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The homotopy perturbation method (HPM) is employed to obtain an approximate solution for the
nonlinear differential equation which describes Troesch’s problem. In contrast to other reported
solutions obtained by using variational iteration method, decomposition method approximation,
homotopy analysis method, Laplace transform decomposition method, and HPM method, the
proposed solution shows the highest degree of accuracy in the results for a remarkable wide range
of values of Troesch’s parameter.

1. Introduction

Troesch’s equation is a boundary value problem (BVP) expressed as

y′′ = n sinh
(
ny

)
, y(0) = 0, y(1) = 1, (1.1)

where prime denotes differentiation with respect to x and n is known as Troesch’s parameter.
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Equation (1.1) arises in the investigation of confinement of a plasma column by a
radiation pressure [1] and also in the theory of gas porous electrodes [2, 3]. This BVP problem
has a pole [4] approximately located at

x∞ =
1
n
ln
(

8
y′(0)

)
, (1.2)

which makes the solution of (1.1) a difficult task for numerical methods.
In order to overcome such difficulties, there are several reported numerical solutions

for Troesch’s problem [4–10]. Recently, after some decades using wrong numerical results,
in [8, 9] were reported the most accurate solutions for n = 0.5 and n = 1. Besides, there
are approximated analytical solutions obtained by using different methods like homotopy
perturbation method (HPM) [11, 12], decomposition method approximation (DMA) [12,
13], homotopy analysis method (HAM) [14], variational iteration method (VIM) [15],
and Laplace transform decomposition method (LTDM) [16]. The main disadvantage of
aforementioned approximated solutions is that they are obtained for specific values of n,
like n = 0.5, 1 or 10. In contrast, we propose a general approximate solution for Troesch’s
problem, useful for n ≥ 0, by using HPMmethod [17–27].

This paper is organized as follows. In Section 2, we provide a brief review of HPM
method. In Section 3, we obtain the solution of Troesch’s problem employing HPM. Section 4
shows numerical simulations and discuss our findings. Finally, a brief conclusion is given in
Section 5.

2. Basic Idea of HPM Method

Basically, the HPM method [17–26, 31–53] introduces a homotopy parameter p, which takes
values ranging from 0 up to 1. When parameter p = 0, the equation usually reduces to a
simple, or trivial, equation to solve. Then, p is gradually increased to 1, producing a sequence
of deformations. Eventually, at p = 1, the homotopy equation takes the original form of the
equation to solve, and the final stage of deformation provides the desired solution. Usually,
few iterations are required to obtain good results [17–19].

In the HPM method, it is considered that a nonlinear differential equation can be
expressed as

A(u) − f(r) = 0, r ∈ Ω, (2.1)

with the boundary condition

B

(
u,

∂u

∂η

)
= 0, r ∈ Γ, (2.2)

where A is a general differential operator, f(r) is a known analytic function, B is a linear
initial/boundary operator, Γ is the boundary of domainΩ, and ∂u/∂η denotes differentiation
along the normal drawn outwards fromΩ. TheA operator, generally, can be divided into two
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operators, L and N, where L is the linear operator, and N is the nonlinear operator. Hence,
(2.1) can be rewritten as

L(u) +N(u) − f(r) = 0. (2.3)

Now, a possible homotopy formulation is

H
(
v, p

)
=
(
1 − p

)
[L(v) − L(u0)] + p

(
L(v) +N(v) − f(r)

)
= 0, p ∈ [0, 1], (2.4)

where u0 is the initial approximation for the solution of (2.3) which satisfies the boundary
conditions, and p is known as the perturbation homotopy parameter.

We assume that the solution of (2.4) can be written as a power series of p as

v = p0v0 + p1v1 + p2v2 + · · · . (2.5)

When p → 1, results that the approximate solution for (2.1) is

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (2.6)

The series (2.6) is convergent on most cases, nevertheless, the convergence depends
on the nonlinear operator A(v) [19, 21, 35, 36, 52].

