
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 178193, 22 pages
doi:10.1155/2012/178193

Research Article
Security-Constrained Unit Commitment Based on a
Realizable Energy Delivery Formulation

Hongyu Wu, Qiaozhu Zhai, Xiaohong Guan, Feng Gao,
and Hongxing Ye

SKLMS Lab and MOE KLINNS Lab, Xi’an Jiaotong University, Xi’an 710049, China

Correspondence should be addressed to Hongyu Wu, hywu@sei.xjtu.edu.cn

Received 10 June 2011; Revised 2 November 2011; Accepted 3 November 2011

Academic Editor: Francesco Pellicano

Copyright q 2012 Hongyu Wu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Security-constrained unit commitment (SCUC) is an important tool for independent system
operators in the day-ahead electric power market. A serious issue arises that the energy
realizability of the staircase generation schedules obtained in traditional SCUC cannot be
guaranteed. This paper focuses on addressing this issue, and the basic idea is to formulate the
power output of thermal units as piecewise-linear function. All individual unit constraints and
systemwide constraints are then reformulated. The new SCUC formulation is solved within the
Lagrangian relaxation (LR) framework, in which a double dynamic programming method is
developed to solve individual unit subproblems. Numerical testing is performed for a 6-bus
system and an IEEE 118-bus system on Microsoft Visual C# .NET platform. It is shown that the
energy realizability of generation schedules obtained from the new formulation is guaranteed.
Comparative case study is conducted between LR and mixed integer linear programming (MILP)
in solving the new formulation. Numerical results show that the near-optimal solution can be
obtained efficiently by the proposed LR-based method.

1. Introduction

Unit commitment (UC) is an important tool for independent system operators (ISOs) to
obtain economical generation schedules in the day-ahead or week-ahead electric power
market. The objective of UC is to determine the commitment states and generation levels of all
generators over the scheduling horizon to minimize the total generation cost while meeting
all systemwide constraints, such as system load balance and spinning reserve requirements,
and individual unit operating constraints [1–3]. UC is often formulated as a nonlinear, large-
scale, mixed integer programming (MIP) problem, and many approaches, such as dynamic
programming (DP) [4], genetic algorithms (GAs) [5, 6], Lagrangian relaxation (LR) [1, 2, 7],
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Benders decomposition (BD) [8, 9], mixed integer linear programming (MILP) [10–12], and
particle swarm optimization (PSO) [13–15], have been applied to solve the UC problems.
LR is one of the most successful methods among them. The main advantage of applying LR
is that its computational complexity of solving the dual problem is almost lineally related
to the system size and therefore applicable for large-scale problem. In addition, Lagrange
multipliers can be interpreted as the system shadow prices, which are important economic
indicators of prices.

Since the power grid is being driven to operate more and more close to its
security margin, considering security-related transmission constraints in UC problem; that
is, security-constrained UC (SCUC) becomes indispensable in the newly deregulated power
market [16, 17]. In the current operation practice, a generation schedule is obtained from
SCUC in day-ahead market and taken as an energy delivery schedule on an hourly basis in
real time. Generators that are committed in the day-ahead scheduling have the obligation to
deliver the awarded energy in real time. Generation companies (GENCOs) would be subject
to real-time locational marginal prices (LMPs) and possibly incur penalties for deviating from
the day-ahead schedule in the energy market [18, 19].

In the literature on SCUC, the power output of a unit in each time period is represented
by its average generation level such that the power output is formulated as a staircase
function (see Figure 1(a)). The ramp-rate constraints are also simplified as limits on the
difference of average generation levels in consecutive time periods [16, 17, 20]. The most
obvious advantage of the staircase power output is its computational simplicity since the
energy output at each time period is numerically equal to its average generation level.

However, a serious issue arises that the energy realizability of the staircase generation
schedules obtained in traditional SCUC cannot be guaranteed as stated in our previous
work [18]. The staircase generation schedules are actually impossible to be implemented
for GENCOs. In fact, we found that even though the ramp-rate constraints were satisfied,
generation schedules with staircase generation levels might be still unrealizable in terms of
energy delivery. A sufficient and necessary condition was thus established to check whether
a generation schedule is deliverable in terms of energy [18]. To our best knowledge, there is
little effort in literature to further address this issue. Therefore, it is still open and pressing to
obtain energy-realizable schedules for SCUC.

The cause of this issue lies in the fact that the energy output is distinguished from
the power output especially when the ramping characteristics of generators are considered.
If the energy output is to be accurately represented, it must be formulated as an integration
of power output over a time period. However, such formulation with integral constraints
as proposed in [21] is difficult to be incorporated into SCUC for practical implementation
due to the computational complexity of SCUC problem. A trade-off solution is to assume
the linear variation of power output such that the energy output at each time period can be
easily represented by the power output [3]. This solution has been proven effective to treat
the relationship between energy output and power output and thus it is also generalized to
SCUC problem in this paper.

In this paper we focus on addressing the energy unrealizable issue of traditional
SCUC. First of all, this issue is demonstrated and analyzed through an example of
SCUC problem. The piecewise-linear power output (see Figure 1(b)) is then formulated
by introducing additional continuous variables. All individual unit constraints and
systemwide constraints such as system energy balance, spinning reserve requirements and,
DC transmission constraints are reformulated based on the piecewise-linear model.
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Figure 1: The comparison of power output models.

