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The classification of erythrocyte plays an important role in clinic diagnosis. In terms of the
fact that the shape deformability of red blood cell brings more difficulty in detecting and
recognize for operating automatically, we believed that the recovered 3D shape surface feature
would give more information than traditional 2D intensity image processing methods. This
paper proposed a combined approach for complex surface segmentation of red blood cell
based on shape-from-shading technique and multiscale surface fitting. By means of the image
irradiance equation under SEM imaging condition, the 3D height field could be recovered from
the varied shading. Afterwards the depth maps of each point on the surfaces were applied to
calculate Gaussian curvature and mean curvature, which were used to produce surface-type label
image. Accordingly the surface was segmented into different parts through multiscale bivariate
polynomials function fitting. The experimental results showed that this approach was easily
implemented and promising.

1. Introduction

The erythrocyte shape deformability is critical to the filterability of blood. It has drawn
considerable attentions into the pathology research in clinical relevant blood diseases.
Unfortunately, the diagnosing is usually performed by a human expert, and it shows some
drawbacks such as time-cost consuming and inaccuracy. Conventionally, the experts deal
with erythrocyte images segmentation issue with 2D gray scale image. However, in order to
obtain a satisfied performance, the classification and recognition should be based on the real
shape of RBCs. In fact, the shape feature of red blood cell provides more useful information
for diagnosing accurately than intensity level image. So it is necessary to take the shape
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Figure 1: A typical SEM image of red blood cells.

information into consideration in this real problem. For our experiments, we use a database
of 100 RBC images obtained by scanned electron microscope rather than optical imaging
system. In [1], Egerton elaborated the operation principle of SEM, which creates images that
are particularly easy to implement because the brightness in it is a function of the slope of
the specimen at that point and forms a varied shading image. It is unlike the optical and
transmission electron microscope, whose brightness depends on the thickness and optical
and electron density instead.

In [2], Russ mentioned that many of the two-dimensional images have been sectioned
through three-dimensional structures. This is especially true in the various types of
microscopy, where either polished flat planes or cut thin sections are needed in order to
form the images in the first place. But the specimens thus sampled are three dimensional,
and the goal of microscopists is to understand the three-dimensional structure. Some
works have been done on optical blood cell images with traditional 2D methods [3–5]. In
order to detect and classify malaria parasites in images of Giemsa-stained blood slides, Di
Ruberto et al. proposed a morphological approach to evaluate the parasitaemia of the blood.
They segmented the cells (red and white) from the background firstly and then detected
and classified the parasites infecting them [3, 6]. Equally with malaria parasite detection
mentioned above, Kumarasmy et al. presented an automated method for the robust analysis
of RBC images via Gestalt laws [4], and Mandal et al. presented a segmentation method
of blood smear images using normalized cut [5]. As we well know that, noise estimation
is a challenge problem for complex structures of images, Liao et al. presented a method
determining neighborhoods of the image pixels automatically with adaptive denoising and
estimate noise for a single-slice sonogram of low-dose CT based on the homogenous patches
centered at a special pixel. In their method, the noisy image is viewed as an observation of
a nonlinear time series. The true state of the NTS must be recovered from the observation to
realize image denoising [7, 8]. Furthermore, Hu et al. proposed an image smoothing using
nonlinear anisotropic diffusion [9]. They suggested that the diffusion should be performed
both among the time variants and spatial variant.

Figure 1 shows a typical example of such kind of red blood cell images captured
by SEM with which we are going to deal. They were obtained at 600 times magnification
using a scanned electron microscope. As shown in Figure 1, there are some outstanding
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characteristics about this image which make our problem be significant and challenging. On
the one hand, the image represents very highly good quality with varied shading illuminated
by light source. On the other hand, some light gridlines are superimposed in the image. The
gridlines were added for the sake of manual counting. In addition, those cells’ shape takes on
lots of irregular deformation, which is the primary problem we have to solve to segment
effectively. As we well know, image segmentation is the bridge to classification properly.
We aimed to develop a satisfied algorithm to classify the red blood cells into different
groups accurately. And also we believed that conventional segmentation methods based on
gray value could be unsuitable to this case. In this paper we proposed a new strategy to
segment RBC image according to surface feature extraction. At first, we have to estimate the
distribution of erythrocyte shapes from scanned electron microscope. Then each cell’s three-
dimension shape was reconstructed as 3D height field using shape-from-shading technique.
Lastly we implement multiscale surface fitting segmentation algorithm to partition the cells
based on the depth data acquired in the previous procedures.

