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Maintaining a wind turbine and ensuring secure is not easy because of long-term exposure to
the environment and high installation locations. Wind turbines need fully functional condition-
monitoring and fault diagnosis systems that prevent accidents and reduce maintenance costs.
This paper presents a simulator design for fault diagnosis of wind power systems and further
proposes some fault diagnosis technologies such as signal analysis, feature selecting, and diagnosis
methods. First, this paper uses a wind power simulator to produce fault conditions and features
from the monitoring sensors. Then an extension neural network type-1- (ENN-1-) based method
is proposed to develop the core of the fault diagnosis system. The proposed system will benefit
the development of real fault diagnosis systems with testing models that demonstrate satisfactory
results.

1. Introduction

The opposition to the establishment of thermal power or nuclear energy plants is because of
growing awareness of environmental protection. The price of fossil fuel energy is rising, the
research for better and new sources of renewable energy is one way to settle present energy
problems [1, 2]. Currently, wind power is one of the most popular green energies; most large-
scale wind turbines are installed in remote or offshore locations, making it difficult to arrange
maintenance [3]. Wind turbines must be maintained and repaired consistently to prevent or
fix failures that may occur. The maintenance and management of large-scale wind power is
critical for continuous operations.

With the growing use of wind turbines, fault diagnosis technology for wind generator
systems can have a positive effect on power systems by locating faults earlier. Wind generator
systems will operate safely and reliably. A fault is an event that leads to the entire system
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or part of the functions of the system to fail [4–6]. The framework for wind power fault
diagnosis systems includes the following: (1) analyzing the fault pattern: this is based on
the mathematical model of wind power that precedes development of simulation systems by
analyzing the relationship between failure types and characteristics, (2) selecting detectors
and placing them in the best location: selecting and designing detectors is critical for fault
diagnosis. All failure signals are collected with additional signals for limited detecting
spots. Additionally, selecting the best detector position can affect accuracy and reliability
for failure diagnosis; the system must also be able to capture and condition the relevant
data automatically; (3) transforming fault signals by installing detectors on the wind power
systems to assemble the fault signals with the Fourier analysis or wavelet theory that can be
effectively be used for fault signal analysis [7, 8]; (4) to develop fault diagnosis methods—
the core of the fault diagnosis system develops a knowledge-based method to classify the
relationships between fault signals and the fault types.

The primary goal of this paper is to develop the fault diagnosis method and system
frame for large-scale wind power systems, because as proprietary information, fault records
are rarely reported by wind power companies. A historical database is limited. First, this
paper uses wind power simulators to produce fault conditions that give typical fault types.
Then, this paper proposes using an ENN-1-based method to diagnose faults for proposed
wind power systems. This paper simulates 8 different fault conditions for wind power
systems and proposes 9 different features as input signals for fault diagnosis systems. The
system simulates a variety of fault features with different operating conditions by using
sensors that receive the characteristic signals. The results indicated that the proposed ENN-
1-based method not only has a high identification accuracy rate and superior toleration
capability but also made quick calculations. This proposed diagnosis method and diagnosis
system structures merit greater attention, because they provide the technologies related to
design for practical fault diagnosis for larger-scale wind power systems.

2. Extension Neural Network Type 1

The extension neural network type 1 (ENN-1) introduced by this author [9], is a new pattern
classification system based on concepts from extension theory and neural networks. The
ENN-1 is well suited to the classification of problems: problems where there exists the pattern
with a wide range of continuous inputs and a discrete output indicating which class the
pattern belongs to. The ENN-1 is a relatively new neural network model and has been shown
to be successful as a classifier using the well-known Iris dataset and the more complex
problems [10–13].

2.1. Structure of the ENN-1

Successfully applied to fault diagnosis of actual cases, the schematic structure of the ENN-1 is
depicted in Figure 1. It comprises both the input layer and the output layer. The nodes in the
input layer receive an input feature pattern and use a set of weighted parameters to generate
an image of the input pattern. In this network, there are two connection values (weights)
between input nodes and an output node, one weightwL

kj
represents the lower bound for this

classical domain of the features and the other weight wU
kj

represents the upper bound. This
image is further enhanced in the process characterized by the output layer. Only one output
node in the output layer remains active to indicate a classification of the input pattern. The
learning algorithm of the ENN-1 is discussed in the next section.
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Figure 1: The structure of extension neural network (ENN-1).