The SCUC formulation established in this paper is then solved within the LR
framework with all coupling constraints on different units relaxed by the Lagrange
multipliers. A double dynamic programming method is used to obtain the exact optimal
solution to each individual unit subproblem, and a modified subgradient algorithm is
employed to update the multipliers. After the convergence of the Lagrange multipliers, a
systematic method is developed for obtaining feasible solutions based on the dual solution.

Numerical testing is performed for a 6-bus system and a modified IEEE 118-bus
system. It is proved that the formulation established in this paper overcomes the unrealizable
issue of traditional SCUC formulations in terms of energy delivery. Numerical testing results
demonstrate that the energy realizability of generation schedules is guaranteed and the
near-optimal generation schedule can be also obtained efficiently by the proposed LR-based
method.

The energy-realizable schedules obtained by the proposed LR method are also
compared with those obtained by MILP-based method in IEEE 118-bus system. It is found
that MILP-based method outperforms the LR-based method on small-size instances, but
LR method is superior to the MILP method for solving larger-scale problems in term
of computational efficiency. This feature is very important for solving large-scale SCUC
problems.

It should be noted that additional continuous variables are necessarily introduced
in this paper to formulate the piecewise-linear power output and the energy output. The
increase of the variables in our formulation has low impact on the computational complexity
under LR-based solution method since they could be eliminated in the procedure of solving
unit subproblems with all systemwide constraints relaxed.

With great advances in theory and algorithms associated with other techniques
[5, 6, 10–15] in recent years, many successful methods and important results have been
obtained based on those methods. The motivation of this work, nevertheless, is not to give
a full comparison between LR and other methods for solving the new SCUC problem. In
this paper, we only want to suggest that one way is also valuable and important, that is, to
design algorithms based on deep analysis and full utilization of the structure of SCUC. In
this way, some new characteristics of the problem may be found and we may get a better
understanding of the nature of SCUC problem. The algorithms designed may be still efficient
since much structure information of the problem is combined with the algorithms.

The main contributions of this paper are as follows: (1) an energy-realizable SCUC
formulation is presented by modeling power output as piecewise-linear function as well as
reformulating individual unit constraints and systemwide constraints; (2) a double dynamic
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programming algorithm is developed to solve the hard unit subproblem under the new
formulation.

This paper is organized as follows. The mathematical formulation is presented in
Section 2, in which an example is firstly given to demonstrate the deficiency of staircase
power output, and the piecewise-linear formulation for SCUC is then established. The LR-
based solution framework is discussed in Section 3. Numerical testing results are listed and
analyzed in Section 4, and the paper is concluded in Section 5.

2. Mathematical Formulation

2.1. The Deficiency of Staircase Power Output: An Example

Following the examples in our previous work [18], the deficiency of staircase power output
in traditional SCUC is presented in this section for self-containing. Let the minimum and
maximum generation levels of a thermal unit be 100 MW and 300 MW, and the ramping limit
(up or down) is 5 MW/min in an SCUC problem. Assume the generation output in the first
hour is maintained at 300 MW.

Variables p(1), p(2) represent the average generation levels (in MW) in the first two
hours. If the time period is one hour, they are numerically equal to the energy delivery (in
MWh) in the time period, where p(1), p(2) are within their limits and satisfy the ramping
constraints [8, 16, 17]:

100 ≤ p(2) ≤ 300,
∣
∣p(2) − p(1)∣∣ ≤ 5 × 60 = 300.

(2.1)

It is obvious that p(2) = 100 is a feasible solution to this problem. However, if 100 MWh
is taken as the scheduled energy output at the second hour based on the traditional SCUC
formulation, it is unrealizable since the generation level is physically constrained and cannot
change instantaneously at the beginning of hour 2 (point A in Figure 2). Even if the unit
fully ramps down, the practical minimum energy output during hour 2 is 166 MWh, which
is numerically equal to the area of ACDEF in Figure 2, and much greater than the scheduled
energy output, the area of BDEF. The above example suggests that satisfying the ramping
constraints cannot guarantee the desired energy output. In other words, the generation
schedule with staircase power output obtained from traditional SCUC formulation may not
be realizable in terms of energy delivery.

2.2. The Piecewise-Linear Formulation for SCUC

Suppose a power system with I thermal units and the horizon of scheduling is partitioned
into T time periods. The SCUC problem is formulated as the following mixed-integer
optimization problem with the objective to minimize the total operating costs.

min J =
I∑

i=1

{
T∑

t=1

[Ci(Ei(t)) + Si(xi(t), ui(t))]

}

. (2.2)

Quadratic fuel cost Ci(·) and piecewise linear start-up cost Si(·) are generally adopted in
literature, and the detailed mathematical formulations can be found in [1, 22]. All constraints
are listed as follows, in which i = 1, . . . , I, t = 1, . . . , T , l = 1, . . . , L.
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Figure 2: Power generation and energy delivery.

(a) Discrete State Transition

xi(t + 1) =

⎧

⎨

⎩

xi(t) + ui(t), if xi(t) · ui(t) > 0,

ui(t), else. (2.3)

(b) Minimum Up/Down Time Limits

ui(t) =

⎧

⎨

⎩

1, 1 ≤ xi(t) < τi,
−1, −τi < xi(t) ≤ −1.

(2.4)

(c) Power Generation Limits

P i ≤
⎧

⎨

⎩

pleft
i (t) ≤ P i, if ui(t) = 1,

p
right
i (t) ≤ P i, if ui(t) = 1.