This paper is organized as follow. Firstly the preliminary work including system
framework and image preprocessing are introduced in Section 2. In Section 3, a guided
contour tracing method was used to extract the boundary and center point information.
Accordingly all pixels of each cell which is located on the top of overlapped cells can
be further obtained, whose intensity tone is disposed as shading information. The 3-D
reconstruction of each cell is introduced in Section 4. We deduced an image irradiance
equation under SEM imaging condition with linear approximation. Shape-from-shading
technique is applied in this project, such as shape-from-shading technique using linear
approximation. The next section is about to divide surface into several different types after
computing mean curvature and Gaussian curvature. Multiscale surface fitting segmentation
algorithm is proposed in Section 6 which involves seed extraction, region growing, and so
on. In the end, Section 7 draws some conclusions and expects a few future works.

2. Image Preprocessing and System Framework

As shown in Figure 2(a), there existed some bright gridlines superimposed on the original
image, which have some side effects on the subsequent work. As mentioned before, the
images show perfect quality other than these lines, which is used to count and classification
manually. The system we developed here is to relieve human from exhausted hand work and
run automatically. Additionally, in terms of the shading information being critical in our case,
we regard the lines as noise andwe have to remove them before recovering the 3D shape from
gray tone image.

2.1. System Framework

We describe the system framework in Algorithm 1.

2.2. Image Processing Using Median Filtering Locally

As time consumption is sensitive during RBCs classification, we make use of median filter to
get rid of the gridlines. The median filter is a smoothing technique that causes minimal edge
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(a) Gridline superimposed image (b) Denoising using median locally

(c) Denoising using median filter directly on
the whole image

Figure 2: RBC image preprocessing.

blurring, which involves replacing the pixel value at each point in an image by the median of
the pixel values in a neighborhood about the point:

g
(
x, y

)
= med

{
f
(
x − k, y − l

)
, (k, l ∈ W)

}
, (2.1)

where f(x, y) is the original image and g(x, y) is median filtered image, respectively. W is a
2-dimensional 7∗7 template.

Figure 2(a) shows a scaled original RBC image with four white gridlines superim-
posed on it. The denoised image after median filtering directly on whole image is presented
in Figure 2(c), in which the lines are removed successfully. However, the edges of cell
image have been blurred and brightness changed at the same time. Consequently the
issue of inaccuracy would arise from the change, because the recovered shape is relied on
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1. Image Denoising
1.1 Find the rough position of each grid line;
1.2 Remove the noise using median filtering locally.

2. Cell Extraction Individually
2.1 Guided boundary contour tracing;
2.2 Cell Extraction through 4-neighborhood region growing.

3. Shape from Shading Using Linear Approximation
3.1 Image Irradiance Equation Deduction;
3.2 3-D Shape Reconstructing.

4. Computing RBC shape surface feature
4.1Compute mean curvature and Gaussian curvature using image convolution;
4.2 Set a threshold for this two curvature.

5: Segmentation through multiscale surface fitting
More details is in Section 6: Experiment.

Algorithm 1

the irradiance mostly. Fortunately we can detect the exact positions where those lines are by
horizontal and vertical projection using

∑

i⊕j
Q
(
i, j

)
, (2.2)

respectively, where Q(i, j) only represents those pixels whose gray value is approximately
equal to the pixels in those white gridlines. i ⊕ j means that only horizontal pixels are
computed when sum on i and vertical pixels are projected when sum on j as well.
Experimental results show that, while determining the exact positions of vertical lines, the
points located in the range of i ∈ [253, 259] or [509, 517] have to be considered only. And
those points whose j coordinate is in the range of j ∈ [253, 259], [509, 515], [765, 771] have to
be dealt with when impose median filtering locally.

As a result, this local median filtering method leads to a handily approach, namely
filling locally combined with median filtering, 7∗7 structure element defined. The improved
result is shown in Figure 2(b), in which all the cells keep the same shading information as the
original image and the gridlines have been removed successfully as well.

