
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 207381, 15 pages
doi:10.1155/2012/207381

Research Article
An Economic Hybrid J2 Analytical Orbit Propagator
Program Based on SARIMA Models

Juan Félix San-Juan,1 Montserrat San-Martı́n,1 and Iván Pérez2
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We present a new economic hybrid analytical orbit propagator program based on SARIMA
models, which approximates to a 4 × 4 tesseral analytical theory for a Quasi-Spot satellite. The
J2 perturbation is described by a first-order closed-form analytical theory, whereas the effects
produced by the higher orders of J2 and the perturbation of the rest of zonal and tesseral harmonic
coefficients are modelled by SARIMAmodels. Time series analysis is a useful statistical prediction
tool, which allows building a model for making future predictions based on the study of past
observations. The combination of the analytical techniques and time series analysis allows an
increase in accuracy without significant loss in efficiency of the new propagators, as a consequence
of modelling higher-order terms and other perturbations are not taken into account in the
analytical theory.

1. Introduction

An analytical orbit propagator program (AOPP) is an application which collects and arranges
all mathematical expressions involved in an approximate analytical solution of the satellite
equations of motion. The analytical solutions are known as General Perturbation Theories.
It is noteworthy that the perturbation force model used and the order of the analytical
approximation are closely related to the accuracy and computational efficiency of an AOPP.

In many situations, in order to improve the accuracy of the solution, it may be
necessary to consider a more precise perturbation force model. The solution provided by
the General Perturbation Theories may not be the best approach, because the calculating
process generates unmanageably large mathematical expressions and, therefore, reduces
the computational efficiency of its corresponding AOPP. Other alternatives, although
computationally more expensive than an economic analytical approximation, are the Special
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Perturbation Theories, which directly integrate the equations of motion using numerical
techniques, or by means of semi-analytical theories, which are a combination of General and
Special Perturbation Theories.

In this paper we present a new methodology, which we will call Hybrid Perturbation
Theories, to carry out new families of hybrid orbit propagator programs which combine
a simplified analytical orbit propagator [1–4] with statistical time series models [5]. This
combination allows an increase in accuracy for predicting the position of a satellite without
significant loss in computational efficiency in the new hybrid propagators, as well as
modelling higher-order terms and other perturbations not considered in the analytical theory.

Mathematically, the problem consists of estimating the satellite’s position and velocity
xt for which an approximate analytical solution is known:

xAt = F(t, xt0), (1.1)

where xt0 is the satellite’s initial time position and velocity. Moreover, at any moment ti, a
precise observation xti can be obtained. This observation is related to xAti by the following
linear relation:

εti = xti − xAti , (1.2)

where εti represents the errors produced by the perturbation forces not considered in the
analytical theory and by the selfsame approximate analytical solution. In order to predict the
future values of the εti series, we apply statistical techniques in time series analysis.

The first n values of εti are used to estimate a model by means of these techniques.
From this model a forecast of the ε̂ti error can be calculated. Finally these estimations are
used to obtain the forecast of the satellite’s position and velocity by the relation

x̂ti = xAti + ε̂ti . (1.3)

In this paper, the orbit propagator Z2DN1 derived from a first-order closed-form
analytical integration of themain problem of the artificial satellite theory and the SARIMA time
series models are described. Secondly, using the univariate Box-Jenkins time series analysis,
a specific Z2DN1-SARIMA model is developed for a Quasi-Spot satellite so as to model the
effects of some zonal and tesseral harmonics by means of the statistical part, where these
influences have not been taken into consideration in the analytical part. The simulated data
are obtained from the numerical integration for an Earth orbiter, which has only taken into
account the perturbation due to the nonsymmetrical Earth gravity field up to the fourth
degree and order. Finally, we compare the simulation with both the analytical propagator
alone and the analytical-statistical hybrid propagator.

2. Z2DN1 Analytical Orbit Propagator Program

This AOPP has been derived from a first-order closed-form analytical theory of the main
problem of the artificial satellite theory.



Mathematical Problems in Engineering 3

Themain problem is defined as a Kepler problem perturbed by Earth’s oblateness. The
Hamiltonian of this dynamical system can bewritten in a cartesian coordinate system (x,X) as

H =
1
2
(X · X) − μ

r

[

1 − J2

(

α

r

)2

P2

(

z

r

)

]

, (2.1)

where r = ‖x‖ =
√

x2 + y2 + z2, μ is the gravitational constant, α the equatorial radius of the
Earth, J2 the oblateness coefficient, and P2 the second degree Legendre polynomial.