(2.5)

(d) Coincidence Constraints on Power Output

pleft
i (t + 1) = pright

i (t), if ui(t) = 1, ui(t + 1) = 1, (2.6)

pleft
i (t) = pright

i (t) = 0, if ui(t) = −1. (2.7)

The coincidence constraint (2.6) suggests that pright
i (t) and pleft

i (t + 1) coincide for each two
consecutive ON-state periods as illustrated in Figure 3 and implies that the power output
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Figure 3: Power output modeled as a piecewise-linear function.

trajectory of each unit must be continuous at the transition point of two adjacent ON-state
periods. In comparison with the staircase power output model, the piecewise-linear model
has better practicality since sudden changes are not allowed at this transition point.

(e) Minimum Generation at the First/Last ON-State Period

pleft
i (t) = P i, if ui(t − 1) = −1, ui(t) = 1, (2.8)

p
right
i (t) = P i, if ui(t) = 1, ui(t + 1) = −1. (2.9)

Constraints (2.8) and (2.9) are effective only for some units [23]. As observed in Figure 3,
when a unit switches ON at period t, pright

i (t−1) = 0 according to constraint (2.7). If constraint

(2.8) is active, we have pleft
i (t) = P i. It is seen that pleft

i (t) and p
right
i (t − 1) do not coincide in

the start-up process, neither do they coincide in a shut-down process when the unit switches
OFF. The necessity of introducing additional variables can be seen at this point.

(f) Relationship between Energy Output and Power Output

As mentioned in introduction, the energy output during period t (the shadow area in
Figure 3) can be easily calculated based on the assumption of linear variation of power
output, and it can be clearly expressed as follows:

Ei(t) =
pleft
i (t) + pright

i (t)
2

· η. (2.10)

It is also seen from Figure 3 that the additional variables are needed in this paper to formulate
the energy output when considering ON/OFF-state switches. With the analysis in Section 2.1,
it is found that the simplified ramp-rate constraint in traditional SCUC formulation is one of
the main factors leading to the unrealizability of staircase generation schedule; a ramping
model with realizable energy delivery is therefore established as follows.
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(g) Ramp-Rate Constraints

∣
∣
∣pleft

i (t) − pright
i (t)

∣
∣
∣ ≤ Δi, if ui(t) = 1. (2.11)

It is observed in Figure 3 that the ramp-rate constraint (2.11) is formulated as the limit on
the difference between pleft

i (t) and p
right
i (t) within period t. This ramping model is superior

to the one used in staircase formulation since the ramping process for implementing the
required energy output is in fact obtainable. Note that we adopt fixed unit ramping limit
in this paper. However, the stepwise- or piecewise-linear ramping limits presented in [24]
can be also included in this formulation.

(h) Spinning Reserve Contribution

ri(t) =

⎧

⎨

⎩

min
{

P i − pleft
i (t),Δ · τ

}

, if ui(t) = 1,

0, else.
(2.12)

The individual unit operating constraints are listed in (2.3)–(2.12), and the systemwide
constraints are formulated as follows.

(i) System Energy Balance

I∑

i=1

Ei(t) = Pd(t) · η. (2.13)

It is worth emphasizing that (2.13) is given in MWh rather than MW since the transactions
are all processed in terms of electric energy in the energy market [18, 19].

(j) Spinning Reserve Requirements

I∑

i=1

ri(t) ≥ R(t). (2.14)

(k) DC Transmission Constraints (Security Constraints)

−Fl ≤
I∑

i=1

ΓUl,i · pleft
i (t) −

M∑

m=1

ΓDl,m · dm(t) ≤ Fl, (2.15)

−Fl ≤
I∑

i=1

ΓUl,i · p
right
i (t) −

M∑

m=1

ΓDl,m · dm(t) ≤ Fl. (2.16)
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Due to the monotonicity of piecewise-linear power output within period t, if inequalities
(2.15) and (2.16) are satisfied, it is guaranteed that each transmission line is not overloaded at
any time within the interior of period t. Note that DC power flow model is used in this paper
for computational simplicity, and the piecewise-linear power output can be also applied to
AC network models [25].

(l) Emission Limits

I∑

i=1

Hi(Ei(t)) = ψi · Ei(t) ≤ Θ(t). (2.17)

The emissionHi(·) is expressed as a linear function of energy output in this paper, and several
emission types (e.g., SO2, NOx) can be considered.

Combining (2.2)–(2.17), a new SCUC formulation with piecewise-linear power output
is established. Note that this formulation can be also incorporated into contingency-
constrained unit commitment (CCUC) problem [26]. However, the scale of SCUC problem is
usually large and hundreds of units, transmission lines, and buses as well as time periods
need to be accounted for; even if a limited set of credible contingencies and the n − 1
security criterion are considered, the computational burden for doing this is intensive. For
the above reasons, we do not consider contingencies in this paper. Although this formulation
differs from the traditional SCUC formulation, it can be still efficiently solved within the LR
framework. This will be discussed in the next section.