2.2. Learning Algorithm of the ENN-1

The learning of the ENN-1 is a supervised learning. Before the learning, several variables
have to be defined. Let training pattern set be X = {x1, x2, . . . , xNp}, where Np is the total
number of training patterns. The ith pattern is XP

i = {xP
i1, x

P
i2, . . . , x

P
in}, where n is the total

number of the features, and the category of the ith pattern is p. To evaluate the clustering
performance, the total error number is set asNm, and the total error rate ET is defined below:

ET =
Nm

Np
. (2.1)

The detailed supervised learning algorithm can be described as follows.

Step 1. Set the connection weights between input nodes and output nodes. The range of
classical domains can be directly obtained from previous requirement as follows:

wL
kj = max

i∈P

{
xk
ij

}
, wU

kj = min
i∈P

{
xk
ij

}
(2.2)

Zkj =

(
wL

kj +wU
kj

)

2
, (2.3)

for i = 1, 2, . . . ,Np, j = 1, 2, . . . , n, k = 1, 2, . . . , nc, where nc is the total number of the clusters.

Step 2. Read the ith training pattern and its cluster number p:

X
p

i =
{
x
p

i1, x
p

i2, · · · , x
p

in

}
, p ∈ nc. (2.4)
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Step 3. Use the extension distance (ED) to calculate the distance between the input pattern
X

p

i and the kth cluster as follows:

EDik =
n∑
j=1

⎡
⎢⎣

∣∣∣xp

ij − zkj
∣∣∣ −

(
wU

kj
−wL

kj

)/
2

∣∣∣
(
wU

kj −wL
kj

)/
2
∣∣∣

+ 1

⎤
⎥⎦, for k = 1, 2, . . . , nc. (2.5)

It can be graphically presented as Figure 2. It can describe the distance between the x
and a range 〈WL,WU〉. From Figure 2 it can be seen that different ranges of classical domains
can arrive at different distances due to different sensitivities. This is a significant advantage
in classification applications.

Step 4. Find the m, such that EDim = min{EDik}. If k∗ = p then go to Step 7, otherwise Step 6.

Step 5. Update the weights of the pth and the k∗th clusters as follows:

w
L(new)
pj = w

L(old)
pj + η

(
x
p

ij − zoldpj

)
,

w
U(new)
pj = w

U(old)
pj + η

(
x
p

ij − zoldpj

)
,

w
L(new)
k∗j = w

L(old)
k∗j + η

(
x
p

ij − zoldk∗j

)
,

w
U(new)
k∗j = w

U(old)
k∗j + η

(
x
p

ij − zoldk∗j

)
, for k = 1, 2, . . . , nc,

(2.6)

where η is the learning rate and set as 0.1 in this paper. The result of tuning two cluster
weights shown in Figure 3 clearly indicating the change of EDA and EDB. The cluster of
pattern Xij is changed from cluster A to B due to EDA > EDB From this step, we can clearly
see that the learning process is only to adjust the weights of the pth and the k∗th clusters.
Therefore, the ENN-1 has a rapid speed advantage over other supervised learning algorithms
and can quickly adapt to new information.

Step 6. Repeat from Step 2 to Step 5, if all patterns have been classified, then a learning epoch
is finished.

Step 7. Stop if the clustering process has converged, or the total error rate Et has arrived at a
preset value, otherwise, return to Step 2. It can produce meaningful output after the learning,
because the classified boundaries of the features are clearly determined. It can carry on the
recognition or sort when the ENN-1 completes a learning procedure.

2.3. Operation Phase of ENN-1

Step 1. Read the weight matrix of ENN-1.

Step 2. Calculate the initial cluster centers of every cluster using (2.3).
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Figure 3: The results of tuning cluster weights—(a) original condition; (b) after tuning.

Step 3. Read the tested pattern.

Xt = {xt1, xt2, . . . , xm}. (2.7)

Step 4. Use the proposed extension distance (ED) to calculate the distance between the tested
pattern and every existing cluster by (2.5).

Step 5. Find the k∗, such that EDik∗ = MIN
k∈nc

(EDik) and set Ok∗ = 1 to indicate the cluster of the

tested pattern.

Step 6. Stop if all the tested patterns have been classified, otherwise go to Step 3.
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Figure 4: The structure of the wind turbine condition monitoring system.