3. Tracing Contour and Cell Extraction Individually

3.1. Guided Contour Tracing

Vromen and McCane [10] proposed a method named contour-tracing-based approach to the
problem of finding the boundary of red blood cells in a scanned electron microscope image
automatically. As shown in the above Figure 1, there are considerable overlapped cells. We
are just only interested in estimating the distribution of different erythrocyte shapes from
SEM image rather than the accurate counting number. So it makes sense to assume that the
distribution of overlapped cells is identical to the overall distribution. Consequently only
those top-level cells are needed to be detected and recognized. At the very beginning, the
most possible direction is chosen by taking the prior information of tracing into account so
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far. Since the cell contours are likely elliptical, it would be reasonable to fit a conic shape to
the path. A parameterized second-degree polynomial over the last n points was modeled the
local curvature:

x(t) = at2 + bt + c,

y(t) = et2 + ft + g.
(3.1)

The best fitting polynomial was calculated through a number of data points using least
squares. In order to increase accuracy and decrease computation, consider only the directions
with angles in a certain window around the predicted direction. This was represented with a
set of unit vector ui ∈ U:

U =
{(

cos
(
αi + β

)
, sin

(
αi + β

)) | βmin ≤ β ≤ βmax
}
, (3.2)

where αi is the angle of the predicted tangent. In our application β is uniformly sampled
between βmin = −(π/2) and βmax = (π/2).

Figure 3(a) shows the scaled 256∗256 RBC image, and the contours after guided tracing
are presented in Figure 3(b). There are 7 traced contours in Figure 3(b) which are located on
top level of overlapped cell image. All of the contour information is stored as attributes in an
XML file. It also contains the locus of each point on the boundary.

3.2. Cell Extraction Individually

As shown in Figure 4, there is a break point marked by a white circle in each traced boundary,
which would result in a wrong region when growing we should fill them as a complete
boundary point before growing. If the number of neighbors around a predicted boundary
point is less than three under 8-connectivity, we consider it as a break point. The relationships
between the two break points and how they break with each other are shown in Figure 5.

According to the extracted cell contours’ information, we can grow each cell starting
at center point regionally to get the entire cell image. The algorithms can be described in
Algorithm 2.

The resulting image of region growing subject to contour boundary is shown in
Figure 3(c). After growing regionally, we got the number of pixels which make the whole
image and their gray level value. In Table 1, there are 7 cell contours that have been extracted
altogether, where CENTER X and CENTER Y are the cell’s center point coordinates and
PIXELS denotes the pixels number involved in each cell.

4. Shape from Shading Using Linear Approximation

4.1. Shape from Shading and PDE

The “shape from shading” problem, namely, SFS, is to recover the 3-D shape of a surface
from a gray-level monochrome image. In the 1970s Horn firstly proposed the approach to
reconstruct the original shape from a varied shading image, which associated with obtaining
a solution of a nonlinear first-order partial differential equation (PDE), that is, brightness
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(a) Scaled 256∗256 image (b) Contour after guided tracing

(c) Extracted cells

Figure 3: Cell image extracted using contour tracing.

Figure 4: Break point in cells boundary.
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(a) Horizontal break (b) Vertical
break

(c) 45◦ break

(d) 135◦ break (e) Others

Figure 5: Five different types of break points.

1. Draw some key points for region growing
Collect the center points and contour points from the extracted contour which is stored in
a XML data file.

2. Region Growing
2.1 Set the center point as a seed;
2.2 Grow the cell from the seed in the way of 4 connectivity neighborhoods till touch certain
point on contour;
2.3 Store the pixels’ information into a XML file attributed by position and gray level as tree
nodes.

3. Continue to calculate cell pixels included in next contour
4. If All cells have been extracted successfully, then exit
5. Else return 1

Algorithm 2: Region growing algorithm.

equation. From then on, a number of articles have emerged which come up with various
kinds of methods to strive to implement this technique into real or artificial synthetic images.

