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Some remarks on the application of the Hori method in the theory of nonlinear oscillations are
presented. Two simplified algorithms for determining the generating function and the new system
of differential equations are derived from a general algorithm proposed by Sessin. The vector
functions which define the generating function and the new system of differential equations
are not uniquely determined, since the algorithms involve arbitrary functions of the constants
of integration of the general solution of the new undisturbed system. Different choices of these
arbitrary functions can be made in order to simplify the new system of differential equations
and define appropriate near-identity transformations. These simplified algorithms are applied
in determining second-order asymptotic solutions of two well-known equations in the theory of
nonlinear oscillations: van der Pol equation and Duffing equation.

1. Introduction

In da Silva Fernandes [1], the general algorithm proposed by Sessin [2] for determining the
generating function and the new system of differential equations of the Hori method for
noncanonical systems has been revised considering a new approach for the integration theory
which does not depend on the auxiliary parameter t∗ introduced by Hori [3, 4].

In this paper, this new approach is applied to the theory of nonlinear oscillations for
a second-order differential equation and two simplified versions of the general algorithm are
derived. The first algorithm is applied to systems of two first-order differential equations
corresponding to the second-order differential equation, and the second algorithm is applied
to the equations of variation of parameters associated with the original equation. According
to these simplified algorithms, the determination of the unknown functions T

(m)
j and

Z
∗(m)
j , defined in the mth-order equation of the algorithm of the Hori method, is not
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unique, since these algorithms involve at each order arbitrary functions of the constants
of integration of the general solution of the new undisturbed system. Different choices of
the arbitrary functions can be made in order to simplify the new system of differential
equations and define appropriate near-identity transformations. The problem of determining
second-order asymptotic solutions of two well-known equations in the theory of nonlinear
oscillations—van der Pol and Duffing equations—is taken as example of application of the
simplified algorithms. For van der Pol equation, two generating functions are determined:
one of these generating functions is the same function obtained by Hori [4], and, the
other function provides the well-known averaged equations of variation of parameters in
the theory of nonlinear oscillations. For Duffing equation, only one generating function
is determined, and the second-order asymptotic solution is the same solution obtained
through Krylov-Bogoliubov method [5], through the canonical version of Hori method [6]
or through a different integration theory for the noncanonical version of Hori method [7].
For completeness, brief descriptions of the noncanonical version of the Hori method [4] and
the general algorithm proposed by Sessin [2] are presented in the next two sections.

2. Hori Method for Noncanonical Systems

The noncanonical version of the Hori method [4] can be briefly described as follows.
Consider the differential equations:

dzj

dt
= Zj(z, ε), j = 1, . . . , n, (2.1)

where Zj(z, ε), j = 1, . . . , n, are the elements of the vector function Z(z, ε). It is assumed that
Z(z, ε) is expressed in power series of a small parameter ε:

Z(z, ε) = Z(0)(z) +
∑

m=1

εmZ(m)(z). (2.2)

The system of differential equations described by Z(0)(z) is supposed to be solvable.
Let the transformation of variables (z1, . . . , zn) → (ζ1, . . . , ζn) be generated by the

vector function T(ζ, ε). This transformation of variables is such that the new system:

dζj

dt
= Z∗

j (ζ, ε), j = 1, . . . , n, (2.3)

is easier to solve or captures essential features of the system. Z∗
j (ζ, ε), j = 1, . . . , n, are the

elements of the vector function Z∗(ζ, ε), also expressed in power series of ε:

Z∗(ζ, ε) = Z∗(0)(ζ) +
∑

m=1

εmZ∗(m)(ζ). (2.4)
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It is assumed that the vector function T(ζ, ε), that defines a near-identity transformation, is
also expressed in powers series of ε:

T(ζ, ε) =
∑

m=1

εmT (m)(ζ). (2.5)

Following Hori [4], the transformation of variables (z1, . . . , zn) → (ζ1, . . . , ζn) gener-
ated by T(ζ, ε) is given by

zj = ζj +
∑

k=1

1
k!
Dk

Tζj = eDT ζj , j = 1, . . . , n. (2.6)

For an arbitrary function f(z), the expansion formula is given by

f(z) = f(ζ) +
∑

k=1

1
k!
Dk

Tf(ζ) = eDT f(ζ). (2.7)

The operator DT is defined by

DTf(ζ) =
n∑

j=1

Tj
∂f

∂ζj
,

Dn
Tf(ζ) = Dn−1

T

⎛

⎝
n∑

j=1

Tj
∂f

∂ζj

⎞

⎠.

(2.8)

According to the algorithm of the perturbation method proposed by Hori [4], the
vector functions Z and T are obtained, at each order in the small parameter ε, from the
following equations:

order 0: Z
(0)
j = Z

∗(0)
j , (2.9)

order 1:
[
Z(0), T (1)

]

j
+ Z

(1)
j = Z

∗(1)
j , (2.10)

order 2:
[
Z(0), T (2)

]

j
+
1
2

[
Z(1) + Z∗(1), T (1)

]

j
+ Z

(2)
j = Z

∗(2)
j ,

...

(2.11)

j = 1, . . . , n, where []j stands for the generalized Poisson brackets

[Z, T]j =
n∑

k=1

[
Tk

∂Zj

∂ζk
− Zk

∂Tj

∂ζk

]
. (2.12)

Z∗(0), Z(m), Z∗(m), and T (m) are written in terms of the new variables ζ1, . . . , ζn.
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Themth-order equation of the algorithm can be put in the general form:

[
Z∗(0), T (m)

]

j
+ Ψ(m)

j = Z
∗(m)
j , j = 1, . . . , n, (2.13)

where the functions Ψ(m)
j are obtained from the preceding orders.

3. The General Algorithm

The determination of the functions Z
∗(m)
j and T

(m)
j from (2.13) is based on the following

proposition presented in da Silva Fernandes [1].

Proposition 3.1. Let F be a n × 1 vector function of the variables ζ1, . . . , ζn, which satisfy the system
of differential equations:

dζj

dt
= Z

∗(0)
j (ζ) + R∗

j (ζ; ε), j = 1, . . . , n, (3.1)

where Z∗(0) describes an integrable system of differential equations:

dζj

dt
= Z

∗(0)
j (ζ), j = 1, . . . , n, (3.2)

a general solution of which is given by

ζj = ζj(c1, . . . , cn, t), j = 1, . . . , n, (3.3)

being c1, . . . , cn arbitrary constants of integration; then

[
F,Z∗(0)

]

j
=

∂Fj

∂t
−

n∑

k=1

∂Z
∗(0)
j

∂ζk
Fk, j = 1, . . . , n. (3.4)

A corollary of this proposition can be stated.