3. Solution Methodology

3.1. The Lagrangian Relaxation Framework

The basic idea of the LR-based method is to relax systemwide constraints and convert the
original problem into a two-level optimization structure [1, 7]. Figure 4 shows the flow chart
of the LR-based method. Constraints (2.13)–(2.17) are relaxed by using Lagrange multipliers,
and the Lagrangian function is expressed as follows:

L =
T∑

t=1

I∑

i=1

⎡

⎣Ci

⎛

⎝
pleft
i (t) + pright

i (t)
2

⎞

⎠ + Si(xi(t), ui(t))

⎤

⎦

+
T∑

t=1

λ(t)

⎛

⎝Pd(t) · η −
I∑

i=1

pleft
i (t) + pright

i (t)
2

⎞

⎠

+
T∑

t=1

μ(t)[R(t) − ri(t)] +
T∑

t=1

L∑

l=1

{

αl(t)

[

−Fl +
M∑

m=1

ΓDl,m · dm(t) −
I∑

i=1

ΓUl,i · pleft
i (t)

]}

+
T∑

t=1

L∑

l=1

{

βl(t)

[

−Fl −
M∑

m=1

ΓDl,m · dm(t) +
I∑

i=1

ΓUl,i · pleft
i (t)

]}



Mathematical Problems in Engineering 9

+
T∑

t=1

L∑

l=1

{

γl(t)

[

−Fl +
M∑

m=1

ΓDl,m · dm(t) −
I∑

i=1

ΓUl,i · p
right
i (t)

]}

+
T∑

t=1

L∑

l=1

{

ρl(t)

[

−Fl −
M∑

m=1

ΓDl,m · dm(t) +
I∑

i=1

ΓUl,i · p
right
i (t)

]}

+
T∑

t=1

ν(t)

⎡

⎣

I∑

i=1

ψi ·
pleft
i (t) + pright

i (t)
2

−Θt

⎤

⎦.

(3.1)

By using duality theory and the decomposable structure of (3.1), a two-level optimization
structure is then formed. Given a set of multipliers, the low-level optimization consists of
individual unit subproblems. The ith subproblem is defined as follows:

min
pleft
i (t),pright

i (t),ui(t)
Li =

T∑

t=1

⎡

⎣Ci

⎛

⎝
pleft
i (t) + pright

i (t)
2

⎞

⎠ + Si(xi(t), ui(t))

− λ(t) · p
left
i (t) + pright

i (t)
2

− μ(t) · ri(t)

+
L∑

l=1

[

βl(t) − αl(t)
] · ΓUl,i · pleft

i (t)

+
L∑

l=1

[

ρl(t) − γl(t)
] · ΓUl,i · p

right
i (t)

+ ν(t) · ψi ·
pleft
i (t) + pright

i (t)
2

⎤

⎦

(3.2)

subject to constraints (2.3)–(2.12). Let Sub∗
i (λ(t), μ(t), ν(t), αl(t), βl(t), γl(t), ρl(t)) denote the

optimal objective value of the ith subproblem; then, the dual problem in high level is as
follows:

max
λ(t),μ(t),ν(t),αl(t),βl(t),γl(t),ρl(t)

Φ =
I∑

i=1

Sub∗
i

(

λ(t), μ(t), ν(t), αl(t), βl(t), γl(t), ρl(t)
)

+
T∑

t=1

{

λ(t)Ed(t) + μ(t)R(t) − ν(t)Θ(t)

+
L∑

l=1

[

αl(t) + γl(t)
]

[

−Fl +
M∑

m=1

ΓDl,m · dm(t)
]

+
L∑

l=1

[

βl(t) + ρl(t)
]

[

−Fl −
M∑

m=1

ΓDl,m · dm(t)
]}

.

(3.3)
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Figure 4: The framework of the Lagrangian relaxation.

The low-level and high-level problems are solved iteratively, and a method for constructing
feasible solutions is required after the convergence of the iterative process since the solutions
to unit subproblems may not constitute a feasible solution [7, 27].

3.2. Solving Individual Unit Subproblems

It is seen that the individual unit subproblem (3.2) is more complicated than those within the
LR framework in traditional SCUC problems. If there are no ramp-rate constraints, the unit
subproblem can be efficiently solved by using dynamic programming [1]. However, the unit
subproblem (3.2) with ramp rate constraints (2.11) is very difficult to solve since the ramp
rate constraints couple all continuous and discrete variables in consecutive periods. The new
state transition diagram proposed in [28] is an efficient approach to resolve this difficulty.

Suppose xi(t0) > τi without loss of generality, and an example of the new state
transition diagram is shown in Figure 5, in which t0 represents the initial time period, while
t1, t2, . . . , tn represent the time periods when ON/OFF states switch. Each node corresponds
to a switch-ON or switch-OFF decision. The edges connecting t1 and t2 stand for consecutive
OFF-state periods, while the edges connecting t2 and t3 stand for consecutive ON-state
periods. For uniform representation, the edges connecting the uppermost nodes labeled
“tn = T + 1” mean the ON/OFF states keep unchanged to the end of the schedule horizon.

Based on the new state transition diagram, the entire schedule horizon is divided
into several consecutive ON-state periods and several consecutive OFF-state periods. The
continuous and discrete decision variables are therefore decoupled, and the solution to
subproblem (3.2) is decomposed into determination of the optimal power generation levels
in all consecutive ON-state periods (continuous optimization problems) and determination
of the optimal switch-ON decisions (a discrete optimization problem). With the above
analysis, a double dynamic programming framework that comprises continuous dynamic
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t1 = T + 1 t2 = T + 1 t3 = T + 1

t1 = T t2 = T t3 = T

t1 = T − 1 t2 = T − 1 t3 = T − 1 ...

...
...

...

t1 = 2

t1 = 1 t2 = τi + 1

t3 = τi + τi + 2

t3 = τi + τi + 1

xi(t0) > τi ui(t1) = −1 ui(t2) = 1 ui(t3) = −1

tn = T + 1

t2 = τi + 2

Figure 5: The new state transition diagram.

programming in low level and a discrete dynamic programming in high level is therefore
formed. Figure 6 illustrates the framework of the double DP.