3. Fault Diagnosis for Wind Power Systems

Condition monitoring for power systems is becoming critical because the need to increase
system reliability and decrease production caused system breakdowns. Detecting specific
failures for wind power systems early is critical for safe switching and improved reliability. A
good diagnosis systemmust have automatic explication for condition data to identify specific
faults and for basic advice for the operations engineer. This paper designs wind power system
units that simulate fault models and operation signals using sensor monitoring, because of
the difficulty in collecting fault models for large-scale wind power systems. The proposed
hardware architecture of wind power fault diagnosis systems is shown in Figure 4, it includes
sensors, transducers, signal processes, and the diagnosis system. This system can diagnose a
fault in the simulated systemwith the fault diagnosis software because they deal with signals
and the software interface. The hardware for simulation systems is shown in Figures 5 and
6. The software interface for the wind power fault diagnosis system uses the LabVIEW. The
sensor signals include generator voltage, generator current, motor speed, generator speed,
vibration sensors, temperature sensors, and oil level pressure, among others. The A/D card
provides the feedback characteristics and commands.

3.1. Introduction to the Characteristics for the Fault Diagnosis System

The fault detection system uses vibration analysis that is based on different sensors. The
most commonly used sensor is the acceleration sensor. If the vibration signal is transformed
by the frequency domain, the signal can be analyzed by the status messages of the
facilities. The conditions of the gearbox operations cause attrition between the gears that



Mathematical Problems in Engineering 7

Motor
drives

Vibration sensors 1

Accelerate
machine

Permanent
magnet

synchronous
generator

Three-
phase
power

generation

Adjustable
power

resistance

Energy

Pressure sensor
Temperature sensor 1

Vibration sensors 2

Voltage
sensors

Current
sensors

Encoder
Sensor

amplifier
Encoder

Threephase VVVF

motor drives

Servo control card
MRC-6810

Speed

Temperature sensor 1

Temperature sensor 2

Vibration sensors 1

Vibration sensors 2

Pressure sensor

Speed

Power voltage

Power current

220 VAC

PC

Motor speed

command w∗

Temperature sensor 2
Wind power fault diagnosis platform

Figure 5: The structure of the simulated fault diagnosis system.

Figure 6: Actual hardware structure of the proposed fault diagnosis simulator.

decreases the output efficiency of the wind turbines. The oil level and the oil temperature
are either normal or abnormal, which is important for normal operations of the gearbox. The
monitoring system of the gearbox checks the lubricant oil level, oil temperature signal, and
the gear vibration signal, among others. Themain component is the generator that transforms
mechanical energy into electrical energy. The generator needs to take into account the output
voltage, current, and phase relative to the wind speed at that time. The generator removes
electrical signals to be used as diagnostic signals.

This paper uses a wind power fault diagnosis simulation system that simulates eight
different fault conditions and uses 9 different features to allow the ENN-1 to diagnose the
fault types. The 9 features are the blade speed (C1), generator speed (C2), generator output
voltage (C3), generator output current (C4), generator output power (C5), amplitude of
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Figure 7: Vibration amplitudes of the blade bearing for the different faults and the generator speed.
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Figure 8: Oil pressure of the gearbox for different faults and the generator speed.

leaves bearing (C6), the amplitude of gear box bearing (C7), gear box oil temperature (C8),
and oil pressure (C9).

3.2. Description of the Types of Fault Diagnosis

To obtain fault diagnosis information, the system simulates 300 rpm to 700 rpm as the main
speed of the wind generator. The system obtains the testing data after the rotational speed
becomes stable. There are eight simulated fault statuses in this paper, they include the
normal (F1), one blade break (F2), two blade breaks (F3), lacks of the phase (F4), gearbox oil
insufficient (F5), gearbox temperature higher (F6), gearbox oil temperature higher (F7), and
bearing misalignment fault (F8). Two typical curves are shown in Figures 7 and 8, they show
the oil pressure of the gearbox and the vibration amplitude of the blade bearing at different
speeds. Clearly identifying broken blade or normal state will have obvious differences, but
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Table 1: Some parts of the typical learning data.

F1 F2 F3 F4 F5 F6 F7 F8

C1 342.0 348.6 330.1 348.9 334.6 339.7 334.4 350.2
C2 1021 1051 999 1048 1010 1026 1008 1055
C3 18.49 21.78 18.31 22.08 18.12 17.45 17.97 23.48
C4 4.908 4.835 4.782 4.507 4.585 4.556 4.640 4.456
C5 157.2 182.4 151.6 172.4 143.9 137.7 144.4 181.3
C6 3.73 6.25 10.59 15.70 4.38 3.45 5.69 6.73
C7 2.93 3.54 7.29 14.4 4.82 1 4.68 3.96
C8 33.68 33.39 33.59 32.07 34.4 36.02 35.54 33.06
C9 51.25 42.4 38.8 50.58 32.81 51.27 50.07 56.3

Figure 9: Typical sensor value of the simulated system.

the lack of the phase for the wind generator and the normal state are not different. A different
characteristic to diagnose the fault in the wind power system must be used.