Corollary 3.2. Consider the same conditions of Proposition 3.1 with the general solution of (3.2)
given by

ζj = ζj(c1, . . . , cn−1,M), j = 1, . . . , n, (3.5)

being c1, . . . , cn−1 arbitrary constants of integration and M = t + τ , where τ is an additive constant;
then

[
F,Z∗(0)

]

j
=

∂Fj

∂M
−

n∑

k=1

∂Z
∗(0)
j

∂ζk
Fk, j = 1, . . . , n. (3.6)
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Now, consider (2.13). According to Proposition 3.1, this equation can be put in the
form:

∂T
(m)
j

∂t
−

n∑

k=1

∂Z
∗(0)
j

∂ζk
T
(m)
k

= Ψ(m)
j − Z

∗(m)
j , j = 1, . . . , n, (3.7)

with Ψ(m)
j written in terms of the general solution (3.3) of the undisturbed system (3.2),

involving n arbitrary constants of integration—c1, . . . , cn. Z
∗(m)
j and T

(m)
j are unknown

functions.
Equation (3.7) is very similar to the one presented by Hori [4], which is written in

terms of an auxiliary parameter t∗ through an ordinary differential equation, that is,

dT
(m)
j

dt∗
−

n∑

k=1

∂Z
∗(0)
j

∂ζk
T
(m)
k = Ψ(m)

j − Z
∗(m)
j , j = 1, . . . , n. (3.8)

To determine Z
∗(m)
j and T

(m)
j , j = 1, . . . , n, Hori [4] extends the averaging principle

applied in the canonical version: Z∗(m)
j are determined so that the T

(m)
j are free from secular

or mixed secular terms. However, this procedure is not sufficient to determine Z∗ such that
the new system of differential equations (2.3) becomes more tractable, and, a tractability
condition is imposed

[
Z(0), Z∗

]

j
= 0, j = 1, . . . , n. (3.9)

This condition is analogous to the condition {F(0), F∗} = 0 in the canonical case, which
provides the first integral F0(ξ, η) = const, where ξ, η denotes the new set of canonical
variables, and, F(0) and F∗ are the undisturbed Hamiltonian and the new Hamiltonian,
respectively, and {} stands for Poisson brackets [3, 4].

In the next paragraphs, the general algorithm for determining Z
∗(m)
j and T

(m)
j , j =

1, . . . , n, proposed by Sessin [2] and revised in da Silva Fernandes [1] is briefly presented.
Introducing the n × 1 matrices:

T (m) =
(
T
(m)
j

)
, Ψ(m) =

(
Ψ(m)

j

)
, Z∗(m) =

(
Z

∗(m)
j

)
, j = 1, . . . , n, (3.10)

and the n × n Jacobian matrix

J(t) =

⎛

⎝
∂Z

∗(0)
j

∂ζk

⎞

⎠, j, k = 1, . . . , n, (3.11)

the system of partial differential equations (3.7) can be put in the following matrix form:

∂T (m)

∂t
− J(t)T (m) = Ψ(m) − Z∗(m). (3.12)
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The vector functions Z∗(m) and T (m) are determined from the following equations:

Z∗(m) = Δζ
∂

∂t

{
Δ−1

ζ

[
ΔζD

(m) + Δζ

∫
Δ−1

ζ Ψ(m)dt

]

s

}
, (3.13)

T (m) =
[
ΔζD

(m) + Δζ

∫
Δ−1

ζ Ψ(m)dt

]

p

, (3.14)

where Δζ = [∂ζj(c1, . . . , cn, t)/∂ck] is the Jacobian matrix associated to the general solution
(3.3) of the undisturbed system (3.2), s denotes the secular or mixed secular terms, and p

denotes the remaining part. D(m) is the n × 1 vector, D(m) = (D(m)
j ), which depends only on

the arbitrary constants of integration c1, . . . , cn of the general solution (3.3). The choice ofD(m)

is arbitrary. Recall that in the integration process, the arbitrary constants of integration of the
general solution (3.3) are taken as parameters.

Equations (3.13) and (3.14) assure that T (m) is free from secular or mixed secular terms.
Moreover, these equations provide the tractability condition (3.9) as it will be shown in the
case of nonlinear oscillation problems presented in the next section.

Finally, it should be noted that D(m) can be chosen at each order to simplify the
generating function T and the new system of differential equations (2.3). This aspect is
discussed thoroughly in the examples of Section 5.

4. Simplified Algorithms in the Theory of Nonlinear Oscillations

In this section two simplified algorithms will be derived from the general algorithm in the
case of nonlinear oscillations described by a second-order differential equation of the general
form:

ẍ + x = εf(x, ẋ). (4.1)

The first algorithm is applied to the system of first-order differential equations with
x and ẋ as elements of the vector z, and, the second algorithm is applied to the system of
equations of variation of parameters associated to the differential equation with c′ and θ′ as
elements of the vector z; c′ and θ′are defined in (4.26).

4.1. Simplified Algorithm I

For completeness, we present now the first simplified algorithm [1]. Additional remarks are
included at the end of section.

Introducing the variables z1 = x and z2 = ẋ, (4.1) can be put in the form:

ż1 = z2, ż2 = −z1 + εf(z1, z2). (4.2)
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According to the notation introduced in (2.1) and (2.2):

Z(0) =
[
z2
−z1

]
, Z(1) =

[
0

f(z1, z2)

]
. (4.3)

Following the algorithm of the Hori method for noncanonical systems, one finds from
zero-th-order equation, (2.9), that

Z∗(0) =
[
ζ2
−ζ1

]
. (4.4)

Applying Proposition 3.1, it follows that the undisturbed system (3.2) is given by

ζ̇1 = ζ2, ζ̇2 = −ζ1, (4.5)

general solution of which can be written in terms of the exponential matrix as [2]:

[
ζ1
ζ2

]
= eEt

[
c1
c2

]
, (4.6)

where

eEt =
[
cos t sin t
− sin t cos t

]
, (4.7)

and E is the symplectic matrix:

E =
[
0 1
−1 0

]
, (4.8)

and ci, i = 1, 2, are constants of integration. The Jacobian matrix Δζ associated with the
solution (4.6) is then given by

Δζ = eEt, (4.9)

with inverse Δ−1
ζ

= e−Et = ΔT
ζ
, since Δζ is an orthogonal matrix.