3. Solution of Troesch’s Problem by Using HPM Method

Straight forward application of HPM to solve (1.1) is not possible due to the hyperbolic sin
term of dependent variable. However, in [11, 12] were reported HPM solutions, obtained by
using a power series expansion of the sinh term of (1.1), which are limited to n ≤ 1, due
to the truncate power series. Nevertheless, the polynomial type nonlinearities are easier to
handle by the HPM method. Therefore, in order to apply HPM successfully for a wide range
of Troesch’s parameter (n), we convert the hyperbolic-type nonlinearity in Troesch’s problem
into a polynomial type nonlinearity, using the variable transformation reported in [15]. First,
we consider that

y(x) =
4
n
tanh−1(u(x)), (3.1)

from which we find

y′ =
4

n(1 − u2)
u′, (3.2)

y′′ =
4

n(1 − u2)
u′′ +

8u

n(1 − u2)2
(
u′)2, (3.3)

where prime denotes differentiation with respect to x.
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Now, by substituting (3.1) into the sinh term of (1.1), we obtain

y′′ = n sinh
(
4tanh−1(u(x))

)
=

4nu
(
u2 + 1

)

(u + 1)2(u − 1)2
. (3.4)

Then, equating (3.3) and (3.4), we achieve to the following transformed problem:

(
1 − u2

)
u′′ + 2u

(
u′)2 − n2u

(
1 + u2

)
= 0, (3.5)

where conditions are obtained by using variable transformation (see (3.1))

u(x) = tanh
(n
4
y(x)

)
, (3.6)

and substituting original boundary conditions y(0) = 0 and y(1) = 1 into above equation,
results

u(0) = 0, u(1) = tanh
(n
4

)
. (3.7)

From (2.4) and (3.5), we can formulate the following homotopy [17–19]:

H
(
v, p

)
=
(
1 − p

)(
v′′ − n2v

)
+ p

((
1 − v2

)
v′′ + 2v

(
v′)2 − n2v

(
1 + v2

))
= 0, (3.8)

where p is the homotopy parameter.
Substituting (2.5) into (3.8) and equating identical powers of p terms, we obtain

p0 : v′′
0 − n2v0 = 0, v0(0) = 0, v0(1) = tanh

(n
4

)
,

p1 : v′′
1 − n2v1 − n2v3

0 − v2
0v

′′
0 + 2v0

(
u′
0
)2 = 0, v1(0) = 0, v1(1) = 0,

p2 : v′′
2 − n2v2 − 3n2v2

0v1 + 4v0v
′
0v

′
1 − 2v0v1v

′′
0 − v2

0v
′′
1 + 2v1

(
v′
0
)2 = 0, v2(0) = 0, v2(1) = 0.

(3.9)
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We solve (3.9) by using Maple software, resulting

v0 = w sinh(nx), w =
tanh(n/4)
sinh(n)

,

v1 = − w3n exp(−nx)
2 exp(2n) − 2

[
(x − 1)

(
exp(2n(x + 1)) − 1

)
+ (x + 1)

(
exp(2n) − exp(2nx)

)]
,

v2 = m +
q exp(−3nx)

2n

×
[(

3
4
+
(
−x2 + 6x

)
n2 +

(
−3
2
x − 3

)
n

)
exp((4x + 2)n)

− 1
8
exp((6x + 2)n) +

(
−3
4
+
(
6x + x2

)
n2 +

(
−3
2
x + 3

)
n

)
exp(2n(x + 1))

+
(
3
4
+
(
−x2 + 6x

)
n2 +

(
3 +

3
2
x

)
n

)
exp(2nx)

+
(
−3
4
+
(
6x + x2

)
n2 +

(
3
2
x − 3

)
n

)
exp(4nx)

−1
8
+
1
8
exp(6nx) +

1
8
exp(2n)

]
,

(3.10)

where m is

m =
q
(
exp(−nx) − exp(nx)

)
exp(−3n)

16n
(
exp(n) − exp(−n))

×
[
7 exp(6n) + 40n2 exp(6n) − 36n exp(6n)

− exp(8n) − 12 exp(4n) + 112n2 exp(4n) + 7 exp(2n)

+40n2 exp(2n) + 36n exp(2n) − 1
]
,

(3.11)

and q is

q = − w5n

2 exp(2n) − 2
. (3.12)

Next, calculating the limit when p → 1, we obtain the second-order approximated
solution of (3.5)

u2(x) = lim
p→ 1

v = v0 + v1 + v2. (3.13)
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Finally, from (3.1) and (3.13), the proposed solution of Troesch’s problem is

y(x) =
4
n
tanh−1(u2(x)), 0 ≤ x ≤ 1, n ≥ 0. (3.14)

3.1. Interval of Solution

The real branch of tanh−1(z) is restricted to the range −1 ≤ z ≤ 1. Therefore, (3.14) requires

−1 ≤ u2(x) ≤ 1, (3.15)

where x is delimited by the boundary conditions as

0 ≤ x ≤ 1. (3.16)

In order to show that (3.14) fullfills the conditions (3.15) and (3.16), we plot (3.13) in
Figure 1. From such figure, we can observe that 0 < u2(x) < 1 is valid in the intervals of
x ∈ [0, 1] and n ∈ [0, 30]. Now, from (3.13) and (3.14), we calculate the following limits:

lim
n→∞u2(1) = 1, (3.17)

lim
x→ 0

u2(x) = 0, (3.18)

lim
n→ 0

y(x) = x. (3.19)

From (3.17), (3.18), (3.19), and Figure 1, we can conclude that the maximum value of (3.13)
is 1 in the range of 0 ≤ n ≤ ∞. Therefore, (3.13) fullfills (3.15) in the range given by (3.16).
Additionally, limit (3.19) shows that for n = 0, the presented solution (3.14) becomes the
exact/trivial solution for (1.1).

