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Reconstruction from few views is an important problem in medical imaging and applied
mathematics. In this paper, a combined energy minimization is proposed for image reconstruction.
I, energy of the image gradient is introduced in the lower density region, and it can accelerate the
reconstruction speed and improve the results. Total variation of the image is introduced in the
higher density region, and the image features can be preserved well. Nonlinear conjugate gradient
method is introduced to solve the problem. The efficiency and accuracy of our method are shown
in several numerical experiments.

1. Introduction

Computed tomography (CT) is one of the most important advance in diagnostic radiology in
recent decades. CT uses multiple X-ray images to build up cross-sectional and 3D pictures
of structures inside the human body which enable doctors to view internal organs with
unprecedented precision. However, the use of ionizing radiation in CT may induce cancer
in the exposed individual after a latent period [1-3]. Cancer induction by ionizing radiation
is a probabilistic process. Reduction of radiation dose used in CT will therefore lead to a
reduction in the number of induced cancer cases.

Some ways can be used to reduce the radiation dose from CT such as decreasing
intensity of X-ray beam, handling scattered radiation, restricting exposure area. Reducing the
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X-ray exposing time is a simple one. Here we focus on the low-dose X-ray imaging strategy
that only a limited number of projection images are taken for the reconstruction, which is
called limited-view reconstruction [4-6]. Image reconstruction from few views would enable
rapid scanning with a reduced X-ray dose delivered to the patient. But it is possibe to build
up blurring artifacts and lose critical spatial resolution in the reconstructed image. So the
trade-off needs to be carefully examined for intended use. However, it is beyond the scope
of this paper. In a word, we will consider image reconstruction from projection data at few
views.

CT reconstruction methods can roughly be categorized as analytic reconstruction
methods and iterative reconstruction methods. The analytic reconstruction methods, such as
filtered back-projection (FBP) methods [7, 8], require sufficient projection data with low noise
level. As the limited-view reconstruction is considered, the analytic methods may induce
more noise and produce significant artifacts. The iterative reconstruction methods, such as
the algebraic reconstruction technique (ART) [9, 10], require less data than FBP methods and
are more robust to the effects of noise, but need much more computation.

Recently, the minimization of the image total variation (TV) has been introduced to
divergent-beam CT and an new iterative image reconstruction algorithm was presented [11].
Lustig et al. applied compressed sensing theory to rapid magnetic resonance imaging [12].
Many approaches have been presented based on this [13-16].

In this paper, a novel image reconstruction model is proposed. The image total
variation and the I, energy of the image gradient are combined to a new energy
functional. Then the functional is introduced to the constrained optimization problem for
the reconstruction from 2D parallel-beam data at few views. Our algorithm are performed
with various insufficient data problems in fan-beam CT and the numerical results show the
efficiency and accuracy of proposed method. The algorithm can be generalized to fan-beam
CT and cone-beam CT as well as other tomographic imaging modalities.

2. Reconstruction from Few Views and Total Variation Minimization

There are many approaches about tomographic reconstruction from limited views projection
data [17-19]. Algebraic reconstruction technique (ART) [9, 20, 21] and the expectation-
maximization (EM) algorithm [22, 23] have been widely used in this field. As the image
is discretized on the grids, each projection is regarded as a linear equation of the discrete
density distribution. Then a system of simultaneous equations can be obtained and ART
tends to solve it via iterative method. ART algorithm can find the image that is consistent
with the projection data and the sum-of-squares of the density values is minimized. The EM
algorithm applies to positive integral equations, seeking to minimize the Kullback-Liebler
distance between the measured data and the projection of the estimated image [11].

However, it is known that the ray does harm to human body and abundant irradiation
may lead to cancer [17, 24]. So researchers begin to study the tomographic reconstruction
with projection data as little as possible.

2.1. Reconstruction from Few Views

Tomographic reconstruction from few views projection data is an efficient way to reduce the
harm caused by ray irradiation, and there are some approaches about it [11, 12].
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As the gray image to be reconstructed can be denoted by below

U1 Uy ... Uie
Uu u oo U

u= 2,1 2,2 Z,C . (21)
Url Up2 ... Upc

Here r and ¢ mean the size of image.
The projection can be denoted as the following equations:

M-f=g. (22)

Here f is the vector form rearranged form u. ¢ := (gi,,...,8x)" means the projection
data. More exactly, k is the product of the number of views and the number of detector’s
pixels. M := (M1, Mo, ..., Mk)T is the projection matrix which can be precomputed. M; (i =
1,2,...,k) is the same size as f. The reconstruction procedure equals to solve (2.2).

Unfortunately, this equations are indeterminate if the reconstruction was based on few
views. In other words, the number of the equations are less than the number of variables
(k < r-c). In practice, it is more often that k « r - c. From the linear algebraic theory, the
solution is not unique and the traditional methods cannot be applied. In fact, evenif k > r - ¢
is satisfied, it is still compromised to deal with the consistency of the projection data and lead
to artifacts in the reconstructed image.