In view of (4.6), the functions Ψ(m)
j defined at each order of the algorithm (see (2.13)

or (3.7)) are expressed by Fourier series with multiples of t as arguments such that the vector
function Ψ(m)

I can be written as

Ψ(m)
I =

∞∑

k=0

⎡
⎢⎣
a
(m)
k,I

cos kt + b
(m)
k,I

sin kt

c
(m)
k,I

cos kt + d
(m)
k,I

sin kt

⎤
⎥⎦, (4.10)
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where the coefficients a(m)
k,I , b

(m)
k,I , c

(m)
k,I , and d

(m)
k,I are functions of the constants ci, i = 1, 2. The

Fourier series can also be put in matrix form:

Ψ(m)
I =

∞∑

k=0

(
eEktA

(m)
k,I + e−EktB(m)

k,I

)
, (4.11)

with

A
(m)
k,I

=
1
2

⎡
⎢⎣
a
(m)
k,I − d

(m)
k,I

b
(m)
k,I + c

(m)
k,I

⎤
⎥⎦, B

(m)
k,I

=
1
2

⎡
⎢⎣
a
(m)
k,I + d

(m)
k,I

c
(m)
k,I − b

(m)
k,I

⎤
⎥⎦. (4.12)

The subscript I is introduced to denote the first simplified algorithm.
Substituting (4.9) and (4.11) into (3.13), one finds

Z
∗(m)
I = eEt

∂

∂t

{
e−Et

[
teEtA

(m)
1,I + periodic terms

]

s

}
= eEtA

(m)
1,I . (4.13)

On the other hand,

〈
e−EtΨ(m)

I

〉
= A

(m)
1,I , (4.14)

where 〈〉 stands for the mean value of the function.
Therefore, from (4.9), (4.13), and (4.14), it follows that

Z
∗(m)
I = eEt

〈
e−EtΨ(m)

I

〉
= Δζ

〈
Δ−1

ζ Ψ(m)
I

〉
. (4.15)

The second equation of the general algorithm, (3.14) can be simplified as described
bellow.

From (3.14), (4.14), and (4.15), one finds

teEtA
(m)
1,I = Δζ

∫〈
Δ−1

ζ Ψ(m)
I

〉
dt =

⌊
ΔζD

(m)
I + Δζ

∫
Δ−1

ζ Ψ(m)
I dt

⌋

s

. (4.16)

On the other hand,

ΔζD
(m)
I + Δζ

∫
Δ−1

ζ Ψ(m)
I dt =

⌊
ΔζD

(m)
I + Δζ

∫
Δ−1

ζ Ψ(m)
I dt

⌋

p

+ teEtA
(m)
1,I . (4.17)

Thus, introducing (4.16) and (4.17) into (3.14), one finds

T
(m)
I =

⌊
ΔζD

(m)
I + Δζ

∫
Δ−1

ζ Ψ(m)
I dt

⌋

p

= ΔζD
(m)
I + Δζ

∫⌊
Δ−1

ζ Ψ(m)
I −

〈
Δ−1

ζ Ψ(m)
I

〉⌋
dt. (4.18)
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Equations (4.15) and (4.18) define the first simplified form of the general algorithm
applicable to the nonlinear oscillations problems described by (4.1)with x and ẋ as elements
of vector z.

Finally, we note that (4.15) satisfies the tractability condition (3.9) up to order m. In
order to show this equivalence, one proceeds as follows. Since, from (4.14), 〈Δ−1

ζ Ψ(m)
I 〉 does

not depend explicitly on the time t, it follows that

∂Z∗(m)

∂t
=

∂Δζ

∂t

〈
Δ−1

ζ Ψ(m)
I

〉
= JΔζ

〈
Δ−1

ζ Ψ(m)
I

〉
= JZ∗(m). (4.19)

Using Proposition 3.1 and taking into account that J = ∂Z
∗(0)
j /∂ζk, this equation can be put in

the following form:

[
Z∗(m), Z(0)

]

j
=

∂Z
∗(m)
j

∂t
−

n∑

k=1

∂Z
∗(0)
j

∂ζk
Z

∗(m)
k

= 0, j = 1, 2, (4.20)

which is the tractability condition (3.9) up to order m.

Remark 4.1. It should be noted that (4.15) and (4.18) for determining the vector functions
Z

∗(m)
I and T

(m)
I , respectively, are invariant with respect to the form of the general solution

of the undisturbed system described by Z∗(0). This means that if the general solution of the
undisturbed system is written in terms of a second set of constants of integration, for instance,
if this solution is given by

ζ1 = c cos(t + θ),

ζ2 = −c sin(t + θ),
(4.21)

where c and θ denote new constants of integration, then Z
∗(m)
I and T

(m)
I are determined

through (4.15) and (4.18), with the Jacobian matrix Δζ given by

Δζ =
[
cos(t + θ) −c sin(t + θ)
− sin(t + θ) −c cos(t + θ)

]
. (4.22)

This result can be proved as follows. The two sets of constants of integration (c1, c2) and (c, θ)
are related through the following transformation:

c2 = c21 + c22,

tan θ = −c2
c1
.

(4.23)

In view of this transformation, the Jacobian matrix Δ1
ζ can be written in terms of the Jacobian

matrix Δ2
ζ as

Δ1
ζ = Δ2

ζΔC, (4.24)
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where the superscripts 1 and 2 are introduced to denote the form of the general solution of
the undisturbed system described by Z∗(0) with respect to the set of constants of integration
(c1, c2) and (c, θ), respectively. ΔC is the Jacobian matrix of the transformation. SinceΔC does
not depend on the time t, it follows from (4.15) and (4.18) that

Z
∗(m)
I = Δ1

ζ

〈(
Δ1

ζ

)−1
Ψ1

I

(m)
〉

= Δ2
ζΔC

〈
Δ−1

C

(
Δ2

ζ

)−1
Ψ2

I

(m)
〉

= Δ2
ζΔCΔ−1

C

〈(
Δ2

ζ

)−1
Ψ2

I

(m)
〉

= Δ2
ζ

〈(
Δ2

ζ

)−1
Ψ2

I

(m)
〉
,

T
(m)
I = Δ1

ζD
1
I

(m)
+ Δ1

ζ

∫[(
Δ1

ζ

)−1
Ψ1

I

(m) −
〈(

Δ1
ζ

)−1
Ψ1

I

(m)
〉]

dt

= Δ2
ζΔCD

1
I

(m)
+ Δ2

ζΔC

∫[
Δ−1

C

(
Δ2

ζ

)−1
Ψ2

I

(m) −
〈
Δ−1

C

(
Δ2

ζ

)−1
Ψ2

I

(m)
〉]

dt

= Δ2
ζΔCD

1
I

(m)
+ Δ2

ζΔCΔ−1
C

∫[(
Δ2

ζ

)−1
Ψ2

I

(m) −
〈(

Δ2
ζ

)−1
Ψ2

I

(m)
〉]

dt

= Δ2
ζD

2
I

(m)
+ Δ2

ζ

∫[(
Δ2

ζ

)−1
Ψ2

I

(m) −
〈(

Δ2
ζ

)−1
Ψ2

I

(m)
〉]

dt.