The start-up cost during the consecutive OFF-state periods can be easily obtained
when the piecewise linear formulation of Si(·) is given. The main difficulty lies in obtaining
the optimal power generation levels during the consecutive ON-state periods. If we replace
pleft
i (t+1) with pright

i (t) according to constraint (2.6) and substitute (2.12) into (3.2), the power
generation levels during the consecutive ON-state periods are determined by the following
continuous optimization problem:

min
p

right
i (t),pleft

i (T1)

T2∑

t=T1+1

⎧

⎨

⎩
Ci

⎛

⎝
p

right
i (t − 1) + pright

i (t)
2

⎞

⎠ − λ(t) · p
right
i (t − 1) + pright

i (t)
2

− μ(t) · min
{

P i − pright
i (t − 1),Δ · τ

}

+
L∑

l=1

[

βl(t) − αl(t)
] · ΓUl,i · p

right
i (t − 1)

+
L∑

l=1

[

ρl(t) − γl(t)
] · ΓUl,i · p

right
i (t) + ν(t) · ψi ·

p
right
i (t − 1) + pright

i (t)
2

⎫

⎬

⎭

+ Ci

⎛

⎝
pleft
i (T1) + p

right
i (T1)

2

⎞

⎠ − λ(t) · p
left
i (T1) + p

right
i (T1)

2

− μ(t) · min
{

P i − pleft
i (T1) ,Δ · τ

}

+
L∑

l=1

[

βl(t) − αl(t)
] · ΓUl,i · pleft

i (T1) +
L∑

l=1

[

ρl(t) − γl(t)
] · ΓUl,i · p

right
i (T1)

+ ν(t) · ψi ·
pleft
i (T1) + p

right
i (T1)

2
(3.4)
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related to all consecutive ON-state periods

(continuous DP)

Determine the optimal switch-ON decisions
(discrete DP)

High-level DP

Low-level DP

Figure 6: The framework of double dynamic programming.

subject to constraints (2.5), (2.8), (2.9), and (2.11). In the objective function (3.4), T1 and T2

are, respectively, the indexes of the first and last period of the consecutive ON-state periods;

{pright
i (t)}T2

t=T1
and pleft

i (T1) are the continuous decision variables that are to be determined. It is

seen that variables {pleft
i (t)}T2

t=T1+1 are eliminated in (3.4) and only one extra variable, namely,
pleft
i (T1), is introduced. Hence, almost no additional computational effort is required to deal

with the extra variables in solving unit subproblem (3.2). Note that we use optimal linear
approximation (OLA) to the quadratic fuel cost Ci(·), and the linear formulation of fuel cost
C′
i(·) is defined as follows:

C′
i(Ei(t)) =

⎧

⎨

⎩

b̃Ei(t) + c̃, if Ei(t)/= 0,

0, if Ei(t) = 0,
(3.5)

where constants b̃ and c̃ can be easily determined based on Ci(·). The detailed description
of OLA can be found in [29], and the numerical testing results suggest that the relative
approximation error of OLA is generally less than 0.5%.

Based on the above analysis, the continuous optimization problem (3.4) can be explic-
itly transformed into the following form (subscript i is dropped for presentation simplicity)

min =
T2∑

t=T1−1

ft
(

y(t)
)

, (3.6)

s.t. y
t
≤ y(t) ≤ yt, t = T1 − 1, T1, . . . , T2, (3.7)

∣
∣y(t) − y(t − 1)

∣
∣ ≤ Δ, t = T1, T1 + 1, . . . , T2, (3.8)

in which y(t) and y(T1 − 1) represent pright
i (t) and pleft

i (T1), respectively. ft(·) denotes the
objective function of continuous optimization problem (3.4) at period t. y

t
and yt are the

minimum and maximum power generation levels at period t. Note that for the units with
constraints (2.8) and (2.9), let y

t
= yt = P at the first and last ON-state periods such that

constraints (2.8) and (2.9) are included in (3.7) implicitly.

Step 1 (low-level DP). As shown in Figure 6, the continuous DP algorithm in low level for
solving optimization problem (3.6)–(3.8) is summarized as follows.
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Substep 1.1 (constructing the cost-to-go functions in backward sweep). Let CGt(·) denote
the cost-to-go function at period t and initially let CGT2(y(T2)) = fT2(y(T2)), where y(T2) ∈
[y

T2
, yT2

]. For t = T2 − 1, T2 − 2, . . . , T1 − 1, let

CGt

(

y(t)
)

= ft
(

y(t)
)

+ min
y(t+1 )

CGt+1
(

y(t + 1)
)

(3.9)

subject to (3.7) and (3.8). It is seen that the cost-to-go function CGt(·) is expressed in
a recursive form. Since there exists no feasible solution to optimization problem (3.9) if
y(t) > yt+1 + Δ or y(t) < y

t+1
− Δ, the feasible region of y(t) is redefined by its lower and

upper bounds as follows to ensure feasible solutions of problem (3.9):

yt = min
{

yt+1 + Δ, yt
}

, y
t
= max

{

y
t+1

−Δ, y
t

}

. (3.10)

Combining (3.7), (3.8), and (3.10), problem (3.9) can be expressed as follows:

CGt

(

y(t)
)

= ft
(

y(t)
)

+ min
y(t+1)

CGt+1
(

y(t + 1)
)

,

s.t. y(t + 1) ∈
[

y
t+1
, yt+1

]

∩ [

y(t) −Δ, y(t) + Δ
]

,

t = T2 − 1, T2 − 2, . . . , T1 − 1.