The first step to carry out the analytical theory consists of expressing the Hamiltonian
(2.1) in terms of the Delaunay variables (l, g, h, L,G,H). This set of canonical action-angle
variables can be defined in terms of the orbital elements such as l = M, g = ω, h = Ω, L =
√
μa, G =

√

μa(1 − e2), H =
√

μa(1 − e2) cos i, where M, ω, Ω, a, e, i are the mean anomaly,
argument of the perigee, longitude of the ascending node, semimajor axis, eccentricity, and
inclination, respectively. Then the transformed Hamiltonian is given as

H = − μ2

2L2
− ε

2
μ

r
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r

)2(
1 − 3s2sin2(f + g

)

)

, (2.2)

where ε = J2 is a small parameter, s = sin i, and f is the true anomaly.
Next, we normalize the Hamiltonian (2.2) by applying the Lie transform ϕ :

(l, g, h, L,G,H) → (l′, g ′, h′, L′, G′,H ′), the so-called Delaunay Normalization [6], which up
to first order reads

K0 = H0, (2.3)

K1 = H1 −
μ2

L′3

∂W
∂l′

. (2.4)

The Lie method solves (2.4) by choosing the form of the transformed Hamiltonian; the
Delaunay Normalization takes the Hamiltonian as the average over the fastest angle l′:

K1 =
3α2μ4s′2

4L′6η′3 − α2μ4

2L′6η′3 ,
(2.5)

and thenW1 is computed as
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(2.6)

where η′ =
√

1 − e′2 and φ′ = f ′ − l′.
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Hence, up to the first order, the transformed Hamiltonian is given by

K = − μ2

2L′2 + ε

(

3α2μ4s′2

4L′6η′3 − α2μ4

2L′6η′3

)

. (2.7)

We must remark that the Hamiltonian (2.7) is integrable. This Hamiltonian only
depends on themomenta L′,G′, andH ′, and so therefore the equations of motion are obtained
as

dl′
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=

∂K
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(2.8)

By integrating (2.8) we can directly obtain that the values of the momenta L′, G′, and
H ′ are constants, whereas the variables l′, g ′, and h′ yield

l′ =

[
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L′3 + ε
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4L′7η′3
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]
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0,

(2.9)

where l′0, g
′
0, h

′
0, L

′
0, G

′
0, H

′
0 are the transformed initial conditions l0, g0, h0, L0, G0, H0 at the

epoch t0.
Finally, from (2.6) the first-order explicit equations of the direct and inverse

transformations [7] are calculated.
From the above analytical theory an AOPP was derived, which has to evaluate 93

terms. This AOPP has been called Z2DN1. The algebraic manipulations required to carry
out this analytical theory and its corresponding AOPP were built using a set of Mathematica
packages calledMathATESAT [8]. Figure 1 shows the flowchart of the Z2DN1 analytical orbit
propagator program.

Z2DN1 begins by initializing the physical parameters and the initial conditions
at epoch t0. Next, it transforms the initial conditions into the Delaunay variables
(l0, g0, h0, L0, G0,H0) and transports them across the inverse transformation of the Delaunay
normalization (l′0, g

′
0, h

′
0, L

′
0, G

′
0,H

′
0). Then, the program provides Delaunay’s variables at
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(t0, l0, g0, h0, L0, G0,H0)

(t0, l′0, g
′
0, h

′
0, L

′
0, G

′
0,H

′
0)

(l′, g ′, h′, L′, G′,H ′)

(l, g, h, L,G,H)

Output: t, a, e, g, h, i, l, x, y, z, ẋ, ẏ, ż

Input: μ, α,ω, J2, t0, tf , a0, e0, g0, h0, i0, l0

Figure 1: Flowchart of the Z2DN1 orbit propagator program.
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Figure 2: Distance, along-track, cross-track, and radial errors for a Quasi-Spot satellite.

epoch tf from integrated Hamilton equations (l′, g ′, h′, L′, G′,H ′). Finally, the direct transfor-
mation of the Delaunay normalization is applied, and therefore the osculating Keplerian
elements (a, e, g, h, i, l) and the state vector (x, y, z, ẋ, ẏ, ż) can be calculated.