(4.25)

Finally, we note that the general solution given by (4.21) is more suitable in practical
applications than the general solution given by (4.6), that, in turn, is more suitable for
theoretical purposes.

4.2. Simplified Algorithm II

In this section, a second simplified algorithm is derived from the general one. Introducing the
transformation of variables (x, ẋ) → (c′, θ′) defined by the following equations

x = c′ cos
(
t + θ′),

ẋ = −c′ sin(t + θ′),
(4.26)

equation (4.1) is transformed into

dc′

dt
= −εf(c′ cos(t + θ′),−c′ sin(t + θ′)) sin

(
t + θ′),

dθ′

dt
= −ε 1

c′
f
(
c′ cos

(
t + θ′),−c′ sin(t + θ′)) cos

(
t + θ′).

(4.27)

These differential equations are the well-known variation of parameters equations associated
to the second-order differential equation (4.1). Equation (4.27) define a nonautonomous
system of differential equations.

The sets (c, θ) and (c′, θ′), defined, respectively in (4.21) and (4.26), have different
meanings in the theory: in (4.21), c and θ are constants of integration of the general solution
of the new undisturbed system described by Z∗(0)(ζ1, ζ2); in (4.26), c′ and θ′ are new
variables which represent the constants of integration of the general solution of the original
undisturbed system described by Z(0)(z1, z2) in the variation of parameter method. These
sets, (c, θ) and (c′, θ′), are connected through a near identity transformation.
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Remark 4.2. It should be noted that a second transformation of variables involving a fast
phase, (x, ẋ) → (c′, φ′), can also be defined. This second transformation is given by

x = c′ cos φ′,

ẋ = −c’sinφ′.
(4.28)

In this case, (4.1) is transformed into

dc′

dt
= −εf(c’cosφ′,−c’sinφ′) sinφ′,

dφ′

dt
= 1 − ε

1
c′
f
(
c’cosφ′,−c’sinφ′) cosφ′.

(4.29)

These equations define an autonomous system of differential equations. In what follows, the
first set of variation of parameters equations, (4.27), will be considered.

Now, introducing the variables z1 = c′ and z2 = θ′, one gets from (4.27) that

Z(0) =
[
0
0

]
,

Z(1) =

⎡
⎢⎢⎣

−f(z1 cos(t + z2),−z1 sin(t + z2)) sin(t + z2)

− 1
z1

f(z1 cos(t + z2),−z1 sin(t + z2)) cos(t + z2)

⎤
⎥⎥⎦.

(4.30)

Applying Proposition 3.1, it follows that the undisturbed system (3.2) is given by

ζ̇1 = 0, ζ̇2 = 0, (4.31)

and its general solution is very simple,

ζi = ci, i = 1, 2, (4.32)

where ci, i = 1, 2, are constants of integration. The Jacobian matrix Δζ associated with this
general solution is also very simple, and it is given by

Δζ = I, (4.33)

where I is the identity matrix.
Substituting (4.33) into (3.13) and (3.14), it follows that

Z
∗(m)
II =

∂

∂t

{[
D

(m)
II +

∫
Ψ(m)

II dt

]

s

}
,

T
(m)
II =

[
D

(m)
II +

∫
Ψ(m)

II dt

]

p

.
(4.34)

The subscript II is introduced to denote the second simplified algorithm.
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Equation (4.34) can be put in a more suitable form as follows. In view of (4.30), the
functions Ψ(m)

j defined at each order of the algorithm (see (2.13) or (3.7)) are expressed by

Fourier series with multiples of t + z2 as arguments such that the vector function Ψ(m)
II can be

written as

Ψ(m)
II =

∞∑

k=0

⎡
⎢⎣
a
(m)
k,II cos k(t + c2) + b

(m)
k,II sin k(t + c2)

c
(m)
k,II cos k(t + c2) + d

(m)
k,II sin k(t + c2)

⎤
⎥⎦, (4.35)

where the coefficients a
(m)
k,II

, b(m)
k,II

, c(m)
k,II

, and d
(m)
k,II

are functions of the constant c1. The vector

function Ψ(m)
II can also be put in matrix form:

Ψ(m)
II =

∞∑

k=0

(
eEk(t+c2)A

(m)
k,II

+ e−Ek(t+c2)B(m)
k,II

)
, (4.36)

with

A
(m)
k,II

=
1
2

⎡
⎢⎣
a
(m)
k,II

− d
(m)
k,II

b
(m)
k,II

+ c
(m)
k,II

⎤
⎥⎦, B

(m)
k,II

=
1
2

⎡
⎢⎣
a
(m)
k,II

+ d
(m)
k,II

c
(m)
k,II

− b
(m)
k,II

⎤
⎥⎦. (4.37)

Note that Ψ(m)
II is very similar to Ψ(m)

I , defined by (4.11). They represent different forms of
Fourier series of Ψ(m), but they are not the same, since they involve different sets of arbitrary
constants of integration.

Thus, it follows from (4.36) that

D
(m)
II +

∫
Ψ(m)

II dt = D
(m)
II +

(
A

(m)
0,II + B

(m)
0,II

)
t + periodic terms, (4.38)

with the periodic terms given by

∞∑

k=1

(
(Ek)−1eEk(t+c2)A(m)

k,II + (−Ek)−1e−Ek(t+c2)B(m)
k,II

)
. (4.39)

Therefore,

[
D

(m)
II +

∫
Ψ(m)

II dt

]

s

= D
(m)
II +

(
A

(m)
0,II + B

(m)
0,II

)
t,

[
D

(m)
II +

∫
Ψ(m)

II dt

]

p

=
∞∑

k=1

(
(Ek)−1eEk(t+c2)A(m)

k,II
+ (−Ek)−1e−Ek(t+c2)B(m)

k,II

)
.