This PDE equation arises from the

I(x1, x2) = R(n(x1, x2)). (4.1)

(x1, x2) is the coordinates of a point x in the image. The brightness equation connects the
reflectance map (R) to the brightness image (I). Almost all the shape-from-shading methods
at the exception of an extremely small number of papers [11–13] assume that the scene model
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Table 1: Contours’ information of traced cells.

No. Center X Center Y Pixels

1 37.884 175.931 2697
2 114.131 179.526 2927
3 191.346 65.3348 2777
4 187.606 138.718 2516
5 154.363 209.667 2027
6 211.253 202.634 2359
7 233.308 134.118 953

is Lambertian. The reflectance map is the cosine of the angle between the light vector L(x)
and the normal vector n(x) to the surface:

R = cos(L, n) =
L

|L| ·
n

|n| , (4.2)

where R, L, and n depend on (x1, x2) [14].
Shape from shading is a fundamental issue in computer vision, and considerable

research has been performed [15, 16] in trying to solve this problem including methods
of medical image processing. In [17], the authors applied their method to an endoscopic
image of a normal stomach and showed the result obtained by generic algorithm in the
perspective case with the light source at the optical center, which is not suitable for SEM.
Tankus et al. in their papers [18–20] suggested the reconstruction algorithm under an
assumption of perspective shape from shading. Deguchi and Okatani [21] accomplished
shape reconstruction from an endoscope image by shape-from-shading technique for a point
light source at the projection center.

4.2. Reflectance Map under SEM Imaging Condition

Jones and Taylor [22] proposed that SEM imaging process is particularly appropriate for SFS,
since it allows us to make the simplifying assumptions that the projection is orthographic and
the ”light source” is at infinity. The Lambertian reflectance function is given by

R
(
p, q

)
= η n̂ · Î, (4.3)

where n̂ = (−p,−q, 1)/
√
p2 + q2 + 1 is the unit normal vector, Î is a unit vector in the direction

of the light source, and η is the surface albedo.
The SEM reflectance function is based upon the theoretical prediction that the number

of electron emitted from a surface in the SEM is proportional to the secant of the angle
between the illumination direction and the surface normal. The reflectance function is
denoted by [22]

R
(
p, q

)
=

η

n̂ · Î
. (4.4)
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In this paper, we assume that the image is formed by orthographic projection, because
the object specimen examined by SEM is very small in comparison to distance from light
source.

4.3. Linear Approximation

In [23], the authors believed that the linearity of the reflectance map in the depth Z, instead
of p and q, is more appropriate in some cases. They presented a method for computing depth
from a single-shaded image by employing the discrete approximations for p and q using finite
differences and linearly approximating the reflectance in Z(x, y). It gave good results for the
spherical surface and can be applied to any reflectance function.

In this paper we aim to recover the red blood cell’s shape of an image captured by SEM
based on linear approximation. It is extended to solve such a problem assumed orthographic
projection and derive the implementation equations with the reflectance function inverse to
Lambertian reflectance function.

Image irradiance equation (IRE) indicates the relationship between reflection function
and image irradiance. The recovered shape can be represented by depth map Z, normal
(nx, ny, nz), or surface gradient (p, q). The radiance of surface patch depends on gradient,
light source location, and reflectance property. The gray level of a pixel in the image is
determined by light direction and normal vector, assumed Lambertian model, which can be
denoted by IRE:

E
(
x, y

)
= R

(
p, q

)
=

1 + pps + qqs
√
1 + p2 + q2

√
1 + p2s + q2s

, (4.5)

where E(x, y) is a gray level at pixel (x, y), p = ∂z/∂x and q = ∂z/∂y, and (ps, qs, 1) is the
illumination direction.

By approximating the p and q discretely, we get

p =
∂z

∂x
= Z

(
x, y

) − Z
(
x − 1, y

)
,

q =
∂z

∂y
= Z

(
x, y

) − Z
(
x, y − 1

)
.

(4.6)

According to (4.6), the reflection function can be rewritten as

0 = f
(
E
(
x, y

)
, Z

(
x, y

)
, Z

(
x − 1, y

)
, Z

(
x, y − 1

))

= E
(
x, y

) − R
(
Z
(
x, y

) − Z
(
x − 1, y

)
, Z

(
x, y

) − Z
(
x, y − 1

))
.

