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This work proposes a coupled finite element model for actively controlled constrained layer
damped (CLD) rotating plate with self-sensing technique and frequency-dependent material
property in both the time and frequency domain analyses. Constrained layer damping with
viscoelastic material can effectively reduce the vibration in rotating structures. However, most
existing research models use complex modulus approach to model the viscoelastic material, but it
limits to frequency domain analysis and the frequency dependency of the viscoelastic material is
not well-included as well. It is meaningful use of the anelastic displacement fields (ADFs) that is
done in order to include the frequency dependency of the material for both the time and frequency
domains. Also, unlike previous ones, all types of damping are taken into account by this finite
element model. Thus, in this work, a single layer finite element is adopted to model a three-
layer active constrained layer damped rotating plate in which the constraining layer is made of
piezoelectric material to work as both the self-sensing sensor and actuator. This newly proposed
finite element model is validated, and then, as shown in numerical studies, this proposed approach
can achieve effective vibration reduction in both the frequency and time domains.

1. Introduction

Constrained layer damping (CLD) is an effective vibration reduction approach in which a
damping layer made of viscoelastic material is sandwiched between the base structure and
a constraining layer. In the deformation of this damping layer, a portion of the strain energy
of the viscoelastic material is dissipated so that vibrational damping can be achieved. The
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Figure 1: RUK model displacements for a CLD sandwich beam.

damping ratio achieved by using this viscoelastic material is dependent on the frequency
and environment temperature. At present, a wide variety of viscoelastic materials exists, so
the study on the damping property of the viscoelastic material is an interesting topic.

Recently, constrained layer damping is employed for the vibration suppressions of
rotating structures, which has wide applications in industries such as wind turbines and
helicopters. Rotating beams, as simplification of rotating plates, have been extensively
investigated, including fundamental dynamics [1]. Yoo and Pierre [2] studied the dynamics
of rotating bare plates using analytical approach. Based on the work in [2], Liu and Hong [3]
developed a plate finite element model for a rotating bare plate. Xie and Xue [4] proposed
a finite element model on passive constrained layer damped plate which can include more
types of damping in the structure and a parametric study was conduced in order to check the
performance of different constrained layer damping configurations. Fung and Yau [5] studied
Active CLD (ACLD) application on rotating beam. Liu et al. [6] extended their own work
in [3] to active control of constrained layer damped rotating plates through finite element
approach. In ACLD technique, a voltage is applied on the piezoelectric constraining layer
to generate active force. Dosch et al. [7] proposed self-sensing technique that piezoelectric
material can be used as both the actuator and sensor. Based on the work of [7], Gao and Liao
[8] and Shen [9] implemented ACLD rotating beam where the piezoelectric constraining
layer works as both the sensor and actuator, and a bridge circuit [7] is used to extract
the sensed voltage from measured signal. One of advantages for this approach is that it
can achieve the true collocated control which means the control systems is unconditionally
stable [10]. Xie et al [11] proposed a proportional control on ACLD rotating plate and an
optimization based on genetic algorithms, and the newly developed dynamic model of the
present work is partially based on [11]. Similar to the work in [4], a parametric study was
conducted in [11] to check the impact of different active CLD configurations on the vibration
reduction of rotating plates in the frequency domain.