This model has been comparedwith the numerical integration (8th-order Runge-Kutta
method) of the equation of motion of a model, which includes the Earth’s zonal and tesseral
harmonic coefficients of fourth degree and order in the case of a Quasi-Spot satellite (a = 7148,
e = 0.001, i = 98◦).

Figure 2 shows the distance, along-track, cross-track, and radial errors in a time span
interval of 30 days, which is about 430 satellite cycles. As can be observed, the distance error
of the first-order J2 analytical theory when compared with a more complex perturbation
model is about 360 km.

Figure 3 shows the relative errors of the orbital elements for a Quasi-Spot satellite.
The mean anomaly and argument of the perigee are the variables which present the worst
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Figure 3: Relative errors of the orbital elements for a Quasi-Spot satellite.

performance. The maximum absolute errors in a time span interval of 30 days are about 12.4◦

and 9.5◦, respectively.

3. Statistical Time Series Analysis: SARIMA Model

Introduced by Box and Jenkins [5], the autoregressive integrated moving average (ARIMA)
model has been one of the most popular approaches for time series forecasting. Let εt be
a discrete time series, in an ARIMA(p, d, q) model, in which the future value of a series is
assumed to be a linear combination of its own past values and past residuals, expressed as
follows:

φ(B)(1 − B)dε̃t = θ(B)νt, (3.1)

where ε̃t = εt − μ, μ is the mean of the original time series, and νt is a white noise residual.
B is the backward shift, such that Bε̃t = ε̃t−1, whilst d is the number of times that ε̃t needs
to be differentiated to ensure its conversion to a stationary time series, that is, a time series
in which the mean, variance, and autocorrelation functions of ε̃t are time invariants. φ(B)
represents the autoregressive (AR) part, where each ε̃t is made up of a linear combination from
prior observations p, which can be expressed as a polynomial in B of degree p in the following
form:

φ(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p, (3.2)
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Figure 4: 3-stage Box-Jenkins methodology.

where φi, i = 1, . . . , p, are the AR parameters. θ(B) represents the moving average (MA)
part, which describes the relation of ε̃t with past residuals and can also be expressed as a
polynomial in B of degree q in the following form:

θ(B) = 1 − θ1B − θ2B
2 − · · · − θqB

q, (3.3)

where θi, i = 1, . . . , p, are the MA parameters.
In the case that ε̃t series shows seasonal behaviour, it can be included in (3.1). The

extendedmodel is known as a SeasonalARIMAmodel or SARIMA(p, d, q)(P,D,Q)s and takes
the following form:

Φ(Bs)φ(B)(1 − Bs)D(1 − B)dε̃t = Θ(Bs)θ(B)νt, (3.4)

where

Φ(Bs) = 1 −Φ1B
s −Φ2B

2s − · · · −ΦPB
Ps,

Θ(Bs) = 1 −Θ1B
s −Θ2B

2s − · · · −ΘqB
Qs,

(3.5)

represent the seasonal part with periodicity s.
To determine a suitable SARIMA model for a given series, we use the 3-stage Box-

Jenkins methodology. This procedure is illustrated in Figure 4. At the identification stage, a
preliminary SARIMA model is proposed from the analysis of the estimated autocorrelation
function (ACF) and partial autocorrelation function (PACF), allowing us to determine the
parameters d,D, p, q, P , and Q. Then, the seasonal and nonseasonal AR and MA parameters
are estimated at the second stage. The last stage, diagnostic checking, determines whether
the proposed model is adequate or not. If the model is considered adequate, it can be used
for forecasting future values; otherwise the process is repeated until a satisfactory model is
found.



8 Mathematical Problems in Engineering

4. Time Series Analysis

In order to carry out the statistical part of the hybrid propagator, we consider a simulated
data set, that is, position and velocity, taken from the numerical integration of the Quasi-Spot
equations of motion during 10 satellite cycles. This number of cycles was experimentally
calculated; however the models obtained from fewer than 10 cycles were less accurate, but
from above 10 cycles the increase in accuracy was not significant either. The force model used
to generate the simulated data is a 4 × 4 EGM-96 gravity field, whereas for the numerical
integration a high-order Runge-Kutta method [9] is used.

It is noteworthy to mention that different sets of canonical and noncanonical variables
can be used to develop the statistical part, such as cartesian variables, orbital elements,
Delaunay variables, and polar-nodal variables. In this work, we will only take into account
the Delaunay variables, which allow a direct visualization of the geometry of the orbit.