(4.7)

Under the assumption of the point (x, y) and image E is given, the linear approxima-
tion of function f with respect to Zn−1 after Jacobi iterationmethod is:

0 = f
(
Z
(
x, y

))

≈ f
(
Zn−1(x, y

))
+
(
Z
(
x, y

) − Zn−1(x, y
)) d

dZ
(
x, y

)f
(
Zn−1(x, y

))
.

(4.8)
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The nth iterative result Zn(x, y) can be denoted by

Zn(x, y
)
= Zn−1(x, y

)
+

−f(Zn−1(x, y
))

(
d/dZ

(
x, y

))
f
(
Zn−1(x, y

)) . (4.9)

As mentioned previously, the reflection function is inversal to Lambertian model un-
der the condition of SEM imaging. Equation (4.5) is transformed into

R
(
p, q

)
=

√
1 + p2 + q2

√
1 + p2s + q2s

1 + pps + qqs
. (4.10)

Now we compute the partial derivatives of p and q with R:

∂R
(
p, q

)

∂p
=
√
1 + p2s + q2s

p
(
1 + pps + qqs

) − (
1 + p2 + q2

) · ps
(
1 + pps + qqs

)2√1 + p2 + q2
,

∂R
(
p, q

)

∂q
=
√
1 + p2s + q2s

q
(
1 + pps + qqs

) − (
1 + p2 + q2

) · qs
(
1 + pps + qqs

)2√1 + p2 + q2
.

(4.11)

So,

∂R

∂p
+
∂R

∂q
=

√
1 + p2s + q2s

((
p + q

)(
1 + pps + qqs

) − (
1 + p2 + q2

) · (ps + qs
))

(
1 + pps + qqs

)2√1 + p2 + q2
. (4.12)

The right part of (4.9) is rewritten as

d

dZ
(
x, y

)f
(
Zn−1(x, y

))
=

∂R

∂p
+
∂R

∂q

=

√
1 + p2s + q2s

((
p + q

)(
1 + pps + qqs

) − (
1 + p2 + q2

) · (ps + qs
))

(
1 + pps + qqs

)2√1 + p2 + q2
.

(4.13)

We use the shape-from-shading method with linear approximation to reconstruct the
red blood cell’s 3-D shape as in Figure 6.

5. Curvature Calculation

There are 8 different types of surface altogether, namely peak, pit, ridge, valley, flat, minimal
surface, saddle ridge, and saddle valley. The surface type of each data point on a scene object
can be designated by the signs of mean curvature and Gaussian curvature uniquely. Both of
these two curvatures can be calculated by local convolution [24, 25]. Each data point in a
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Figure 6: Reconstructed RBC 3D shape.

given window N∗N is associated with a 2-dimensional position (u, v) from the set U × U,
where

U =
{
−N − 1

2
, . . . ,−1, 0, 1, . . . , N − 1

2

}
(5.1)

and N is odd.
The following discrete orthogonal polynomials provide local biquadratic surface

fitting capability:

φ0(u) = 1, φ1(u) = u, φ2(u) = u2 − M(M + 1)
3

, (5.2)

whereM = (N−1)/2. The biquadratic is the minimal degree polynomial surface type needed
to estimate the first and second partial derivatives. A corresponding set of bi(u) functions is
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the normalized versions of the orthogonal polynomials φi(u) given by bi(u) = φi(u)/Pi(M),
where the Pi(M) are normalizing constants. The three normalization constants are given by

P0(M) = N,

P1(M) =
2
3
M3 +M2 +

1
3
M,

P2(M) =
8
45

M5 +
4
9
M4 +

2
9
M3 − 1

9
M2 − 1

15
M.

(5.3)

Defining a set of surface G in R3 space, G ⊂ R3, which can be parameterized by

G =

⎧
⎨

⎩
g(u, v) =

⎡

⎣
g1(u, v)
g2(u, v)
g3(u, v)

⎤

⎦:umin<u<umax
vmin<v<vmax

⎫
⎬

⎭
. (5.4)