It is worth noting that all of the work mentioned above utilized the same assumptions
as those in RKU model [12] that only shear strain exists in the core layer and extension
strain in the constraining and base layers. In this assumption, the two face layers are
treated as Euler-Beams while the damping layer only experiences shear deformation. The
displacements associatedwith this assumption are illustrated in Figure 1. For the convenience
of the discussion, two face layers are called the constraining layer and the base layer
respectively in this paper, while the middle layer is called the damping layer or core layer.
The layers are also denoted by numbers 1, 2 and 3, respectively, throughout this work. The
displacements u1 and u3 are employed to represent the longitudinal displacements of face
layers 1 and 2, respectively. w is utilized to denote the transverse displacement of sandwich
structure, which is identical for each of the three layers. Shear deformation in the core layer
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is determined from the relative motion between u1 and u3. While the assumptions described
above are widely used, they are not always valid in certain structures when RKU model is
employed. Rao [13] studied the problem using the same transverse displacement assumption
as that in [12] but with additional assumptions that the longitudinal displacement varies
linearly across the thickness of each layer, and the displacement is continuously across the
layer connections. In that work, all of three layers are treated as Timoshenko beams instead
of Euler beams used in the RKU model. So, all three layers can have both the shear and
normal strains and so this could better predict the damping in the structure compared with
assumptions in RKU model. Zapfe and Lesieutre [14] presented a beam finite element that
can be regarded as the finite element implementation of the Rao’s model.

As mentioned previously, viscoelastic material in CLD structures should have
frequency dependent property, and currently most existing research assumes the complex
modulus for viscoelastic materials has included the frequency dependency of the material.
The limitation for this complex modulus approach is that the model can only be studied
in the frequency domain. There are some other independent approaches to investigate
this frequency dependency in time domain. Trindade et al. [15] gave a review on several
approaches such as anelastic displacement fields (ADF), Golla-Hughes-McTavish (GHM),
and iterative modal strain energy (MSE) method on modeling the frequency dependency of
viscoelastic material in the composite beams with a viscoelastic damping layer. The ADF and
GHM approach have been proven to be effective in studying the constrained layer damping
in the time domain, and the ADF approach is better than GHM on reducing the model size
and providing more accurate prediction [15, 16]. So, in this work ADF is employed to model
the frequency dependency of viscoelastic material in the damping layer.

In this research, a plate finite element is developed to model the multilayer rotating
plates. This finite element plate model extends previous research from beam to plate,
and it is expected that more possible types of damping can be captured for practical
rotating plate analysis due to the proposed displacement field. This feature overcomes the
oversimplification in previous works. Also, this finite element plate model can be extended
to multilayer (more than three) rotating plates conveniently. Then, active vibration control
is implemented with a self-sensing constraining layer, which means the piezoelectric
constraining layer works as both the sensor and the actuator. ADF approach is also adopted
to include the frequency dependency of viscoelastic material of the damping layer to make
it possible to analyze the structure in both the time and frequency domains. Then, the newly
proposed model is validated. At last, a numerical study is conducted to investigate the
performance of this new numerical model.

2. Finite Element Modeling

2.1. Assumptions and Kinematics Relations

Prior to introducing the rotating plate finite element model, the assumptions as those in [11]
should be introduced. Note that the assumptions in [13] are for beams.

(1) The transverse displacements of all three layers are equal.

(2) The longitudinal displacement is linearly distributed across the thickness of each
layer.

(3) There is no slip between the layers.
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Figure 2: Proposed displacement field [11] (direction of angular velocity is set as along the −Y axis).

The rotating plate is modeled in this work based on above assumptions. Figure 2
shows the proposed displacement field for the rotating plate with angular velocity ω. w
is the transverse displacement for all of the three layers. ui and vi are the longitudinal
displacements at the contact surfaces of different layers along the x- and y-axes, respectively.
The longitudinal displacements of each layer vary linearly across the thickness of each layer.
Note that there are two coordinate systems in Figure 2, a rotating coordinate system o-xyz
attached to the rotating plate, and a global coordinate system O-XYZ that is fixed without
rotation. The transformation matrix between two coordinate systems is defined as in [3]:

A =

⎡
⎣
cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤
⎦. (2.1)
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Taking an arbitrary point on the rotating plate which moves from P to P ′ after

the deformation, the OP ′
xyz =

[ x
y
0

]
+
[
u
v
w

]
+

[
− ∫x0 (∂w/∂x)2dx

− ∫y0 (∂w/∂y)2dy
0

]
. The term

[
− ∫x0 (∂w/∂x)2dx

− ∫y0 (∂w/∂y)2dy
0

]
is

the so-called “stiffening effect” [3], which are the coupling terms between the transverse
displacement and the longitudinal displacement due to the centrifugal force of the rotation.
The transformation of the displacement from the o-xyz coordinate system to O-XYZ
coordinate system can be made as follows:

OP ′
XYZ = A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎣
x
y
0

⎤
⎦ +

⎡
⎣
u
v
w

⎤
⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
∫x

0

(
∂w

∂x

)2

dx

−
∫y

0

(
∂w

∂y

)2

dy

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)

With the proposed displacement field, kinetic and strain energy can be obtained respectively,
based on that, the equations of motion can be derived.