(4.40)
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Substituting (4.40) into (4.34), one finds

Z
∗(m)
II = A

(m)
0,II + B

(m)
0,II =

〈
Ψ(m)

II

〉
, (4.41)

T
(m)
II = D

(m)
II +

∫(
Ψ(m)

II −
〈
Ψ(m)

II

〉)
dt. (4.42)

Note that D(m)
II depends only on c1 = ζ1.

It should be noted that (4.41) and (4.42) can be straightforwardly obtained from (3.12)
by applying the averaging principle if D

(m)
II is assumed to be zero, since in this second

approach:

J(t) =

⎛

⎝
∂Z

∗(0)
j

∂ζk

⎞

⎠ = O, (4.43)

where O denotes the null matrix. Thus, the general algorithm defined by (3.13) and (3.14) is
equivalent to the averaging principle usually applied in the theory of nonlinear oscillations
[5, 7].

Remark 4.3. Equations (4.41) and (4.42) are also obtained, if the second set of variation of
parameters equations is considered (see Remark 4.2). In this case, the undisturbed system
(3.2) is given by

ζ̇1 = 0, ζ̇2 = 1, (4.44)

with general solution defined by

ζ1 = c1, ζ1 = t + c2, (4.45)

and Jacobian matrix Δζ = I.
Finally, we note that (4.41) is the tractability condition (3.9) up to orderm. Since 〈Ψ(m)

II 〉
does not depend explicitly on the time t, it follows that

∂Z
∗(m)
j

∂t
=
[
Z∗(m), Z(0)

]

j
= 0, j = 1, 2, (4.46)

which is the tractability condition (3.9) up to order m.

5. Application to Nonlinear Oscillations Problems

In order to illustrate the application of the simplified algorithms, two examples are presented.
The noncanonical version of the Hori method will be applied in determining second-order
asymptotic solutions for van der Pol and Duffing equations. For the van der Pol equation,
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two different choices of the vector D(m) will be made, and two generating functions T (m)

will be determined, one of these generating functions is the same function obtained by Hori
[4] through a different approach, and, the other function gives the well-known averaged
variation of parameters equations in the theory of nonlinear oscillations obtained through
Krylov-Bogoliubovmethod [5]. It should be noted that the solution presented byHori defines
a new system of differential equations with a different frequency for the phase in comparison
with the solution obtained by Ahmed and Tapley [7] and by Nayfeh [5], using different
perturbation methods. For the Duffing equation, only one generating function is determined,
and the second simplified algorithm gives the same generating function obtained through
Krylov-Bogoliubov method.

The section is organized in two subsections: in the first subsection, the asymptotic solu-
tions are determined through the first simplified algorithm, and, in the second subsection,
they are determined through the second simplified algorithm.

5.1. Determination of Asymptotic Solutions through Simplified Algorithm I

5.1.1. Van der Pol Equation

Consider the well-known van der Pol equation:

ẍ + ε
(
x2 − 1

)
ẋ + x = 0. (5.1)

Introducing the variables z1 = x and z2 = ẋ, this equation can be written in the form:

dz1
dt

= z2,
dz1
dt

= −z1 − ε
(
z21 − 1

)
z2. (5.2)

Thus

Z(0) =
[
z2
−z1

]
, (5.3)

Z(1) =
[

0
−(z21 − 1

)
z2

]
. (5.4)

As described in preceding paragraphs, two different choices ofD(m) will be made, and
two generating functions T (m) will be determined. Firstly, we present the solution obtained
by Hori [4].

(1) First Asymptotic Solution: Hori’s [4] Solution

Following the simplified algorithm I defined by (4.15) and (4.18), the first-order terms Z∗(1)

and T (1) are calculated as follows.
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Introducing the general solution given by (4.21) of the undisturbed system described
by Z∗(0)(ζ1, ζ2) into (5.4), with ζ replacing z, one gets

Z(1) =

⎡

⎣
0(

−c + 1
4
c3
)
sin(t + θ) +

1
4
c3 sin 3(t + θ)

⎤

⎦. (5.5)

Computing Δ−1
ζ
Z(1),

Δ−1
ζ Z(1) =

⎡
⎢⎢⎣

1
2
c

(
1 − 1

4
c2
)
− 1
2
c cos 2(t + θ) +

1
8
c3 cos 4(t + θ)

1
2

(
1 − 1

2
c2
)
sin 2(t + θ) − 1

8
c2 sin 4(t + θ)

⎤
⎥⎥⎦, (5.6)

and taking its secular part, one finds

〈
Δ−1

ζ Z(1)
〉
=

⎡

⎣
1
2
c

(
1 − 1

4
c2
)

0

⎤

⎦. (5.7)

From (4.15) and (4.22), it follows that Z∗(1) is given by

Z∗(1) =

⎡
⎢⎢⎣

1
2
c

(
1 − 1

4
c2
)
cos(t + θ)

−1
2
c

(
1 − 1

4
c2
)
sin(t + θ)

⎤
⎥⎥⎦. (5.8)

In view of (4.21), Z∗(1) can be written explicitly in terms of the new variables ζ1 and ζ2 as
follows:

Z∗(1) =

⎡
⎢⎢⎣

1
2
ζ1

(
1 − 1

4
(
ζ21 + ζ22

))

1
2
ζ2

(
1 − 1

4
(
ζ21 + ζ22

))

⎤
⎥⎥⎦. (5.9)

To determine T (1), the indefinite integral
∫�Δ−1

ζ Z(1) − 〈Δ−1
ζ Z(1)〉	dt is calculated:

∫[
Δ−1

ζ Z(1) −
〈
Δ−1

ζ Z(1)
〉]

dt =

⎡
⎢⎢⎣

−1
4
c sin 2(t + θ) +

1
32

c3 sin 4(t + θ)

−
(
1
4
− 1
8
c2
)
cos 2(t + θ) +

1
32

c2 cos 4(t + θ)

⎤
⎥⎥⎦. (5.10)



16 Mathematical Problems in Engineering

Thus, from (4.18), it follows that T (1) is given by

T (1) =

⎡
⎢⎢⎣

−1
4
c

(
1 − 1

4
c2
)
sin(t + θ) − 1

32
c3 sin 3(t + θ)

1
4
c

(
1 − 1

4
c2
)
cos(t + θ) − 3

32
c3 cos 3(t + θ)

⎤
⎥⎥⎦ + ΔζD

(1). (5.11)

In view of (4.21), T (1) can be written explicitly in terms of the new variables ζ1 and ζ2 as
follows:

T (1) =

⎡
⎢⎢⎣

1
4
ζ2

(
1 +

1
8
(
ζ21 + ζ22

)) − 1
8
ζ32

1
4
ζ1

(
1 +

7
8
(
ζ21 + ζ22

)) − 3
8
ζ31

⎤
⎥⎥⎦ + ΔζD

(1), (5.12)

with ΔζD
(1) put in the form:

ΔζD
(1) =

⎡
⎢⎣
d
(1)
1 ζ1 + d

(1)
2 ζ2

d
(1)
1 ζ2 − d

(1)
2 ζ1

⎤
⎥⎦, (5.13)

being d(1)
i = d

(1)
i (c), i = 1, 2,D(1)

1 = cd
(1)
1 , andD

(1)
2 = d

(1)
2 . The auxiliary vector d(1) is introduced

in order to simplify the calculations, and, it is calculated in the second-order approximation
as described below.