4.1. Previous Statistical Analysis

The time series analysis begins calculating the linear relations:

εxt = xt − xA
t , (4.1)

where x represents each of the Delaunay variables (l, g, h, L,G,H), xt is the simulated data at
epoch t, and xA

t is the data from the analytical theory at the same epoch. Therefore, these six
time series (εlt, ε

g
t , ε

h
t , ε

L
t , ε

G
t , ε

H
t ) allocate all the information related to the perturbation forces

not considered in the analytical theory (tesseral terms of fourth degree and order and the
zonal coefficients J3 and J4), as well as the higher orders of the analytical solution, that is, the
error of the analytical theory O(J22 ), during 10 cycles (and 10 data points per cycle).

Then, the periodogram, a mathematical tool for examining cyclical behaviour in time
series, and the autocorrelation functions, a measure of how a time series is correlated with
itself at different time delays, are used to identify the time series models (see [5], for further
details).

The study of the periodogram and autocorrelation functions of each εxt reveals that
all variables show cyclical patterns or periodicities and, moreover, there is very similar
behaviour between the time series εlt and ε

g
t and εLt and εGt . For example, this study for εlt and

ε
g
t can be seen in Figure 5. However εht and εHt do not show any similar behaviour between
them or with the rest of the time series.

On the other hand, the correlation matrix of the εxt series is shown in Table 1. This
matrix presents a strong relationship between εlt and ε

g
t , as their correlation coefficient is near

−1 (−0.9607), as well as between their respective conjugate momenta time series errors, εLt
and εGt , where their correlation coefficient is near 1 (0.9982).

It is noteworthy tomention that although the intrinsic nature of themean anomaly and
the argument of the perigee is different, as mean anomaly is related to short-periodic terms
and the argument of the perigee is related to long-periodic terms, the similar behaviours
detected in the above statistical studies can be explained, because the Quasi-Spot satellite
is near a repeat ground track orbit, in which the argument of the perigee and eccentricity

(e =
√

1 − (G/L)2) are almost constant. Figure 6 shows εlt, ε
g
t and εLt , ε

G
t time series. As can

be observed, εlt and ε
g
t are almost symmetric with respect to the x-axis, which explains the

negative sign and the near −1 value in the correlation coefficient, whilst εLt and εGt are almost
the same, and therefore the sign in the correlation coefficient is positive with a near 1 value.
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Figure 5: Periodograms and autocorrelation functions of εlt (left) and ε
g
t (right).

Table 1: Correlation matrix of the εxt series.

εlt ε
g
t εht εLt εGt εHt

εlt 1.0000
ε
g
t −0.9607 1.0000
εht −0.0575 −0.1713 1.0000
εLt −0.1037 0.0934 0.0451 1.0000
εGt −0.1128 0.1168 −0.0070 0.9982 1.0000
εHt 0.4033 −0.4114 0.0420 0.0066 0.0005 1.0000
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Figure 6: Blue represents εlt, and εLt errors. Dashed red represents εgt and εGt errors.

Finally, this preliminary study can be completed by analyzing the results obtained
when the εxt time series are combined with the data obtained from the analytical theory
(lAt , g

A
t , hA

t , L
A
t , G

A
t ,H

A
t ) during the first 10 satellite cycles. This test allows us to consider

several possibilities. The first consists of considering each series separately, for instance,
(lAt + εlt, g

A
t , hA

t , L
A
t , G

A
t ,H

A
t ). In all these cases the accuracy is not as good as the approach

given by the Z2DN1 AOPP. After considering other possibilities we show the relations
obtained in previous statistical analyses:

(i) (lAt + εlt, g
A
t + ε

g
t , h

A
t , L

A
t , G

A
t ,H

A
t ),

(ii) (lAt , g
A
t , hA

t , L
A
t + εLt , G

A
t + εGt ,H

A
t ),

(iii) (l + εlt, g
A
t + ε

g
t , h

A
t , L

A
t + εLt , G

A
t + εGt ,H

A
t ),

(iv) (lAt , g
A
t , hA

t + εht , L
A
t , G

A
t ,H

A
t + εHt ).

