, and the unsteady aerodynamic loads CL and CM are the
outputs, which is an SIMO system. By federating the inputs such as the pitching and plunge
to CFD solver one by one, the ROM can be used to model the MIMO system.
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Figure 3: The workflow of SVM-based ROM.

At the given Mach number 0.825, two white noise signals for pitch motion whose
amplitudes are 0.01 and 0.2, respectively, were selected and federated into the CFD solver to
compute the time series response of the unsteady aerodynamic coefficients. Selecting r = 3,
s = 4, and preparing the training samplings for the SVR, the SVM-based ROM for unsteady
aerodynamics can be constructed according to the procedure described in Section 3.2. Then,
the unsteady aerodynamic loads predicted by the SVM-based ROM were compared with
the CFD/Euler solver. Figure 4 plots the time responses of the lift and moment coefficients
predicted by the CFD solver and the SVM-based ROM, in which the airfoil was given a forced
pitch vibration movement. The results of the different models are very close, which indicated
that the SVM-based ROM can predict the nonlinear aerodynamic loads with good accuracy.
It took nearly 10 minutes for the CFD solver to obtain the simulation results while only about
10 seconds for the ROM in a PC. This means that SVM-based ROM has good computational
efficiency for unsteady aerodynamics prediction.

4.2. LCO Prediction

The accuracy of the SVM-based ROM has been verified for the unsteady aerodynamics.
Now, we would like to couple the SVM-based ROM with the structure dynamics equation
and investigate its effectiveness in aeroelastic response analysis. At the Mach number 0.825
and reduced velocity V ∗ = 0.8, we run the SVM-based aeroelastic model and CFD/CSD
couple solver with the initial plunge velocity value 0.1, respectively. Figure 5 shows the
structural response of the simulations. The nonlinear LCO behavior of the aeroelastic model
was captured by both the ROM and CFD/CSD couple solver very well. Furthermore, the
predictions of the ROM agree well with the CFD/CSD couple solver.

In order to check the capability of the ROM, we construct another SVM model at
Mach = 0.8 to investigate the LCO behavior. We succeed to capture some LCO at V ∗ = 1.2,
1.5, 1.8, and 2.0 by ROM very quickly which was shown in Figure 6. The results had been
compared with the CFD/CSD couple solver and they also agree well. Because we do not
know in which condition the LCO will come out, we must use many guess initial values to
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Figure 5: Comparison of LCO response at Mach = 0.825, and V ∗ = 0.8.

run the solver. So nearly ten hours were spent for the CFD/CSD, coupled solver to capture
the LCO, while no more than ten minutes for the ROM. The high efficiency of the ROM is a
very good practical merit for searching the flight envelope of the aircraft in the whole flight
regime.

4.3. Parameters Varying Simulation

4.3.1. ROM Construction Method

As noted previously, the traditional ROMs such as POD/ROM and Volterra/ROM are very
sensitive to the flow parameter variation, especially for the Mach numbers and Reynolds
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numbers [30, 31]. This disadvantage prevents ROMs to be widely used in aeroelastic control,
flight simulation, and some other data-driven applications [32]. Amsallem and Farhat
proposed an adapting POD/ROM based on manifold interpolation which is adaptive to
Mach number and the angle of attack [30, 31]. Although their adaptive POD/ROM can
predict flutter very well, no application in LCO prediction was demonstrated. Here, we
demonstrate the capability of the SVM-based ROM for predicting the LCO with Mach
number variation.

Firstly, we prepare the unsteady responses CL and CM at four Mach numbers such
as 0.8, 0.825, 0.875, and 0.8925. Secondly, let the Mach number be another feature when we
construct the training samples for SVR. This means that the structure of the training samples
is xi = ((ui, vi), (ui−1, vi−1), . . . , (ui−r , vi−r), fi−1, . . . , fi−s,Ma). Thirdly, the SVM-based ROM
was trained and constructed according to the stand procedure as described in Section 3.2.
Finally, the new SVM-based ROM can be used to predict the aeroelastic response.

4.3.2. LCO Prediction with Varying Mach Number

Figure 7 shows the simulation results of the SVM-based ROM and CFD/CSD couple Euler
solver at Mach = 0.85, V ∗ = 0.75. The SVM-based ROM can still succeed to capture the
LCO and also agrees well with direct couple numerical simulation of the full-order solver.
These results indicate that the capability and efficiency of the SVM-based ROM to predict the
aeroelastic response with parameters variation. The good robustness with the system varying
parameters would provide a useful and powerful tool for near real-time elastic vehicle flight
simulation. Although the difference between the ROM and CFD are a little larger than the
case in Section 4.2, it is still a good and acceptable result.

In order to further validate the performance of the SVM-based ROM, we calculated
the LCO behavior of the aeroelastic system in different Mach numbers. All of the reduced
velocity is V ∗ = 1.2. Figure 8 plots the LCO amplitude predicted by the SVM-based ROM
and full-order CFD solver. It can be founded that in the sampling Mach numbers such as
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Figure 7: Comparison of LCO response at Mach = 0.85, and V ∗ = 0.75.
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0.8, 0.825, 0.875, and 0.8925, the results predicted by SVM and CFD solver agree very well.
The average error is around 5%. This validates the conclusion of Section 4.2 again. The most
important is to evaluate the accuracy of the predicted results by SVM in other Mach numbers.
The difference of the results predicted by SVM and CFD is obviously and a little larger than
those in the sampling Mach numbers, but it is still good enough and acceptable. Of course
the obvious errors can be reduced further by adding much more samplings. This indicates
that the SVM-based ROM has the capability to represent the dominant LCO response of the
system with varying parameters.

There is also an interesting thing that outside of the sampling Mach number set, such
as at 0.7625, the development trend of LCO predicted by SVM does not agree with CFD
solver, but the error is not so large. Maybe it is because of that SVR has excellent learning
capability and generalization capability. We also investigated the LCO response above the
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Mach number 0.9, but the SVM model fail to capture the LCO. It seems that the aeroelastic
system runs into divergence or convergence from the simulation of the full-order solver. It is
obviously and reasonable that no data-driven model can do everything.

It takes about 1 hour for the CFD solver to capture the LCO response, but it is no more
than one minutes for the SVM-based ROM to predict the same response. The computational
efficiency of ROM is obvious, which is very important to the near real-time flight dynamic
simulation and flight controller design. The fast prediction of the system response with
good accuracy is one of the most important factors to realize these challenge applications
successfully.

5. Conclusion

An SVM-based reduced-order model was developed for fast prediction of the response of the
nonlinear aeroelastic system. We proposed a general construction framework for the SVM-
based ROM. The two-dimensional aerofoil aeroelastic system was used to demonstrate the
capability and performance of the ROM in detail. The simulation results show the capability,
accuracy, and high efficiency of the SVM-based ROM for the LCO prediction. The SVM-based
ROM can also fairly predict the LCO response of the 2DOF aeroelastic model with the Mach
number variation. The robustness of the SVM-based ROM with varying flow parameters
provides a useful tool for real-time flight simulation of flexible vehicle. Further research
will focus on developing new training methods and improving the accuracy of the ROM,
especially for the cases with parameters variation.
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