Following the algorithm of the Hori method described in Section 2, the second-order
equation, (2.11), involves the term Ψ(2) given by

Ψ(2) =
1
2

[
Z(1) + Z∗(1), T (1)

]
. (5.14)

The determination of Ψ(2) is very arduous. The generalized Poisson brackets must be
calculated in terms of ζ1 and ζ2 through (2.12), and, the general solution of the undisturbed
system, defined by (3.1), must be introduced. It should be noted that d(1)

i , i = 1, 2, in (5.12)
are functions of the new variables ζ1 and ζ2 through c2 = ζ

2
1 + ζ22. So, their partial derivatives
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must be considered in the calculation of the generalized Poisson brackets. After lengthy
calculations performed using MAPLE software, one finds

(
Δ−1

ζ Ψ(2)
)

1
=
(

7
64

c3 − 3
128

c5
)
sin 2(t + θ)

− 1
32

c3 sin 4(t + θ) − 1
128

c5 sin 6(t + θ)

+ d
(1)
1

(
−1
4
c3 +

1
8
c3 cos 4(t + θ)

)

+ d
(1)
2

(
1
2
c sin 2(t + θ) − 1

4
c3 sin 4(t + θ)

)

+
dd

(1)
1

dζ1

(
−1
4

(
c2 − 1

4
c4
)
cos(t + θ)

)

+
dd

(1)
1

dζ2

(
3
4

(
c2 − 1

4
c4
)
sin(t + θ) − 1

8
c4 sin 3(t + θ)

)
,

(
Δ−1

ζ Ψ(2)
)

2
= −1

8
+

3
16

c2 − 11
256

c4 −
(

1
32

c2 +
1
64

c4
)
cos 2(t + θ)

+
(
− 1
32

c2 +
1

128
c4
)
cos 4(t + θ) − 1

128
c4 cos 6(t + θ)

+ d
(1)
1

(
−1
4
c2 sin 2(t + θ) − 1

8
c2 sin 4(t + θ)

)

+ d
(1)
2

((
1
2
− 1
4
c2
)
cos 2(t + θ) − 1

4
c2 cos 4(t + θ)

)

+
dd

(1)
2

dζ1

(
−1
4

(
c − 1

4
c3
)
cos(t + θ)

)

+
dd

(1)
2

dζ2

(
3
4

(
c − 1

4
c3
)
sin(t + θ) − 1

8
c3 sin 3(t + θ)

)
.

(5.15)

In order to obtain the same result presented by Hori [4] for the new system of
differential equations and the near-identity transformation, the following choice is made for
the auxiliary vector d(1). Taking

d(1) =

⎡

⎣
0

−1
4
+

1
16

c2

⎤

⎦, (5.16)

it follows from (5.15) that

〈
Δ−1

ζ Ψ(2)
〉
=

⎡

⎣
0

−1
8
+
1
8
c2 − 7

256
c4

⎤

⎦. (5.17)
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From (4.15), (4.21), and (5.17), one finds

Z∗(2) =

⎡
⎢⎢⎣

−1
8
ζ2

(
1 − (ζ21 + ζ22

)
+

7
32
(
ζ21 + ζ22

)2
)

1
8
ζ1

(
1 − (ζ21 + ζ22

)
+

7
32
(
ζ21 + ζ22

)2
)

⎤
⎥⎥⎦. (5.18)

In view of the choice the auxiliary vector d(1), (5.12) can be simplified, and T (1) is then
given by

T (1) =

⎡
⎢⎢⎣

1
32

ζ2
(
3ζ21 − ζ22

)

1
32

ζ1
(
16 − 7ζ21 + 5ζ22

)

⎤
⎥⎥⎦. (5.19)

Computing the indefinite integral
∫�Δ−1

ζ
Ψ(2) − 〈Δ−1

ζ
Ψ(2)〉	dt and substituting the

general solution of the new undisturbed system, it follows that T (2) is given by

T (2) =

⎡
⎢⎢⎣

1
16

ζ1 − 5
64

ζ31 +
13
768

ζ51 +
1
96

ζ31ζ
2
2 +

11
768

ζ1ζ
4
2

− 1
16

ζ2 +
3
64

ζ21ζ2 +
1
16

ζ32 −
29
768

ζ2ζ
4
1 −

5
192

ζ21ζ
3
2 −

7
768

ζ52

⎤
⎥⎥⎦ + ΔζD

(2), (5.20)

with ΔζD
(2) put in the form:

ΔζD
(2) =

⎡
⎢⎣
d
(2)
1 ζ1 + d

(2)
2 ζ2

d
(2)
1 ζ2 − d

(2)
2 ζ1

⎤
⎥⎦, (5.21)

being d
(2)
i = d

(2)
i (c), i = 1, 2, D(2)

1 = cd
(2)
1 , and D

(2)
2 = d

(2)
2 . D(2) is obtained from the third-order

approximation.
In order to get the same result presented by Hori [4], one finds, repeating the

procedure described in the preceding paragraphs, that the auxiliary vector d(2) must be taken
as follows:

d(2) =

⎡
⎢⎣
− 1
16

+
15
256

c2 − 7
512

c4

0

⎤
⎥⎦. (5.22)