(3.11)

The cost-to-go function CGt(·) can be obtained by solving problem (3.11) recursively, and
more detailed discussion can be found in [28].

Substep 1.2 (obtaining the optimal generation levels in forward sweep). Let y∗(T1 − 1) =
arg miny(T1−1)CGT1−1(y(T1 − 1)), where y(T1 − 1) ∈ [y

T1−1
, yT1−1]. For t = T1, T1 + 1, . . . , T2,

let

y∗(t) = arg min
y(t)

CGt

(

y(t)
)

,

s.t. y(t) ∈
[

y
t
, yt

]

∩ [

y∗(t − 1) −Δ, y∗(t − 1) + Δ
]

.

(3.12)

According to the theory of dynamic programming, it is clear that {y∗(t)}T2
t=T1−1 obtained from

the above steps is the optimal solution to problem (3.6)–(3.8).

Step 2 (high-level DP). If the optimal generation levels and costs related to all consecutive
ON-state periods and the start-up costs associated with all consecutive OFF-state periods
are obtained, the optimal switch-ON decisions across the schedule horizon can be easily
determined by using a discrete DP algorithm in high level, as seen in Figure 6.

The principal advantage of double DP is that the exact optimal solution to the
subproblem (3.2) can be obtained without discretizing power generation levels or using
intermediate levels of relaxation. Moreover, it is beneficial to the convergence characteristics
of dual function since the concavity of the dual problem is only guaranteed by the exact
optimal solutions to the unit subproblems [30].
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3.3. Updating the Lagrange Multipliers

A modified subgradient method with adaptive step size is employed to update the Lagrange
multipliers. Letting g denote a point in the dual space, an iteration relation can be
implemented to maximize the dual function (3.3):

gk+1 = gk + skΔgk, (3.13)

where k denotes iteration number, sk is the adaptive step size, and Δgk is the subgradient
at the kth iteration. The Lagrange multipliers regarding transmission line l are updated as
follows:

αk+1
l (t) = max

(

0, αkl (t) + s
kΔgkαl(t)

)

, γk+1
l (t) = max

(

0, γkl (t) + s
kΔgkγl(t)

)

,

βk+1
l (t) = max

(

0, βkl (t) + s
kΔgkβl(t)

)

, ρk+1
l (t) = max

(

0, ρkl (t) + s
kΔgkρl(t)

)

.

(3.14)

The step size used in our implementation has the following form:

sk+1 =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

skj
∥
∥Δgk

∥
∥

∥
∥Δgk+1

∥
∥
, if Φk+1 < Φk,

sk, else,

(3.15)

where j is a positive scaling constant that is less than 1 and ||Δgk|| and Φk are the norm of
subgradient and the dual cost at the kth iteration, respectively. It can be seen that the step size
keeps unchanged when the dual cost becomes larger than that at last iteration and decreases
when it becomes smaller. The method for updating multipliers stops when k reaches the
maximum iteration number or the following stopping criteria are satisfied:

∥
∥
∥gk+1 − gk

∥
∥
∥ < ε ·Φk, (3.16)

where ε is a small positive constant.

3.4. Constructing Feasible Solutions

A systematic method including heuristics is developed for constructing feasible solutions
since the dual solution obtained usually does not satisfy the relaxed constraints (2.13)–(2.17).
This method is summarized as the following major steps [31].

Step 1. Determine the feasibility (satisfying constraints (2.13)–(2.17)) of a UC (u1(t),
u2(t), . . . , uI(t)) at period t by checking whether analytical feasibility conditions proposed
in [32] are satisfied. If (u1(t), u2(t), . . . , uI(t)) is infeasible, go to Step 2; otherwise go to Step 3.
Note that the first UC at each time period is exactly the one obtained at the final dual solution.
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Step 2. Heuristics combined with “opportunity-cost” based criterion presented in [27] are
used to adjust the ON/OFF states of certain units that satisfy the minimum up/down time
constraints (2.4), such that the infeasible UC is closer to a feasible one after each adjustment
(the degree of infeasibility can be measured by the total violation of system constraints). The
UC adjustment is then formulated as a zero-one programming problem, and a branch and
bound (B&B) method is developed to solve it. Once a new satisfactory UC is obtained, go
back to Step 1.

Step 3. Security-constrained economic dispatch (SCED) is performed for (u1(t), u2(t),
. . . , uI(t)) to obtain the optimal power generation levels. If t < T , let t = t + 1 and then go
back to Step 1; otherwise stop.

4. Numerical Testing Results

The new SCUC formulation and LR-based solution method presented in this paper are tested
with two cases consisting of a six-bus system and a modified IEEE 118-bus system. The
amount of spinning reserve requirement at each time period is set to 2% of the hourly load,
reserve responsive time is 10 minutes, and ε is set to 0.0001 in each system. The LR-based
method is performed in Microsoft Visual C#. NET on a Quad Processor PC with 4 GB RAM.

4.1. Six-Bus System

The six-bus system, as shown in Figure 7, has three thermal units and seven transmission
lines. The characteristics of generators, transmission lines, and the hourly load are listed
in Tables 1, 2, and 3, respectively. A comparative case is conducted between the generation
schedules obtained from traditional SCUC formulation (denoted by TF) and the formulation
presented in this paper (denoted by NF) to show the energy realizability of generation
schedule.