2.2. Strain and Kinetic Energy

Given displacement field, the elastic strain energy of the ith layer in the rotating plate can be
represented as:

Vi =
1
6

∫∫∫

Vi

(
Ei

((
∂ui

∂x

)2

+
∂ui

∂x

∂ui+1

∂x
+
(
∂ui+1

∂x

)2
)

+ 3Gi

(
∂wi

∂x
− ui − ui+1

2Hi

)2

+ 3 ∗ EiIi
∂2w

∂x2

+Ei

((
∂vi

∂x

)2

+
∂vi

∂x

∂vi+1

∂x
+
(
∂vi+1

∂x

)2
)

+ 3Gi

(
∂wi

∂x
− vi − vi+1

2Hi

)2
)
dv,

(2.3)

where Hi is the thickness of the ith layer.
The kinetic energy is dependent on the motion of the structure. Taking the time deriva-

tive of displacement OP ′
XYZ in (2.3) gives:

OṖ
′
XYZ = Ȧ

⎡
⎢⎢⎢⎢⎢⎣

x + u −
∫x

0

(
∂w

∂x

)2

dx

y + v −
∫y

0

(
∂w

∂y

)2

dy

w

⎤
⎥⎥⎥⎥⎥⎦
+A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇ − ∂

∂t

(∫x

0

(
∂w

∂x

)2

dx

)

v̇ − ∂

∂t

(∫y

0

(
∂w

∂y

)2

dy

)

ẇ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.4)
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Figure 3: Proposed new plate finite element [11].

The kinetic energy of the ith layer then can be calculated as:

Ti =
1
2
ρi

∫∫∫

Vi

((
u̇2
i + v̇2

i + ẇ2
i

)
+ω(2xẇ + ẇui + uiẇ − u̇iw −wu̇i)

+ω2

(
x2 + u2

i − x

∫x

0

(
∂w

∂x

)2

dx + 2xui +w2

))
dv,

(2.5)

where ω = θ̇ is the angular velocity of plate rotation.

2.3. Finite Element Discretization

As mentioned earlier, once the kinetic and the strain energy are obtained, the displacement
field can be discretized using the new plate finite element. Figure 3 shows the ith layer of the
proposed new plate finite element. Here it is worth noting that the mid nodes are employed
to avoid shear locking [13]. As a result, there are 25 degrees of freedom for the ith layer as
shown in Figure 3 and 41 degrees of freedom for all of three layers.

The displacement vector of the ith layer with this new plate finite element becomes as
follows:

qi =
[
upi up(i+1) vpi vp(i+1) wp w1 uqi uq(i+1) vqi vq(i+1)

wq w2 w3 w4 umi um(i+1) vmi vm(i+1) wm w5 uki uki vki vk(i+1) wk

]T
.

(2.6)
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For the ith layer of plate finite element, the proposed displacement field (Figure 3) can
be organized as:

⎡
⎣
u
v
w

⎤
⎦

i

= B

⎡
⎢⎢⎢⎢⎢⎣

ui

ui+1

vi

vi+1

w

⎤
⎥⎥⎥⎥⎥⎦

= B

⎡
⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

F5

⎤
⎥⎥⎥⎥⎥⎦
qi = BFqi = Nqi, (2.7)

and the dimensions of matrix B and F are 3 × 5 and 5 × 25, respectively.
Substituting Equation (2.7) into (2.2), (2.3) and (2.5), and neglecting the high order

terms, the kinetic and strain energy of the ith flayer can be reorganized as:

Vi =
1
6

∫∫∫

Vi

(
Eiq

T
i

((
∂F1

∂x

)T(∂F1

∂x

)
+
(
∂F1

∂x

)T(∂F2

∂x

)
+
(
∂F2

∂x

)T(∂F2

∂x

))
qi

+ Eiq
T
i

((
∂F3

∂y

)T(∂F3

∂y

)
+
(
∂F3

∂y

)T(∂F4

∂y

)
+
(
∂F4

∂y

)T(∂F4

∂y

))
qi

+ 3Giq
T
i

(
∂F5

∂x
− F1 − F2

2Hi

)T(∂F5

∂x
− F1 − F2

2Hi

)
qi

+ 3Giq
T
i

(
∂F5

∂y
− F3 − F4

2Hi

)T(∂F5

∂y
− F1 − F2

2Hi

)
qi

)
dv

Ti =
1
2
ρi

∫∫∫

Vi

(
q̇Ti N

TNq̇i

+ω
(
2xN3qi + q̇Ti N

T
3N1qi + qTi N

T
1N3q̇

T
i − q̇Ti N

T
1N3qi − q̇Ti N

T
3N1qi

)

+ω2

(
x2 + qTi N

T
1N1qi + qTi N

T
1N1qi

− xqTi

∫x

0

(
∂N3

∂x

)T(∂N3

∂x

)
dxqi + 2xN1qi

))
dv.

(2.8)

2.4. Equations of Motion

With (2.8) the global equations of motion for the rotating plate can be obtained using Lag-
range formula as follows,

[M]q̈ + [C]q̇ + [K]q = f, (2.9)
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where

M =
∫∫∫

V

NTN dv

C = 2ω
∫∫∫

V

(
NT

3N1 −NT
1N3

)
dv

K = K1 −ω2
∫∫∫

V

(
NT

1N3 +NT
3N1

)
dv +ω2RP + ω̇

∫∫∫

V

(
NT

3N1 −NT
1N3

)
dv

f = ω

∫∫∫

V

xN1dv − ω̇

∫∫∫

V

xN3dv.

(2.10)

The integration domain V is the volume of three-layer plate. As the same coupling terms
between the transverse and longitudinal displacements are used, the derivation of rotating
plate in this work is similar to that in [6]. It is worth noting that the proposed displacement
field and derivation approach in present study are different from those in [6], where the bare
rotating plate is investigated in the latter while three layer CLD structure is considered in this
study.

Here the Lagrange formula is applied to each layer (qi) first, and then assembles the
local equation of motion of each layer to form the global Equation (2.9). It can be seen that
this approach can be easily extended to CLD structure with multiple layers (more than three
layers), and this newly proposed model could be adopted in practical design of rotating
machines such as wind turbine blades. Now, after the equation of model of three layer
rotating plate is obtained, it is necessary to include the frequency dependency of viscoelastic
material in the damping layer in the model.

2.5. ADF Modeling of Frequency Dependency

In order to include the frequency dependency of viscoelastic material, the ADF modeling
approach basically introduce several additional sets of degrees of freedom (DOF) of the
damping layer into the structure, and these additional sets of DOFs can be represented as
qai where i stands for ith set of DOFs and the superscript a stands for ADF DOFs. There could
be more sets of additional ADF DOFs for different viscoelastic materials. The correlations
between added ADF DOFs and (2.9) can be presented as follows [16]:

[M]q̈ + [C]q̇ + [K]q − [K∞
2
]∑

qai = f,

Ci

Ωi
K∞

2 q̇ai −K∞
2 q + CiK

∞
2 qai = 0,

(2.11)

where Ci and Ωi are parameters for the ith ADF DOFs introduced in [16]. Here, (2.11) can be
combined and transformed to the first order format [17]:

⎡
⎢⎢⎣
M 0 0
0 I 0

0 0
C1

Ω1
K∞

2

⎤
⎥⎥⎦

⎡
⎣
q̈
q̇
q̇a1

⎤
⎦ +

⎡
⎣
C K −K∞

2
−I 0 0
0 −K∞

2 C1K
∞
2

⎤
⎦
⎡
⎣
q̇
q
qa1

⎤
⎦ =

⎡
⎣
f
0
0

⎤
⎦. (2.12)
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In (2.12), there is only one set of additional ADF DOFs for simplicity, and there could be more

sets of DOFs in the displacement vector q =
[

q̇
q
qa1

]
which can be added similarly. Equation

(2.12) can be used for solving the natural frequencies and loss factors [16], and this equation
can also be transformed to state space format as:

q̇ = A q + BuU + Bmf, (2.13)

where A is the system matrix in state space format. Bu and Bm are the control matrix for
externally applied control voltage and mechanical loads, respectively. The matrix Bu is used
to calculate the generated active force by an applied control signal U, and the matrix Bm is a
matrix that indicates an external mechanical force f acting on any selected DOF. Naturally,
the next section introduces how to apply a control voltage over the piezoelectric layer to add
active control force into this coupled structure.

2.6. Self-Sensing ACLD

The piezoelectric constraining layer acts as both the sensor and the actuator. The sensed
voltage is feedback through a proportional gain to apply a voltage over the constraining
layer to generate active force. There are two assumptions on the ACLD in this work. First
the viscoelastic layer is fully covered by the piezoelectric constraining layer, and second the
applied voltage is homogenous over the whole surface of the constraining layer. In addition,
proportional feedback control is adopted in this study, but more advanced control algorithms
could be investigated in the future.

The constitutive equation of piezoelectric material is given in the book of Moheimani
and Fleming. [18] and shown as follows:

εi = SE
ijσj + dmiEm,

Dm = dmiσi + ξσikEk,
(2.14)

where σ, ε, d, E, S, ξ, and D are the stress, strain, matrix of piezoelectric constants, applied
electric field, matrix of elastic compliance, permittivity matrix, and electric displacement on
the surface of the constraining layer, respectively. Also, in above two equations indexes i,
j = 1, 2, 3, . . . , 6. For these parameters, the applied electric field is calculated by applied control
voltage U divided by the piezoelectric layer thickness. Before applying this coupled numeri-
cal model for further studies, it is necessary to validate this new model in the next section.

3. Validation of the Finite Element Model

In this section, the developed finite element model is validated using data from open
literature, upon which, further parametric study can be performed. In order to validate the
newly proposed finite element model of ACLD rotating plate with ADF DOFs, predicted
natural frequencies and loss factors by this new finite element model are compared
with results from iterative modal strain energy method [15]. In this regard, we consider
the parameters shown in Table 1 and the parameters of the viscoelastic material from [17].
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Table 1: Parameters for the validation.

Parameter Value Parameter Value
Layer 1 Thickness,H1 0.003m Shear modulus 1, G1 26GPa
Layer 2 Thickness,H2 0.002m Shear modulus 2, G2 10MPa
Layer 3 Thickness,H3 0.003m Shear modulus 3, G3 26GPa
Young’s modulus 1, E1 70GPa Density 1, ρ1 2700 kg/m3

Young’s modulus 2, E2 25MPa Density 2, ρ2 1600 kg/m3

Young’s modulus 3, E3 70GPa Density 3, ρ3 2700 kg/m3

Width, B 0.6m Length, L 0.8m
C1 1.2 Ω1 1500 rad/s
1: Constraining layer, 2: damping layer, 3: base layer.
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Figure 4: Frequency dependency of damping layer’s shear modulus amplitude and loss factor.

Figure 4 showswith given ADF parameters how the shear modulus amplitude and loss factor
of viscoelastic damping layer vary with frequency.