4. Numerical Simulation and Discussion

In the case of n = 0.5 (see Table 1), we can observe that the lowest average absolute relative
error (A.A.R.E.) is for LDTM [16], followed closely by the proposed solution (3.14). A
possible reason can lie in the fact that (3.14) is a second-order approximation, while LDTM
is of third order. For n = 1 (see Table 2), there is a change now the lowest A.A.R.E. is
for the proposed solution (3.14), followed by LDTM solution. For both cases, the other
approximations ADM [13], HPM [12], HPM [11], and HAM [14] have lower accuracy than
(3.14). Equation (3.14) did not require an adjustment parameter, unlike LDTM solution,
which required a specific adjustment parameter calculated for each value of Troesch’s
parameter n. Therefore, the proposed solution is easier to use than LDTM solution.

In Table 3, we can observe a comparison of (3.14) with numerical solution [15], and
other solutions obtained by HAM [14], VIM [15], and HPM [12] for n = 10. Approximation
(3.14) has the lowest A.A.R.E. from all above solutions, followed by VIM approximation.
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Figure 1: Plot for (3.13) in the range of x ∈ [0, 1] and n ∈ [0, 30].

Table 2: Comparison between (3.14), exact solution [8, 9], and other reported approximate solutions, using
n = 1.

x Exact [8] This work
(3.14) ADM [13] HPM [12] HPM [11] HAM [14] LDTM [16]

0.1 0.0846612565 0.08466075858 0.084248760 0.0843817004 0.084934415 0.0846732692 0.08466308972
0.2 0.1701713582 0.1701704581 0.169430700 0.1696207644 0.170697546 0.1701954538 0.1701750442
0.3 0.2573939080 0.2573927827 0.256414500 0.2565929224 0.258133224 0.2574302342 0.2573994845
0.4 0.3472228551 0.3472217324 0.346085720 0.3462107378 0.348116627 0.3472715981 0.3472303763
0.5 0.4405998351 0.4405989511 0.439401985 0.4394422743 0.44157274 0.4406610140 0.4406093753
0.6 0.5385343980 0.5385339413 0.537365700 0.5373300622 0.539498234 0.5386072529 0.5385460046
0.7 0.6421286091 0.6421286573 0.641083800 0.6410104651 0.642987984 0.7526899495 0.6421421393
0.8 0.7526080939 0.7526085475 0.751788000 0.7517335467 0.753267551 0.7526899495 0.7526226886
0.9 0.8713625196 0.8713630450 0.870908700 0.8708835371 0.871733059 0.8714249118 0.8713748860

Order 2 6 2 2 6 3

A.A.R.E. 2.54568e(−06) 0.002714577 0.002320107 0.002044737 0.019244326 2.05e(−05)

Besides, HAM [14] has an relatively poor value of A.A.R.E., despite the fact that it is a sixth-
order approximation. Furthermore, HPM [12] shows divergence from the numerical solution.
In addition, (3.14) do not require an adjustment parameter, nevertheless, VIM solution
required a specific adjustment parameter calculated for each value of Troesch’s parameter
n. Therefore, the proposed solution is easier to use than VIM solution.

In Table 4, is presented a comparison of initial slope y′(0) and the results reported in
[4, 5, 15, 28, 29] for the range of 1 ≤ n ≤ 20; resulting that the proposed solution is the only one
reported in literature with high accuracy in the complete aforementioned range. Moreover, in
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Table 3: Comparison between (3.14), numerical solution [15], and other reported approximate solutions,
using n = 10.

x Numerical [15] This work (3.14) HAM [14] VIM [15] HPM [12]