Commitment states in TF and NF are listed in Tables 4 and 5, respectively, in which
1/0 represents ON/OFF state of a unit, and hour 0 represents the initial ON/OFF state of the
unit. It is seen from Tables 4 and 5 that in order to minimize the total generation costs, the
expensive units, that is, unit 2 and unit 3, are not committed at certain hours, while the cheap
unit 1 is always committed over the entire schedule horizon.

Figure 8 compares the power output curve of unit 1 in NF with that in TF. It is seen
that the power output curve in NF has a similar profile to that in TF, and the areas under
both trajectories are equal at hour 1–9, 16-17, and 20-21. As observed from the curve labeled
“TF” in Figure 8, in order to satisfy the energy demand from hour 22–24, the power output
of unit 1 (the only ON-state unit during hour 22–24 as highlighted in Table 4) ramps down
as the maximum ramp rate from 215 MW at hour 22 to 185 MW at hour 23 and then increases
to 195 MW at hour 24. However, the energy output at hour 24 is practically unrealizable
since it cannot be greater than the energy output at hour 23 even if unit 1 ramps up in
full speed at hour 24. In comparison with TF, it is found that the generation schedule
obtained under the piecewise-linear formulation is energy-realizable in the whole schedule
horizon, and the ramping processes for implementing the desired energy output are also
given as demonstrated in Figure 8. Furthermore, the piecewise-linear power output trajectory
is closer to the practical operation of a generator since its power output does not change
instantaneously.
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Figure 7: The one-line diagram of six-bus system.

Table 1: Generator data for example 1.

Unit Bus no. Pmax (MW) Pmin (MW) Initial status (h) Min down (h) Min up (h) Ramp (MW/h)
G1 1 220 100 4 4 4 30
G2 2 100 10 −3 3 2 50
G3 6 20 10 −1 1 1 20

Table 2: Transmission line data for example 1.

Line no. From bus To bus X (pu) Flow limit (MW)
1 1 2 0.170 200
2 1 4 0.258 100
3 2 3 0.037 100
4 2 4 0.197 100
5 3 6 0.018 100
6 4 5 0.037 100
7 5 6 0.140 100

Table 3: Hourly load data for example 1.

H Load (MWh) H Load (MWh) H Load (MWh) H Load (MWh)
1 175.19 7 168.39 13 242.18 19 245.97
2 165.15 8 177.60 14 243.60 20 237.35
3 158.67 9 186.81 15 248.86 21 237.31
4 154.73 10 206.96 16 255.79 22 215.67
5 155.06 11 228.61 17 256.00 23 185.93
6 160.48 12 236.10 18 246.74 24 195.60

Table 4: Numerical testing results for example 1: unit commitment in TF.

Unit Hours (0–24)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

Table 5: Numerical testing results for example 1: unit commitment in NF.

Unit Hours (0–24)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 8: The power output curve of unit 1.

4.2. IEEE 118-Bus System

A much more complicated system is used to show the overall performance of our proposed
LR-based method. The system has 54 units, 186 transmission lines, and 91 demand sides.
The detailed parameters on generators, transmission network, and system load are given in
http://motor.ece.iit.edu/Data/.

To investigate the computational efficiency of the LR-based solution method proposed
in this paper, we extend the schedule horizon from one day to one week by duplicating the
daily system load to every day in the horizon. Figure 9 shows the convergence behavior of
LR for 1-day and 7-day horizons during the first 100 dual iterations. As seen in Figure 9,
large fluctuations in the dual function are avoided and the dual function converges within 50
iterations in both cases. The dual function for 1-day planning horizon has better convergence
characteristic than that for 7-day planning horizon. In fact, nearly 87% of security constraints
are redundant in both cases as reported in [33], which have no influence on the feasible region
of SCUC problem. Consequently, the multipliers associated with those redundant security
constraints are inactive during the whole dual maximization process. For instance, there are
120792 multipliers in total for 7-day schedule horizon in this system. Among them, 104888
multipliers are inactive, or in other words, only 13.1% of the total Lagrange multipliers are
possibly active. The dominant proportions of unbinding constraints and inactive multipliers
are the chief factors contributing to the rapid convergences of dual functions. In addition,
the true subgradients are obtained since the exact optimal solution to each unit subproblem
is attained by the double DP, which is beneficial to the convergence characteristic of dual
function.

The results with respect to B&B algorithm used in constructing feasible solutions
under LR are listed in Table 6. It is found that 222 systemwide constraints are infeasible at the
end of dual maximization in the IEEE 118-bus system for 1-day horizon, and the total amount
of violations against those infeasible constraints is 8675 MW. All infeasibilities are eliminated
by our branch and bound algorithm after 124 iterations, and a near-optimal feasible schedule
with the duality gap of 0.75% is finally obtained.

In order to evaluate the overall performance of the LR-based method, comparative
cases are studied between the LR-based method and MIP-based method in this system. The



18 Mathematical Problems in Engineering

0

0.2

0.4

0.6

0.8

1

1.2

0.92

0.93

0.94

0.95

0.96

0.97

0.99

0.98

1

1.01

0 10 20 30 40 50 60 70 80 90 100

Iteration  number

Dual cost for 7-day
Dual cost for 1-day

D
ua

l c
os

t(
no

rm
al

iz
ed

 v
al

ue
1 )

||gk+1 − gk || for 7-day
||gk+1 − gk || for 1-day

||g
k
+

1
−g

k
||(

no
rm

al
iz

ed
 v

al
ue

1 )

Figure 9: Convergence behavior of LR for 1-day and 7-day horizons (normalized values are obtained by
dividing its values by the obtained maximum value).