Table 2 shows the comparison on the first four modes. It can be seen that all of the
first four modes obtained from the both approaches match pretty well to each other. In this
validation, the plate is meshed with 11 nodes along both sides, and there are totally 1300
DOFs in the finite element model. It should be noted that the finite element used in validation
has the same number of DOFs as models used in numerical studies which is introduced in the
next section.With the validated finite element model with additional ADFDOFs, it is possible
to investigate the performance of this active constrained layer damped rotating plate under
different loading conditions in the next section.
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Table 2: Validation of the new plate finite element model by comparing to iterative modal strain energy
(MSE)method.

Modes Frequency (Hz) Difference Loss factor Difference
New FE model MSE method (%) New FE model MSE method (%)

The first mode 17.7 17.7 0 0.0261 0.0257 2
The second mode 32.0 32.1 0 0.0718 0.0677 6
The third mode 84.5 84.3 0 0.0892 0.0823 8
The forth mode 101.3 100.5 1 0.1407 0.1238 14

This end is fixed  

and acts as rotating 

axis

Load applied at 

corner node

Figure 5: Location of loading and boundary conditions.

4. Numerical Studies

After the validation of finite element model, numerical studies are introduced in this section.
The same parameters as shown in Table 1 are used in this numerical study, and two types of
loading conditions are investigated: impulse f = 1 × δ(t) and unit step as f = 1 from t = 0.
Figure 5 shows the location where these loads are applied, and it can be seen that loads are
applied at the corner node of the structure. It should be noted in this numerical study that
the first two modes are investigated because of their significance in vibration reduction for
rotating structures such as wind turbine blades [11, 19–21].

Figures 6 to 8 show the comparisons on frequency and time responses between
rotating plates with and without active control. It should be noted that in these three figures
the control gain is set as 50. In Figure 6, under the impulse input, the rotating plate with active
damping can damp out the vibration much faster than the one with passive damping. In
Figure 7, the active damping shows a similar performance on vibration reduction under the
unit step input. Figure 8 shows the comparisons between passive and active damping on the
frequency response at selected location as shown in Figure 5. Figure 8 depicts that for active
damping the resonance amplitude at the first mode is drastically reduced. However, at the
second mode, there is no much difference between active and passive damping. The reason
is that in this study the frequency-dependent damping layer and piezoelectric constraining
layer are set to fully cover the base plate, in this way bending vibration modes could be
effectively suppressed while not much so for torsion modes. However, the effectiveness of
the proposed method for the second mode may be very obvious, if separate damping patches
are used instead of full coverage, and this configuration will be left as a future work.
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Figure 9: Comparison of time responses under the impulse excitation and different control gains P .
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Figure 10: Comparison of time responses under the unit step excitation and different control gains P .

After the comparisons between the active and passive damping, it is also very
interesting to check how different control gains affect the performance on vibration reduction.
Figures 9, 10, and 11 show how the structure reacts to different control gains P . From these
figures, it can be seen that as expected the higher control gain, the faster the vibration of
structure is damped out. However, it can be also noticed that there is no much difference on
the vibration reduction between P = 50 and P = 200 in both the time and frequency domains.
Based on this observation, it could be concluded for this case that the performance of active
damping cannot be significantly improved when the control gain reaches a certain level.

5. Conclusion

A new finite element model for rotating plate with coupled self-sensing piezoelec-
tric constraining layer and frequency-dependent damping layer is developed in this work.
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Figure 11: Comparison of frequency responses at the first two modes and different control gains P .

The proposed displacement field and degrees of freedom enable this finite element model
to capture the shear and extension deformation in all the three layers. Also, the frequency
dependency of the viscoelastic material in the damping layer is included by using ADF
approach. This makes it possible to study the CLD structure in both the time and frequency
domains instead of purely frequency domain analysis in the traditional complex modulus
approach. This model is then validated by being compared with another proven approach
on the results of natural frequencies and loss factors. In addition, numerical studies are
conducted to check the performance of proposed numerical model in different loads and
control conditions. The numerical results show that this newly proposed approach is effective
on vibration suppression in both the time and frequency domains.
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