0.100 4.211183679705e(−05) 4.211189927237e(−05) 4.19038e(−05) 4.211189936715e(−05) 17.617500000
0.200 1.299639238293e(−04) 1.299641158237e(−04) 1.32094e(−04) 1.299641161162e(−04) 33.693333333
0.300 3.589778855481e(−04) 3.589784013896e(−04) 3.60051e(−04) 3.589784021976e(−04) 46.785833333
0.400 9.779014227050e(−04) 9.779027718029e(−04) 9.24818e(−04) 9.779027740037e(−04) 55.653333333
0.500 2.659017178062e(−03) 2.659020490351e(−03) 2.57642e(−03) 2.659020496335e(−03) 59.354166667
0.600 7.228924695208e(−03) 7.228931212877e(−03) 7.78968e(−03) 7.228931229141e(−03) 57.346666667
0.700 1.966406025665e(−02) 1.966406309701e(−02) 2.22598e(−02) 1.966406314118e(−02) 49.589166667
0.800 5.373032958567e(−02) 5.373032935060e(−02) 5.59715e(−02) 5.373032947016e(−02) 36.640000000
0.900 1.521140787863e(−01) 1.521140764047e(−01) 1.28433e(−01) 1.521140767248e(−01) 19.757500000
0.999 8.889931171768e(−01) 8.889931181558e(−01) — 8.889931185202e(−01) —

Order 2 6 2 2

A.A.R.E. 8.09027e(−07) 0.057403529 8.1021e(−07) 99824.7587

order to compare the derivative of (3.14) for n > 20, we use the approximate y′(0) reported
in [29]

y′(0) = 10−12 exp(29.71 − n), y′(0) < 10−4, (4.1)

resulting in a remarkable accuracy for the range n ∈ [22, 1e(+12)].
In the same fashion, in Table 5, we compare y′(1) for proposed solution and other

reported numerical solutions [4, 5, 28, 30]. The results shows that (3.14) has a good accuracy
for y′(1) at least in the range n ∈ [1, 20].

Figure 2 results from Tables 1, 2, and 3 and Maple routines of numerical solution
of differential equations. We can observe the overlap of numerical solution and (3.14), for
different values of n ∈ [0.5, 10]. Therefore, (3.14) is a high accurate approximate solution,
valid for a wide range of values of Troesch’s parameter.

Further research should be performed in order to verify the accuracy of (3.14) for large
values of n. Nevertheless, as we know from above discussion y′(0) and y′(1) are valid and
accurate in the ranges 1 ≤ n ≤ 1e(+12) and 1 ≤ n ≤ 20, respectively, therefore, we can expect
a high accuracy of (3.14) in the same ranges.

5. Concluding Remarks

In this work, we obtained an approximate solution for Troesch’s problem. Besides, we
presented a comparison between the numerical solution, the proposed solution, and other
approximations reported in the literature. The numerical and graphical results show that the
proposed solution is the most accurate one, for a wide range of values of Troesch’s parameter
(n). Moreover, Troesch’s problem approximation exhibit a remarkable accuracy for y′(0) at
least in the range 1 ≤ n ≤ 1e(+12). In the same fashion, y′(1) exhibits a good accuracy at least
in the range 1 ≤ n ≤ 20. Accordingly, we can expect a good accuracy of proposed solution
for the range 0 ≤ n ≤ 1e(+12) and maybe for even more larger values of n. Additionally, the
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Table 5: Slope y′(1) of Troesch’s problem.

y′(1)
n This work Other methods [5]
1 1.341828780e(+00) 1.341837966e(+00) [4] 1.341837867e(+00)
2 2.406790318e(+00) 2.406939711e(+00) [4] —
3 4.266151411e(+00) 4.266223175e(+00) [4] 4.266222862e(+00)
4 7.254574096e(+00) 7.254582910e(+00) [4] —
5 1.210049478e(+01) 1.210049568e(+01) [4] 1.210049546e(+01)
6 2.003575791e(+01) 2.003575367e(+01) [4] —
7 3.308525498e(+01) 3.308526669e(+01) [4] —
8 5.457983465e(+01) 5.461322834e(+01) [4] 5.457983447e(+01)
9 9.000602248e(+01) 9.000618074e(+01) [4] —
10 1.484064126e(+02) 1.484065422e(+02) [4] 1.484064212e(+02)
12 4.034263503e(+02) 4.034263147e(+02) [28] 4.034263147e(+02)
15 1.808042673e(+03) 1.808041861e(+03) [28] 1.808041861e(+03)
20 2.202629966e(+04) 2.20264657e(+04) [30] 2.202646577e(+04)
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Figure 2: Numerical solution (different symbols) of (1.1) and proposed solution (3.14) (solid line) for
different values of n.

proposed approximated solution does not require any adjustment parameter as reported for
solutions obtained by using LDTM and VIM methods, which makes our proposed solution
easier to use than those approximations. Finally, further research is necessary in order to
verify the accuracy of our proposed approximation for large values of n.
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