Before implementing the surface-fitting segmentation algorithm, the surface types
have to be divided at first, which is based on mean curvature and Gaussian curvature. The
computation of mean curvature and Gaussian curvature of digital surface is approximated by
partial derivative estimation, which is calculated via the appropriate 2D image convolution
(denoted by ∗):

gu = Du
∗S ∗g, gv = Dv

∗S ∗g,

guu = Duu
∗S ∗g, guv = Duv

∗S ∗g, gvv = Dvv
∗S ∗g,

(5.5)

where S = �s �s T is a 7 × 7 binomial smoothing window:

�s =
1
64

[
1 6 15 20 15 6 1

]
,

[Du] = �d0 �d T
1 , [Dv] = �d1 �d T

0 ,

[Duu] = �d0 �d T
2 , [Duv] = �d1 �d T

1 , [Dvv] = �d2 �d T
0 ,

(5.6)

where

�d0 =
1
7
[
1 1 1 1 1 1 1

]T
,

�d1 =
1
28

[−3 −2 −1 0 1 2 3
]T
,

�d2 =
1
84

[
5 0 −3 −4 −3 0 5

]T
.

(5.7)
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Table 2: Average and variance of mean curvature and gaussian curvature.

No. Average of MC Average of GC Variance of MC Variance of GC
1 −0.00358235 −0.0118867 0.0144467 0.0110893
2 0.0019092 −0.0031961 0.0007467 0.00135311
3 −0.00801067 −0.000136584 0.00776577 8.05916e−06
4 0.00362456 −0.00492172 0.00174206 0.00280074
5 4.11563e-05 −0.00502711 0.00281172 0.00672413
6 0.00774488 −0.00243966 0.0071536 0.000373712
7 0.00235231 −0.0132902 0.00192086 0.0311508

The mean curvature and Gaussian curvature can be calculated by partial derivative as
follows:

H =

(
1 + g2

v

)
guu +

(
1 + g2

u

)
gvv − 2gugvguv

2
(√

1 + g2
u + g2

v

)3
,

K =
guugvv − g2

uv
(
1 + g2

u + g2
v

)2 .

(5.8)

Table 2 shows the average and variance of mean curvature and Gaussian curvature of the 7
extracted cells in Figure 3.

6. Experiment

6.1. Surface-Type-Based Image Segmentation

The fundamental formulation of region-based image segmentation is defined as

(1) Un
i=1Ri = R;

(2) Ri is a connected region, i = 1, 2, . . . , n;

(3) Ri ∩ Rj = Φ, for ∀(i, j), i /= j;

(4) P(Ri) = TRUE, i = 1, 2, . . . , n;

(5) P(Ri ∪ Rj) = FALSE, Ri is adjacent to Rj ,

where P(Ri) is a uniformity predicate defined on groups of connected pixels. Ri was grown
regionally via 8-connected neighborhood. All the points in region Ri satisfy the same surface
function. Different regions meet different surface fitting function.

The segmentation procedure is divided into two mainly different parts. Firstly we
compute the surface-type label image by

T = 1 + 3
(
1 + 3sgnεH (H)

)
+
(
1 − 3sgnεK(K)

)
, (6.1)

where T denotes the surface type ranging from 1 to 9 as shown in Table 3.
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Table 3: Surface type defined by mean and Gaussian curvature.

K > 0 K = 0 K < 0
H < 0 Peak (T = 1) Ridge (T = 2) Saddle ridge (T = 3)
H = 0 None (T = 4) Flat (T = 5) Minimal surface (T = 6)
H > 0 Pit (T = 7) Valley (T = 8) Saddle valley (T = 9)

1. Initialization
1.1 Get the whole depth map image from the output of shape from shading procedure;
1.2 Obtaining the range image by filling the value of each pixel, which is associated with the
current processing cell by depth data;
1.3 Compute an estimate of the noise variance at each pixel;
1.4 Computing mean curvature and Gaussian curvature through separable convolution;
1.5 Computing the surface type label image and find all connected components of each surface
type label image, sort it to get histogram distribution;
1.6 Extracted seed region through erosion (contraction) operation.

2. Iterative variable order surface fitting
2.1 Perform surface fit from the lowest order, if it is OK using RMS error and region test;
2.2 Then goto 3;
2.3 Else increase the order and fit again;
2.4 if order >4, then return.

3. Region Growing
3.1 Find the new region consisting of compatible connected neighboring pixels.

Algorithm 3: Algorithm of multiscale segmentation through mapped depth.