Accordingly, T (2) is given by

T (2) =

⎡
⎢⎢⎣

5
1536

ζ51 −
13
768

ζ31ζ
2
2 +

1
1536

ζ1ζ
4
2 −

5
256

ζ31 +
15
256

ζ1ζ
2
2

− 35
1536

ζ52 −
41
768

ζ21ζ
3
2 −

79
1536

ζ2ζ
4
1 +

31
256

ζ32 +
27
256

ζ21ζ2 −
1
8
ζ2

⎤
⎥⎥⎦. (5.23)
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The new system of differential equations and the generating function are given, up to
the second-order of the small parameter, by

dζ1
dt

= ζ2 + ε
1
2
ζ1

(
1 − 1

4

(
ζ21 + ζ22

))
− ε2

1
8
ζ2

(
1 −

(
ζ21 + ζ22

)
+

7
32

(
ζ21 + ζ22

)2)
,

dζ2
dt

= −ζ1 + ε
1
2
ζ2

(
1 − 1

4

(
ζ21 + ζ22

))
+ ε2

1
8
ζ1

(
1 −

(
ζ21 + ζ22

)
+

7
32

(
ζ21 + ζ22

)2)
,

(5.24)

T1 = ε
1
32

ζ2
(
3ζ21 − ζ22

)
+ ε2

(
5

1536
ζ51 −

13
768

ζ31ζ
2
2 +

1
1536

ζ1ζ
4
2 −

5
256

ζ31 +
15
256

ζ1ζ
2
2

)
,

T2 = ε
1
32

ζ1
(
16 − 7ζ21 + 5ζ22

)
+ ε2

(
− 35
1536

ζ52 −
41
768

ζ21ζ
3
2 −

79
1536

ζ2ζ
4
1 +

31
256

ζ32 +
27
256

ζ21ζ2 −
1
8
ζ2

)
.

(5.25)

These results are in agreement with the ones obtained by Hori [4] using a different approach.
Following da Silva Fernandes [1], the Lagrange variational equations—equations of

variation of parameters—for the noncanonical version of the Hori method are given by

dC

dt
= Δ−1

ζ R∗, (5.26)

where R∗ =
∑

m=1 ε
mZ∗(m), and C is the n × 1 vector of constants of integration of the

general solution of the new undisturbed system (3.3). In view of (4.15), Lagrange variational
equations can be put in the form:

dC

dt
=
∑

m=1

εm
〈
Δ−1

ζ Ψ(m)
I

〉
. (5.27)

Accordingly, the Lagrange variational equations for the new system of differential equations,
(5.24), are given by

dc

dt
=

εc

2

(
1 − 1

4
c2
)
, (5.28a)

dθ

dt
= ε2

(
−1
8
+
1
8
c2 − 7

256
c4
)
. (5.28b)

The solution of the new system of differential equations can be obtained by
introducing the solution of the above variational equations into (4.21).

The originalvariables x and ẋ are calculated through (2.6), and the second-order
asymptotic solution is

x = ζ1 + ε
1
32

ζ2
(
3ζ21 − ζ22

)
+ ε2

(
− 43
6144

ζ51 +
29
3072

ζ31ζ
2
2 −

59
6144

ζ1ζ
4
2 +

1
256

ζ31 +
9
256

ζ1ζ
2
2

)
,

ẋ = ζ2+ε
1
32

ζ1
(
16−7ζ21+5ζ22

)
+ε2

(
− 155
6144

ζ52−
35
3072

ζ32ζ
2
1−

715
6144

ζ2ζ
4
1+

29
256

ζ32+
53
256

ζ2ζ
2
1−

1
8
ζ2

)
.

(5.29)

Equations (5.29) define exactly the same solution presented by Hori.
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(2) Second Asymptotic Solution

Now, let us to consider a different choice of the auxiliary vector d(1). Taking d(1) as a null
vector, it follows straightforwardly from (5.15) that

〈
Δ−1

ζ Ψ(2)
〉
=

⎡

⎣
0

−1
8
+

3
16

c2 − 11
256

c4

⎤

⎦. (5.30)

Thus, from (4.15), (4.21), (5.28a), and (5.28b), one finds

Z∗(2) =

⎡
⎢⎢⎣

−1
8
ζ2

(
1 − 3

2
(
ζ21 + ζ22

)
+
11
32
(
ζ21 + ζ22

)2
)

1
8
ζ1

(
1 − 3

2
(
ζ21 + ζ22

)
+
11
32
(
ζ21 + ζ22

)2
)

⎤
⎥⎥⎦. (5.31)

Since d(1) is a null vector, (5.12) simplifies, and T (1) is given by

T (1) =

⎡
⎢⎢⎣

1
4
ζ2

(
1 +

1
8
(
ζ21 + ζ22

)) − 1
8
ζ32

1
4
ζ1

(
1 +

7
8
(
ζ21 + ζ22

)) − 3
8
ζ31

⎤
⎥⎥⎦. (5.32)

Now, repeating the procedure described in the previous section, that is, computing
the indefinite integral

∫�Δ−1
ζ
Ψ(2) − 〈Δ−1

ζ
Ψ(2)〉	dt, substituting the general solution of the new

undisturbed system defined by (4.21), and taking d(2) is a null vector, it follows that T (2) is
given by

T (2) =

⎡
⎢⎢⎣

− 3
64

ζ31 +
1
16

ζ1ζ
2
2 +

5
384

ζ51 −
1
192

ζ31ζ
2
2 +

7
384

ζ1ζ
4
2

− 7
64

ζ21ζ2 +
1
16

ζ32 −
1

384
ζ2ζ

4
1 −

1
96

ζ21ζ
3
2 −

5
384

ζ52

⎤
⎥⎥⎦. (5.33)
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So, the new system of differential equations and the generating function are given, up
to the second-order of the small parameter ε, by

dζ1
dt

= ζ2 + ε
1
2
ζ1

(
1 − 1

4

(
ζ21 + ζ22

))
− ε2

1
8
ζ2

(
1 − 3

2

(
ζ21 + ζ22

)
+
11
32

(
ζ21 + ζ22

)2)
,

dζ2
dt

= −ζ1 + ε
1
2
ζ2

(
1 − 1

4

(
ζ21 + ζ22

))
+ ε2

1
8
ζ1

(
1 − 3

2

(
ζ21 + ζ22

)
+
11
32

(
ζ21 + ζ22

)2)
,

(5.34)

T1 = ε

(
1
4
ζ2

(
1 +

1
8

(
ζ21 + ζ22

))
− 1
8
ζ32

)

+ ε2
(
− 3
64

ζ31 +
1
16

ζ1ζ
2
2 +

5
384

ζ51 −
1

192
ζ31ζ

2
2 +

7
384

ζ1ζ
4
2

)
,

T2 = ε

(
1
4
ζ1

(
1 +

7
8

(
ζ21 + ζ22

))
− 3
8
ζ31

)

+ ε2
(
− 7
64

ζ21ζ2 +
1
16

ζ32 −
1
384

ζ2ζ
4
1 −

1
96

ζ21ζ
3
2 −

5
384

ζ52

)
.