Figure 7 shows the distance errors between the simulated data and analytical theory
for the first ten cycles, and the simulated data and the above corrected analytical theories
with the exact error added. The strong influence of εlt and ε

g
t can be seen in the first plot; the

distance error is reduced to 0.63 km after ten satellite cycles, whereas εLt and εGt only remove
part of the short-period variations, as can be seen in the second plot. The third case collects
the corrections due to εlt, ε

g
t , ε

L
t , and εGt , which produce a distance error similar to the first

case. Finally, the corrections due to εht and εHt do not have any effect on the distance error, as
can be observed in the last plot.

Next we focus our attention on carrying out a hybrid-AOPP from (lAt + εlt, g
A
t +

ε
g
t , h

A
t , L

A
t , G

A
t ,H

A
t ). The following step in the process of looking for the most suitable

SARIMA models using the Box-Jenkins methodology is described below.

4.2. Time Series Estimation of εlt and ε
g
t

To estimate the model of the ε
g
t time series, we use the Box-Jenkins methodology. In the

first step, the stationary behaviour of the time series is analyzed. Figure 6 suggests that the
variance is time-invariant, whereas for the mean value the plot is not conclusive. On the
other hand, Figure 5 shows that the autocorrelation function (ACF) decreases slowly and the
augmented Dickey-Fuller test [10] allows accepting the null hypothesis that the time series
has a unit root (P value 0.6921 > 0.05). Moreover, its periodogram (see Figure 5) shows
high peaks at low frequencies (f = 0.01 and 0.02). Therefore, the time series does not seem
stationary; thus differentiating the time series data may be necessary.

The second step analyzes the periodicity. The ACF shows a pronounced cyclical
fluctuation with a strong correlation at lag 10. Besides, its periodogram shows a peak at
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Figure 7: Blue represents the distance error between xti and xAti , whereas dashed red is the distance error
between xti and the corrected xAti from the exact εxt .

the frequency of 0.2, which corresponds to a periodicity of 10. These patterns agree with
the satellite cycle. This suggests that a seasonal model might be adequate to estimate
ε
g
t . Consequently, the tentative models should incorporate both seasonal and nonseasonal
parameters.

We analyzed different SARIMA(p, d, q)(P,D,Q)10 models in order to approximate
the ε

g
t time series, where the maximum likelihood method was used to estimate model

parameters, as can be seen in Table 2. Finally, the diagnostic stage showed a good fit for
the SARIMA(6, 1, 7)(3, 1, 3)10 model, in which the Jarque-Bera and Ljung-Box tests [11, 12]
do not reject the null hypothesis of normality nor the no autocorrelation of residuals, with P
values 0.182 and 0.993, respectively.

We must note that the model used to approximate the εlt time series is also a
SARIMA(6, 1, 7)(3, 1, 3)10, which confirms the similar behaviour previously detected to ε

g
t ,

although the model parameters are slightly different, as can be seen in Table 2.
The GNU software R (version 2.14) [13] was the statistical tool used to perform all

statistical analyses. In particular, the R packages TSA [14], forecast [15], and tseries [16]were
used for all time series analyses.

5. Z2DN1-SARIMA Hybrid-AOPP

Figure 8 shows the flowchart of the Z2DN1-SARIMA hybrid-AOPP. We find the difference to
the pure Z2DN1 AOPP (Figure 1) after applying the direct transformation of the Delaunay
normalization. At this point, the Delaunay variables are combined with the new forecast
(ε̂lt, ε̂

g
t ) and the osculating Keplerian elements (a, e, g, h, i, l) and state vector (x, y, z, ẋ, ẏ, ż)

are calculated.
At this point, it is noteworthy that a pure analytical theory which takes into account

the perturbation of the fourth degree and order harmonic coefficients of the gravity field,
considering the dimensionless parameter ω/n, where n is the mean motion of the satellite,
and the usual Garfinkel assumptions [17] with a precision of about one kilometer after
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Table 2: SARIMA(6, 1, 7)(3, 1, 3)10 models.