We the define root mean square error (RMSE) as

σ2
SN

=
1
N

∑

(x,y)∈SN

(
zij −Φ�a

(
x, y

))2
, (6.2)

to measure whether the difference between fitted value and original depth is confined to the
range preset by a threshold as in Algorithm 3.

6.2. Algorithm

6.2.1. Experimental Result

In our experiment, we define the RMS fit error as ε = ωσimg, where σimg means noise variance,
and

ẑ
(
p
)
= f̂

(
mk, �al, x

(
p
)
, y

(
p
))

(6.3)

is compared with

z
(
p
)
= g̃

(
x
(
p
)
, y

(
p
))
, (6.4)
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(a) Flat (b) Pit (c) Valley

Figure 7: Three surface-type components.

to see if the pixel p is compatible with the approximating surface function. If the magnitude
of the difference between the function value and the digital surface value is less than the
allowed tolerance value, denoted by ω0 · εkl , then the pixel p is added to the set of compatible
pixels, denoted by C(mk, �a

k
l
, εk

l
), which are compatible with the surface fit to the region

R̂k
l
. Otherwise, the pixel is incompatible and discarded. The result of this process is the

compatible pixel list:

C
(
mk, �a

k
l , ε

k
l

)
= p ∈ I :

∣∣ẑ
(
p
) − z

(
p
)∣∣ ≤ ω0 ε

k
l . (6.5)

We choose ωl = 4.5 and ω0 = 8 experimentally.
If we threshold themean curvature andGaussian curvature with an appropriate value,

only three different surface type are remained among all cells. In our experiment, we choose

εH = 0.0015,

εK = 0.03
(6.6)

as the mean curvature and Gaussian curvature separately. The function of sgn in (6.1) is
defined as

sgn(H,K) =

⎧
⎪⎪⎨

⎪⎪⎩

1 (ε,+∞)
0 (−ε,+ε)
−1 (−∞,−ε).

(6.7)

The three kinds of surface type are flat, pit, and valley, respectively, as shown in
Figure 7.

Figure 8 represents the process of extracting seed region through erosion (contraction)
operation. In order to implement the surface fitting segmentation algorithm, the seed region
has to be obtained using erosion operation firstly. After several iteration, the pixel numbers
of remained regions for growing are 32, 34, 45, 6 for these four region, respectively.
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Figure 8: Contraction process to extract seed region of red blood cell.

Table 4: Accuracy of segmentation.

Category Number of flat surfaces Number of pit surfaces Number of valley Surfaces Accuracy
1 1 1 0 88.9%
2 1 2 0 93.3%
3 2 1 0 90.9%
4 0 1 0 100%
5 3 3 0 100%
6 2 2 1 100%
7 3 1 0 100%
8 2 2 0 94.6%
9 1 1 1 100%
10 2 1 1 100%
11 1 2 1 100%

In Figure 9, the cell is segmented into three isolated parts perfectly, which are obtained
through fitting based on surface type.

6.3. Evaluation

In order to evaluate our proposed combined algorithm, we used a dataset containing 800
SEM images. These images are with resolution of 1024 by 768 pixels. For our evaluation, we
ran the algorithm on 100 randomly selected images.

We divided the cells into different categories according to their distribution of surface
type. Table 4 elaborated the segmentation accuracy of each category.
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(a) Original cell image (b) Flat region grew regionally

(c) Pit region 1 grew regionally (d) Pit region 2 grew regionally

Figure 9: The segmentation result using surface fitting method.

7. Conclusion and Future Work

This paper is about how to reconstruct the 3D shape of red blood cell from gray tone
images using scanned electronic microscope based on shape-from-shading technique, as well
combined with linear approximation. The result of cell surface shape is given by height field.
Our algorithm can be trivially transformed to various different kinds of reflection models. In
Figure 7, the surface-type label image is given with cell number added manually. There are
mainly three types of surfaces left after threshold. The distribution of count number of each
surface type in every cell can present some useful information for classifying correctly, which
will be trained as input data. In the end, we aim to construct a classifier by means of cascaded
SVMs architecture to recognize whether the red blood cell is normal or not.
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