The ART can be applied to solve this equation and it means to solve the following
problem:

argmin || f]|, subject to M- f = g. (2.3)

Here || f||» means the [, norm of f. Because of the serious insufficiency of the projection data,
ART algorithm can hardly provide satisfactory result. The same as to EM algorithm. So some
other models should be discussed.

2.2, Total Variation Minimization

The total variation (TV) was first introduced by Rudin et al. [25], and it can be utilized in
image processing for images denoising while edges preserved. Candes et al. applied it to
image reconstruction with insufficient parallel-beam data [26]. More exactly, they considered
the following problem:

argmin || f|-y = [|Vf]|, subject to M- f = g. (2.4)

Here ||V f|; means the I; norm of |Vf| = (|Vf;|) which is the rearranged form of matrix
IVu| = (|Vuij|). i, j,t satisfy i + (j — 1) x 7 = t. |Vu; ;| can be computed as

1
E\/(”Hl,}' - ui—l,j)2 + (ui,j+1 - ui,;‘—l)Z. (2.5)
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Based on these, Sidky et al. developed an iterative image reconstruction algorithm for fan-
beam CT in [11].

The TV minimization can efficiently reduce errors and preserve features in the image
reconstruction. In next section, we will concentrate on developing a new model to improve
the convergence speed and reduce errors based on this TV model.

3. Minimization of a Combined Energy for Image Reconstruction

It is known that the convergence speed will be enhanced when the [, norm of image gradient
is considered as shown in following:

arg min ||Vf||§ subject to M - f = g. (3.1)

But this I, result can also blur the image features. So some combined energies can be
considered.

3.1. A Combined Energy of Image

The natural idea is to combine the I, norm and TV directly. The combined energy can be
denoted by

ecrv(f) = |V£I5 + 2l fll - (3.2)

However, the new result cannot be improved much more than the TV result though the
convergence speed may be accelerated in some sense. In fact, the new result is a weighted
sum of the I, result and TV result.

To improve the TV result of image denoising, Chambolle and Lions [27] proposed a
combined functional (CL energy)

1
Ecp(u) = 3 f |Vu|2dx + ﬁf |[Vu| - 'gdx = f F(|Vu|)dx, (3.3)
[Vul<p |Vul>p Q
where
1sz, s<p,
F(s)=4 2 (3.4)

ﬁs—%ﬁz, s> p.

Here f is a fixed positive number and it is a threshold of |Vu|. In some way, it means an
approximation of the critical value which can be used to distinguish image features and noise.
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3.2. The Reconstruction Model

Based on the discrete form of the CL energy and the rearranged vector f, we can get

1 2 p
ect(f) =5 Vil +p IVAil-5 ) ,
. ztd%‘) te?%‘)+< 2> 49

Here T(f)” := {t | |[Vfil < B}, T(f)" == {t | [Vfi] > B}. It can be found that the I* energy
of image gradient is considered in the noise part T(f)~ while the TV energy is computed in
features part T(f)*. Then the new model for image reconstruction can be denoted as follows:

argmin ecp (f) subject to M - f = g. (3.6)

With the Lagrange method applied, this constraint optimization problem can be
rewritten as an unconstraint optimization problem of following combined Chambolle-Lions
(CCL) energy:

argminecc (f) = [|M- f - g5 + A - ec (f). (37)

3.3. Conjugate Gradient Descend Algorithm

The gradient of eccr.(f) can be computed as
Vecer(f) =2M*(M - f —g) + - Vecr(f), (3.8)

where

-V (), IVAI<P,

VECL(f)= —ﬁV-<% ) |Vf|2,3

(3.9)

In practice, the parameter .\ is set to be 1072,

Set a initial value fy, the conjugate gradient descend algorithm can be given as
Algorithm 1. There the time step is denoted by 7.

From the experiments results, we will find some advantages of the proposed model.
These are chiefly due to the different optimization problems and it is related with the
algorithm. More exactly, the first term in (3.5) can help to enhance the convergence speed
and reduce some artifacts in the smooth region. But the efficiency role of this I> energy of
image gradient is depended on the well define of f. It is related with the characters of the
image to be reconstructed. In our experiments, it is set to be 0.01 times the range of phantoms.
The advanced researches about this will be approached in our next work. The general metric
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% Initialization
maxGrad = 107%; maxlter = 100; maxTau = 107°; s = 4; k = 0;
70 =1; g0 = Veccr(fo); A fo = —8go;
% Iterations
while (||g«|l, > maxGrad and k < maxlter and 7 > maxTau){
%Linear search
minE = eccr(fx); opt=0;i=-s;
while (i <=s){

T =277
if (eccL(fx + TAfix) <minE){minE = ecc (fx + TAfi); opt =17; }
i=i+1;}
0 = opt;
ll gkl
fra = fx + 10l fi; k1 = Vecer (fra1); ¥ = Sk 2;
1A fill,

Afie1 = —8ke1 + YAfi;
k=k+1;}

Algorithm 1: Iteration algorithm for CL minimization reconstruction.

peak signal to noise ratio (PSNR) is introduced to evaluate the results and it can be computed
as

log(255*/MSE)

PSNR =1
SN 0 log 10 ’

(3.10)
where MSE is the mean square error of the gray image.

