
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 170391, 5 pages
doi:10.1155/2012/170391

Letter to the Editor
Comment on “Highly Efficient Sigma Point Filter
for Spacecraft Attitude and Rate Estimation”

Baiqing Hu, Lubin Chang, An Li, and Fangjun Qin

Department of Navigation Engineering, Naval University of Engineering, Wuhan 430033, China

Correspondence should be addressed to Lubin Chang, changlubin@163.com

Received 13 September 2011; Accepted 3 January 2012

Copyright q 2012 Baiqing Hu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

In light of the intuition that a better symmetrical structure can further increase the numerical
accuracy, the paper by Fan and Zeng (2009) developed a new sigma point construction strategy
for the unscented Kalman filter (UKF), namely, geometric simplex sigma points (GSSP). This
comment presents a different perspective from the standpoint of the numerical integration. In this
respect, the GSSP constitutes an integration formula of degree 2 with equal weights. Then, we
demonstrate that the GSSP can be derived through the orthogonal transformation from the basic
points set of degree 2. Moreover, the method presented in this comment can be used to construct
more accurate sigma points set for certain dynamic problems.

With the intuition that a better symmetry property provides a better numerical behavior [1],
addressed the construction strategies to make the best symmetric structure in simplex sigma
point set and derived the so-called geometric simplex sigma points (GSSP) for Euclidean
geometric space. As compared with the previously exiting simplex sigma points set, the GSSP
has a symmetric structure and a lower computational expense, is numerically more accurate,
and can be used in a variety of 3-dimensional modeled dynamic problems.

In this comment we will show that the GSSP can also be derived from the integration
rule of degree 2. Embedding the Gaussian assumption in the Bayesian filter we can reach
the idea that the functional recursion of the Bayesian filter reduces to an algebraic recursion
operating only on conditional means and covariances which share the same structure of
Gaussian weighted integrals whose integrands are all of the form nonlinear function ×
Gaussian density. The multidimensional integrals are usually intractable for systems involving
nonlinearity, so the recursive estimation problem boils down to how to compute the integrals
using approximate methods. There are many well-known numerical integration methods
such as Gauss-Hermite quadrature, cubature rules, fully symmetric integration rule, and
central-difference-based methods that can be used to handle such integrals [2–4]. The
unscented transformation (UT) used in the traditional unscented Kalman filter (UKF) can
be interpreted as either fully symmetric integration rule or cubature rule of degree 3. The
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simplex UT can also be interpreted as a numerical integration formula of degree 2 [3]. Next
we will focus on the numerical integration formula of degree 2 in order to derive the GSSP.

Before getting involved in further details, we first introduce some definitions when
constructing the exact monomials rule as follows [3, 4].

Definition 1. Consider the monomials of the form
∏d

i=1x
αi

i , where the powers αi are nonnega-
tive integers and

∑d
i=1 αi ≤ p, a rule said to have precision p if it can integrate suchmonomials

accurately and it is not exact for monomials of degree p + 1.
The numerical integration formulas are conducted by approximating the integrals

with the weighted sum of an elaborately chosen set of points as follows [5–7]:

∫

Rn

g(x) ·W(x) ≈
∑

k

αkg
(
χk

)
, (1)

where Rn is a region in an n-dimensional, real, Euclidean space, x = (x1, x2, x3, . . . , xn) is
the state variable, αk are constants, and χk are points in the space. The integral weight is
a Gaussian distribution as discussed above. Since an arbitrary Gaussian distribution with
mean μ and covariance Σ can always be transformed into the unit Gaussian distribution as
(see prove in [4])

∫

g(x) ·N(
x;μ,Σ

)
dx =

∫

g
(
Aξ + μ

) ·N(ξ; 0, I)dξ, (2)

where AAT = Σ and I is the identity matrix, we can start by considering the multidi-
mensional unit Gaussian integral. Based on Definition 1, we can construct a rule, which is
exact up to degree 2 by determining the weighted points set χk such that it is exact for
selections gi(ξ) = 1, gi(ξ) = ξi, gi,j(ξ) = ξiξj , i /= j, and gi,i(ξ) = ξ2i . The true values of the
integrals are

I0 =
∫

1 ·N(ξ; 0, I)dξ = 1, (3)

I1 =
∫

ξi ·N(ξ; 0, I)dξ = 0, i = 1, 2, . . . n,

I2 =
∫

ξ2i ·N(ξ; 0, I)dξ = 1, i = 1, 2, . . . n,

I1 × 1 =
∫

ξiξj ·N(ξ; 0, I)dξ = 0, i /= j = 1, 2, . . . n.