Table 6: Numerical testing results for example 2: general results with different horizons.

LR MILP

Day CPU time1

(s)
Feasible cost

($)
Duality gap

(%)
Iteration number

(B&B)
CPU time2

(s)
Feasible cost

($)

1 8.1 1984081 0.75 124 6.8 1979625
2 18.1 3749990 0.73 248 13.9 3746033
3 27.3 5713873 0.82 372 25.1 5712852
4 45.7 7591807 0.76 496 63.2 7591460
5 72.1 9420439 0.89 620 93.6 9421239
6 92.7 10850249 0.84 744 138.9 10852089
7 130.8 12235715 0.91 868 199.2 12236687

MILP-based method employs branch-and-cut method that combines branch-and-bound and
cutting plane technique. Once the model is formulated and represented in the MILP format,
the solution is sought by engaging a general-purpose software, that is, CPLEX [10, 17].
Therefore, the new SCUC formulation is also solved based on general-purpose MILP solver
with some nonlinearity converted into linear model. The default settings of CPLEX are
selected and the maximum threshold of optimality gap is set to 0.5%. Parallel computing
techniques are utilized to solve the individual subproblems in our LR implementation.

Table 6 exhibits the comparative results with the scheduling horizon ranging from 1
day to 7 days. It is seen that as the size of the SCUC problem increases, the duality gap under
LR is always less than 1%. Although the duality gap is larger than that set in MILP solver, the
total generation cost obtained under LR-based method for the horizon of 5–7 day is slightly
less than that obtained in MILP solver.

The execution times with different schedule horizons under LR and MILP are also
listed in Table 6, in which the columns labeled “CPU time1” and “CPU time2” report the
computing times of LR and MILP for solving the new SCUC formulation, respectively. Note
that the stopping criteria described in (3.16) are activated under LR. It is seen in Table 6 that
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the computing time increases from 8.1 s to 130.8 s as the schedule horizon increases. For the
SCUC problem with 7-day horizon, there are over 18000 decision variables, half of which are
discrete decision variables. Although the problem size becomes larger, the computing time of
130.8s under LR is still reasonable for such a medium-scale problem.

It is also seen in Table 6 that the computing times under LR for the horizon of 1–3 day
are greater than those obtained in MILP-based method, but the computational advantage of
LR over MILP becomes clear as the problem size (length of scheduling horizon) increases.
The above results suggest that MILP-based method outperforms the LR-based method on
small-size instances, but the LR method is superior to the general-purpose MILP method for
solving large-scale SCUC problems in term of computational efficiency.

5. Conclusions

The realizability of generation schedule is very important to power system operation.
Traditional SCUC formulations adopted in literature have a serious issue that the solution
may be unrealizable in terms of energy delivery. This issue is analyzed through an example
in this paper and a new SCUC formulation is established by modeling power outputs of units
with piecewise linear functions. An LR-based method is developed to solve the problem, and
the schedules obtained are near optimal, energy-realizable, and closer to practical operation
of the thermal unit. Numerical testing results show the validation of the formulation and the
effectiveness of the LR-based solution method. The energy-realizable schedules obtained by
LR are also compared with those obtained by MILP. It is shown that the proposed LR-based
method proposed is still competitive with those based on the general-purpose MILP solvers
and even outperforms them for solving large-scale SCUC problems.

List of Symbols

Constants

L: Total number of transmission lines
M: Total number of buses
η: The time span in each period, usually in hour
τi: Minimum ON time of unit i, in hour
τi: Minimum OFF time of unit i, in hour
τ : Reserve responsive time for unit, usually set to 10 min or 30 min
P i : Minimum power generation of unit i, in MW
P i: Maximum power generation of unit i, in MW
Pd(t): System load at period t, in MW
R(t) : System reserve requirement at period t, in MW

dm(t): Load demand at bus m at period t, in MW

Fl: Limit of DC power flow in transmission line l, in MW
ΓU: Matrix of network sensitivity coefficient associated with units
ΓD: Matrix of network sensitivity coefficient associated with demands
ψi: Coefficient between energy output of unit i and its emission, in lbs/MWh
Θ(t): System emission limits at period t, in lbs
Δi: Maximum ramp rate of unit i, in MW/min.
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Functions

Ci(·): Fuel cost of unit i for energy output at period t, in dollars
Hi(·): Emission of unit i for energy output at period t, in lbs
Si(·): Start-up cost of unit i at period t, in dollars.

Variables

Ei(t): Energy output of unit i at period t, in MWh
pleft
i (t) : Power generation level of unit i at the beginning of period t, in MW
p

right
i (t) : Power generation level of unit i at the end of period t, in MW
xi(t): Number of periods that unit i has been ON or OFF, in hour
ui(t): Discrete decision variable, ui(t) = 1 for ON while ui(t) = −1 for OFF
λ(t): The Lagrange multiplier corresponding to energy balance constraint at period t
μ(t): The Lagrange multiplier corresponding to reserve requirements at period t
ν(t): The Lagrange multiplier corresponding to emission limits at period t
αl(t): The Lagrange multiplier associated with inequality (2.15) in the negative

power flow direction for line l at period t
βl(t): The Lagrange multiplier associated with inequality (2.15) in the positive power

flow direction for line l at period t
γl(t): The Lagrange multiplier associated with inequality (2.16) in the negative

power flow direction for line l at period t
ρl(t): The Lagrange multiplier associated with inequality (2.16) in the positive power

flow direction for line l at period t.
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