4. Numerical Experiments

Example 4.1. Reconstruction of Shepp-Logan phantom from 72 views.

The true image is taken to be the Shepp-Logan image shown in Figure 1(a) discretized
on a 256 x 256 pixel grid. The computational parameters are set as shown in the algorithm, the
same to the following experiments. The reconstruction from 72 views is completed after 31
iterations. Figures 1(b) and 1(c) show the ART result and TV result while Figure 1(d) shows
our CL result. It can be found that the ART result is enhanced by TV much more. Many
artifacts have been removed or slighted. Figures 1(e) and 1(f) show the gray distributions of
row 128 and column 128. There are few differences between the reconstructed horizontal gray
and the real one. It is similar to the reconstructed vertical gray. The evolutions of PSNR and
T are shown in Figures 2(a) and 2(b). The PSNR has been improved from 46.4040 (TV result)
to 50.5664 (CL result). Though the TV result is almost accurate, our CL result improves it
significantly.

Example 4.2. Reconstruction of Shepp-Logan phantom from 24 views.

The true image is still taken to be the same Shepp-Logan image as Example 4.1 while
the reconstruction views are reduced acutely from 72 to 24. This reconstruction is completed
after 100 iterations. Figures 3(b), 3(c), and 3(d) show the ART result, TV result and our CL
result. The gray distributions of row 128 and column 128 are shown in Figures 3(e) and 3(f).
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Figure 1: Reconstruction of Shepp-Logan phantom from 72 views.
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Figure 3: Reconstruction of Shepp-Logan phantom from 24 views.

Figures 4(a) and 4(b) show the evolutions of PSNR and 7. The PSNR has been improved from
21.3451 (TV result) to 34.4123 (CL result). It can be found that there are a lot of serious line
artifacts and block artifacts in TV result. Most of these artifacts has been eliminated and the
rest has been slighted significantly in our CL result.

Example 4.3. Reconstruction of fruits image from 72 views.

A fruits image with size 256 x 256 is taken to be the true one. The reconstruction views
are set to be 72. It costs 25 iterations to finish the reconstruction. Figures 5(b), 5(c), and 5(d)
show the ART result, TV result, and our CL result. The gray distributions of row 128 and
column 128 are shown in Figures 5(e) and 5(f). Figure 6 shows the evolutions of PSNR and 7.
The PSNR has been improved from 31.8559 (TV result) to 32.2934 (CL result). There are few
differences between TV result and our CL result though CL result is more satisfactory than
TV result in numerical value.

Example 4.4. Reconstruction of fruits image from 30 views.

The same fruits image as Example 4.3 is taken to be the true one while the views are
reduced from 72 to 30. This reconstruction is completed after 59 iterations. ART result, TV
result, and our CL result are shown in Figures 7(b), 7(c), and 7(d). The gray distributions of
row 128 and column 128 are shown in Figures 7(e) and 7(f). The evolutions of PSNR and 7
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are shown in Figures 8(a) and 8(b). The PSNR has been improved from 25.9273 (TV result)
to 27.3870 (CL result). It can be found that there are many artifacts in TV result and a lot of
them have been eliminated or slighted in our CL result.

Example 4.5. Reconstruction of a synopsis phantom from 72 views.

A synopsis phantom with size 256 x 256 is taken to be the true image. The
reconstruction views are set to be 72. After 24 iterations, the reconstruction is finished. Figures
9(b), 9(c), and 9(d) show the ART result, TV result, and our CL result. The gray distributions
of row 128 and column 128 are shown in Figures 9(e) and 9(f). Figure 10 shows the evolutions
of PSNR and 7. The PSNR has been improved from 48.5852 (TV result) to 49.6270 (CL result).
It can be found that CL result is more satisfactory than TV result in numerical value, but there
are few differences between TV result and our CL result from vision terms.

Example 4.6. Reconstruction of a synopsis phantom from 20 views.

The same synopsis phantom as Example 4.5 is taken to be the true one while the views
are reduced from 72 to 20. This reconstruction is completed after 68 iterations. ART result, TV
result, and our CL result are shown in Figures 11(c), 11(b), and 11(d). The gray distributions
of row 128 and column 128 are shown in Figures 11(e) and 11(f). The evolutions of PSNR
and 7 are shown in Figures 12(a) and 12(b). The PSNR has been improved from 31.7194 (TV

result) to 36.9629 (CL result). It can be found that there are more artifacts in TV result than in
our CL result.

5. Conclusion
In this paper, a novel model for image reconstruction from few views in parallel-beam data

is proposed. First, the I, energy of the image gradient and the total variation of the image
are combined to the CL energy. The I, energy is applied in the lower density region, and it
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can accelerate the reconstruction speed. The total variation is applied in the higher density
region, and it can preserve the image features well. Contributed to the lagrange method and
nonlinear conjugate gradient algorithm, the related optimization problem can be solved.
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