(4)

In [5] Stroud had proved that n + 1 is the minimum number of points for equally weighted
degree 2 formulas. Let us define n + 1 equally weighted points

χ =
(
χ1, χ2, . . . , χn+1

)
, (5)
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where χk = (χk,1, χk,2, . . . , χk,n)
T , k = 1, 2, . . . , n + 1. In order to calculate (4) accurately using

these points through (1), we can get the following equations:

1
n + 1

n+1∑

k=1

χk = 0,

1
n + 1

n+1∑

k=1

χk · χT
k = In,

(6)

where In is the n-dimensional identity matrix. Any equally weighted points set that fulfills
(6) can approximate the unit Gaussian integral accurately up to degree 2. References [6, 7]
have presented a basic points set that fulfills such conditions with the form as

χk,2r−1 =
√
2 cos

2rkπ
n + 1

,

χk,2r =
√
2 sin

2rkπ
n + 1

,

(7)

r = 1, 2, . . . , [n/2], and if n is odd, χk,n = (−1)k. [n/2] is the greatest integer not
exceeding n/2. When n = 3, the basic points set is

S1 =
[
χ1 | χ2 | χ3 | χ4

]
=

⎡

⎢
⎣

0 −√2 0
√
2√

2 0 −√2 0
−1 1 −1 1

⎤

⎥
⎦. (8)

Next we will give a theorem through which we can get the GSSP from the basic points set of
degree 2.

Theorem 1. Assume that n + 1 equally weighted points set as that in (5) constitutes an integration
formula of degree 2.A is an n×n orthogonal matrix. Then, Aχ also constitutes an integration formula
of degree 2.

Proof. By defining a matrix

M =

⎡

⎢
⎢
⎢
⎣

χ1,1 χ2,1 χ3,1 · · · χn+1,1

χ1,2 χ2,2 χ3,2 · · · χn+1,2
...

...
...

. . .
...

χ1,n χ2,n χ3,n · · · χn+1,n

⎤

⎥
⎥
⎥
⎦
, (9)

we can rewrite (6) as

MMT = (n + 1)In, (10)

where In is the n-dimensional identity matrix. A is an orthogonal matrix, so

AM(AM)T = AMMTAT = (n + 1)InAAT = (n + 1)In. (11)

Hence, Aχ also fulfills (6) which completes the proof.
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For the 3-dimensional Euclidean space, there are many orthogonal matrixes. Here, we
use the direction cosine matrix (DCM) which is widely used in the practical systems such as
guidance and navigation [8]. The DCM that rotates an angle φ about u = [0 0 1]T is

C
(
φ
)
=

⎡

⎣
cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎤

⎦. (12)

By a simple computation, it is obvious that

S2 = C

(
3π
4

)

S1 =

⎡

⎣
1 1 −1 −1
−1 1 1 −1
−1 1 −1 1

⎤

⎦. (13)

Since all the points share equal weight, S2 is virtually just the GSSP derived in [1].
Up to this point we have derived the GSSP through the numerical integration formulas

method. Compared with the intuitionistic method in [1], our method is more principled
in mathematical terms. Although Theorem 1 is proposed for integration formula of degree
2, it can be generalized for different degrees, that is, the orthogonal transformation on
the numerical integration formula will not change its accurate degree. Reference [7] also
presented the points set of degree 3, that is,

γ =
(
γ1, γ2, . . . , γ2n

)
, (14)

where γk = (γk,1, γk,2, . . . , γk,n)
T , k = 1, 2, . . . , 2n with

γk,2r−1 =
√
2 cos

(
(2r − 1)kπ

n

)

,

γk,2r =
√
2 sin

(
(2r − 1)kπ

n

)

,

(15)

r = 1, 2, . . . , [n/2], and if n is odd, γk,n = (−1)k. [n/2] is the greatest integer not
exceeding n/2. It can be proven that the points set (14) can be derived through orthogonal
transformation on the cubature points set with the form [4]

λ =
[√

nek −√nek
]
, k = 1, . . . , n, (16)

where ei denotes a unit vector to the direction of coordinate axis i.
As can be seen from (16) the distance of the cubature point from the mean is

proportional to
√
n. So, for high-dimensional problems, the cubature points set bears the

nonlocal sampling problem [9–11]. For many kinds of nonlinearities (such as exponents or
trigonometric functions), this can lead to significant difficulties. In contrast, the points set
(14) does not bear such nonlocal sampling problem. Under this condition, the points set (14)
is more accurate than the cubature points set (16). Therefore, to this respect, we can derive
different sigma points set which may be more accurate for certain dynamic problems by the
presented method.
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