Coefficients εlt ε
g
t

φ1 −0.8167142581776827 −0.8312754102958296
φ2 0.5740668630692614 0.5649950239467217
φ3 1.1200190576112987 1.1322145773449677
φ4 −0.3087269639691513 −0.2946598587646277
φ5 −0.8631472597887673 −0.8663595825987899
φ6 −0.4970128310547080 −0.5012076262623468
θ1 0.8789635328932761 0.8901438163231377
θ2 −0.9965719584754135 −0.9834775736328421
θ3 −1.6921042908035564 −1.7044561386678760
θ4 0.5206249360614155 0.4906661687944900
θ5 1.5190020299259381 1.5136974115875366
θ6 0.3606298858846529 0.3820758183271771
θ7 −0.4721289483358399 −0.4568107050477830
Φ1 1.4676902604680244 1.4557054355067451
Φ2 −1.3618276394078148 −1.3525881149216927
Φ3 0.7076454044934742 0.7023619159769664
Θ1 0.8412748367694940 0.8370722835862818
Θ2 −0.8240640881053386 −0.8282527898256336
Θ3 0.9939014392344844 0.9966285211365780

Input: μ, α,ω, J2, t0, tf , a0, e0, g0, h0, i0, l0

(t0, l0, g0, h0, L0, G0,H0)

(t0, l′0, g
′
0, h

′
0, L

′
0, G

′
0,H

′
0)

(l′, g ′, h′, L′, G′,H ′)

(l + ε̂lt, g + ε̂
g
t , h, L,G,H)

Output: t, a, e, g, h, i, l, x, y, z, ẋ, ẏ, ż

Figure 8: Flowchart of the Z2DN1-SARIMA hybrid orbit propagator program.

30 days, involves several mathematical expressions of more than 10000 terms, whereas the
whole Z2DN1 analytical theory only needs to evaluate 93 terms. The technical details of the
tesseral analytical theory have been developed in [18, 19].
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Figure 9:Z2DN1-SARIMAhybrid-AOPP. Relative errors of themean anomaly and argument of the perigee
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Figure 10: Z2DN1-SARIMA hybrid-AOPP. Distance, along-track, cross-track, and radial errors for a Quasi-
Spot satellite.

5.1. Numerical Validations

Finally we analyze the behaviour of Z2DN1-SARIMA hybrid-AOPP designed for a Quasi-
Spot satellite versus the numerical integration for an Earth orbiter, which has only taken
into account the perturbation due to the nonsymmetrical Earth gravity field up to the fourth
degree and order. The first 10 cycles are considered for the estimation stage, whilst from
the 10th and up to approximately the 430th cycle, which is about 30 days, are used in the
forecasting stage.

Figure 9 shows the relative errors of the mean anomaly and argument of the perigee
for a Quasi-Spot satellite. The maximum absolute errors of mean anomaly and argument of
the perigee in a time span interval of 30 days are about 9.4◦ and 8.2◦, respectively. These errors
have been reduced to 3◦ in the case of the mean anomaly and to 1.3◦ in the argument of the
perigee, with respect to the Z2DN1 AOPP.

Figure 10 shows the distance, along-track, cross-track, and radial errors. Themaximum
distance error obtained from Z2DN1 AOPP is 352.076 km while for Z2DN1-SARIMA it
is only 23.7489 km. We must remark that the accuracy obtained by the described hybrid-
AOPP is only comparable to a higher-order analytical theory, which includes a more precise
perturbation model.
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6. Conclusions and Future Works

A new methodology to carry out hybrid-AOPP families, based on the combination of an
analytical orbit propagator program and statistical time series models, is presented. To
illustrate this methodology, a hybrid-AOPP, named Z2DN1-SARIMA, has been developed,
which combines an economic first-order closed-form analytical orbit propagator and two
SARIMA time series models fitted to the case of the Quasi-Spot satellite. Although the
increment in the computational time cost is not significant with respect to the pure analytical
theory, the error of our theory is reduced in comparison to the pure Z2DN1 AOPP. The
accuracy reached by our new hybrid model is similar to that obtained by a more complex
zonal and tesseral analytical theory, but without the inconvenience of losing computational
efficiency.

To calculate the SARIMA models, 10 satellite cycles are considered and the univariate
Box-Jenkins time series analysis is used to model the εxt time series, using statistical software
packages for R. Two of the six components were modelled, whilst, at present, we are working
on the study of the bivariate SARIMA models in order to collect the similar behaviour found
between the mean anomaly and the argument of the perigee. In the study of the argument of
the node and the third component of angular momentum behaviour, we are performing an
economic analytical theory, which includes tesseral coefficients.

The behaviour of the Z2DN1-SARIMA hybrid-AOPP with respect to other initial
conditions near the Quasi-Spot conditions, as well as the adapted hybrid-AOPP, when other
perturbations, like atmospheric drag, third body, and so on, are taken into account, is future
works to be investigated.
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