4. Test Results and Discussion

To demonstrate the effectiveness of the proposed extension fault diagnosis method, the paper
uses sensors installed on the simulated system to collect information and then uses ENN-1 to
design the core of the diagnosis system. There are 3,600 sets of testing data from the simulated
diagnosis system. This paper uses 1,800 data sets for learning and the other 1,800 data sets for
testing the fault diagnosis. Table 1 shows some of the learning data. When the learning stage
of the ENN-1 has been completed, then the identifying stages with ENN-1 can be started for
fault diagnosis. The human-machine interface for fault diagnosis uses LabVIEW to design the
programs. Beginning with LabVIEW, the sensing data are collected and waveform control
monitoring is shown in Figure 9. Then the collected data will be collected to be learned.
The learning program of the diagnosis system is shown in Figure 10. Finally, the diagnosis
system can pass through the input features to diagnose the fault quickly and shows the fault
condition, as shown in Figure 11.
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Figure 10: Learning program of the fault diagnosis system.

Figure 11: User interface of the fault diagnosis system.

The simulation results were compared with other traditional methods as shown in
Table 2.K means [14] accuracy and fuzzy Cmeans [15] accuracy less than 70%. The accuracy
of extension method [16, 17] was only 85%. The maximum accuracy was 99% in multilayer
neural networks. The accuracy of the proposed ENN-1-based method was 100%. It should
be noted that the structure of the proposed ENN-1 was simple, as only 17 nodes and
144 connections were needed. Contrarily, the structure of the MNN-based method needed
approximately 27 nodes and 170 connections. Moreover, the proposed ENN-1-based method
permits fast adaptive processing for large amounts of training data or new information,
because the learning of ENN-1 was to tune lower bounds and upper bounds of the excited
connections. In addition, the proposed ENN-1 had a shorter learning time than the traditional
neural networks, and ENN-1 only took six epochs to complete. Although the fault diagnosis
systemwas trained offline, the training time was not a critical factor for evaluation. However,
an index implied some degree of efficiency for the algorithm developed, which was beneficial
for implementation fault diagnosis methods with a microcomputer for a real-time fault
detecting device or as a portable instrument.

The input data for fault diagnosis systems will contain some uncertainties and noise.
The sources of errors include environmental noise, transducers, and human mistakes, among
others, which can lead to data uncertainties. When considering the noise and uncertainties,
1,800 sets of testing data were created by adding ±5% to ±15% of random, uniformly
distributed errors to the training data for appraisal of fault-tolerant abilities for the proposed



Mathematical Problems in Engineering 11

Table 2: Recognized performances of different methods.

Test method Learning times (epochs) Accuracy (%)
K-means No 61
Fuzzy C-means No 64
Extension methods No 85
Neural network (9-6-8) 1000 77
Neural network (9-8-8) 1000 98
Neural network (9-10-8) 1000 99
ENN-1 (9-8) 6 100

Table 3: Recognized performances of the proposed method with different percentages of errors added.

Error percentage Accuracy
±0% 100%
±5% 94%
±10% 88%
±15% 75%

method. The test results with various added errors are given in Table 3. Typically, error-
containing data degraded the recognition capabilities in proportion to the number of errors
added. Table 3 shows that these methods all bear remarkable tolerance to the errors contained
in the data. The proposed method shows good tolerance for added errors with a high
accuracy rate of 75% with extreme errors ±15%.

5. Conclusions

This paper presented a novel fault diagnosis method based on ENN-1 for a wind power
system. Compared with existing methods, the structure of the proposed ENN-1 is simpler
with a faster learning time than other methods.We can quickly and reliably receive diagnostic
results. The feasibility to implement the proposed method using a computer as a portable
fault-detecting device is strong. According to simulation results, the proposed method had a
significantly high degree of diagnosis accuracy and showed good tolerance for the errors
added. With the simulation of a wind turbine fault diagnosis system, this new approach
merits more attention, because it can understand the technologies related to designing actual
systems. We hope that this paper will lead to further investigation for industrial applications.
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