(5.35)

The Lagrange variational equations for the new system of differential equations,
defined by (5.34), are given by

dc

dt
=

εc

2

(
1 − 1

4
c2
)
, (5.36a)

dθ

dt
= ε2

(
−1
8
+

3
16

c2 − 11
256

c4
)
. (5.36b)

These differential equations are the well-known averaged equations obtained through
Krylov-Bogoliubov method [5]. Note that (5.28b) and (5.36b) define the phase θwith slightly
different frequencies.

As described in the preceding subsection, the solution of the new system of differential
equations, defined by (5.34), can be obtained by introducing the solution of the above
variational equations into (4.21).

The original variables x and ẋ are calculated through (2.6), which provides the
following second-order asymptotic solution,

x = ζ1 + ε
1
4
ζ2

(
1 +

1
8

(
ζ21 − 3ζ22

))

+ ε2
(

65
6144

ζ51 +
65
3072

ζ31ζ
2
2 −

95
6144

ζ1ζ
4
2 −

1
16

ζ31 +
1
16

ζ1ζ
2
2 +

1
32

ζ1

)
,

ẋ = ζ2 + ε
1
4
ζ1

(
1 − 1

8

(
5ζ21 − 7ζ22

))

+ ε2
(
− 143
6144

ζ52 +
193
3072

ζ32ζ
2
1 −

271
6144

ζ2ζ
4
1 +

5
64

ζ32 −
7
64

ζ2ζ
2
1 +

1
32

ζ2

)
.

(5.37)

Finally, note that (5.29) and (5.37) give different second-order asymptotic solution for
van der Pol equation.
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5.1.2. Duffing Equation

Consider the well-known Duffing equation:

ẍ + εx3 + x = 0. (5.38)

Introducing the variables z1 = x and z2 = ẋ, this equation can be written in the form:

dz1
dt

= z2,
dz2
dt

= −z1 − εz31. (5.39)

Thus,

Z(1) =
[

0
−z31

]
. (5.40)

Following the simplified algorithm I and repeating the procedure described in
Section 5.1.1, the first-order terms Z∗(1) and T (1) are obtained as follows. Introducing (4.21)
into (5.40), and computing the secular part, one gets

〈
Δ−1

ζ Z(1)
〉
=

⎡

⎣
0
3
8
c2

⎤

⎦. (5.41)

Thus, from (4.15) and (5.41), it follows that Z∗(1) is given by

Z∗(1) =

⎡
⎢⎢⎣

−3
8
c3 sin(t + θ)

−3
8
c3 cos(t + θ)

⎤
⎥⎥⎦. (5.42)

In view of (4.21), Z∗(1) can be written explicitly in terms of the new variables ζ1 and ζ2:

Z∗(1) =

⎡
⎢⎢⎣

3
8
ζ2
(
ζ21 + ζ22

)

−3
8
ζ1
(
ζ21 + ζ22

)

⎤
⎥⎥⎦. (5.43)

Calculating the indefinite integral
∫�Δ−1

ζ Z(1) − 〈Δ−1
ζ Z(1)〉	dt, one finds

∫[
Δ−1

ζ Z(1) −
〈
Δ−1

ζ Z(1)
〉]

dt =

⎡
⎢⎢⎣

− 1
32

c3(4 cos 2(t + θ) + cos 4(t + θ))

1
32

c2(8 sin 2(t + θ) + sin 4(t + θ))

⎤
⎥⎥⎦. (5.44)
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Multiplying this result by Δζ, it follows, according to (4.18), that T (1) is given by

T (1) =

⎡
⎢⎢⎣

− 3
16

c3 cos(t + θ) +
1
32

c3 cos 3(t + θ)

− 3
16

c3 sin(t + θ) − 3
32

c3 sin 3(t + θ)

⎤
⎥⎥⎦ + ΔζD

(1). (5.45)

TakingD(1) as a null vector and using (4.21), T (1) can be written explicitly in terms of the new
variables ζ1 and ζ2 as follows:

T (1) =

⎡
⎢⎢⎣

− 5
32

ζ31 −
9
32

ζ1ζ
2
2

15
32

ζ21ζ2 +
3
32

ζ32

⎤
⎥⎥⎦. (5.46)

In the second-order approximation, one finds after lengthy calculations using MAPLE
software:

Ψ(2) =

⎡
⎢⎢⎣

− 69
256

ζ41ζ2 +
27
128

ζ21ζ
3
2 +

27
256

ζ52

165
256

ζ51 +
69
128

ζ31ζ
2
2 −

27
256

ζ42ζ1

⎤
⎥⎥⎦. (5.47)

Repeating the procedure described in the above paragraphs, one finds

〈
Δ−1

ζ Ψ(2)
〉
=

⎡

⎣
0

− 51
256

c4

⎤

⎦,

Z∗(2) =

⎡
⎢⎢⎣

− 51
256

ζ2
(
ζ21 + ζ22

)2

51
256

ζ1
(
ζ21 + ζ22

)2

⎤
⎥⎥⎦.

(5.48)

Taking D(2) as a null vector, it follows that

T (2) =

⎡
⎢⎢⎣

19
256

ζ51 +
13
32

ζ31ζ
2
2 +

65
256

ζ1ζ
4
2

− 95
256

ζ2ζ
4
1 −

13
32

ζ21ζ
3
2 −

13
256

ζ52

⎤
⎥⎥⎦. (5.49)
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The new system of differential equations and the generating function are given, up to
the second-order of the small parameter ε, by

dζ1
dt

= ζ2 + ε
3
8
ζ2
(
ζ21 + ζ22

)
− ε2

51
256

ζ2
(
ζ21 + ζ22

)2
,

dζ2
dt

= −ζ1 − ε
3
8
ζ1
(
ζ21 + ζ22

)
+ ε2

51
256

ζ1
(
ζ21 + ζ22

)2
,

(5.50)

T1 = −ε
(

5
32

ζ31 +
9
32

ζ1ζ
2
2

)
+ ε2

(
19
256

ζ51 +
13
32

ζ31ζ
2
2 +

65
256

ζ1ζ
4
2

)
,

T2 = ε

(
15
32

ζ21ζ2 +
3
32

ζ32

)
+ ε2

(
− 95
256

ζ2ζ
4
1 −

13
32

ζ21ζ
3
2 −

13
256

ζ52

)
.

(5.51)

The Lagrange variational equations for the new system of differential equations,
defined by (5.50), are given by

dc

dt
= 0,

dθ

dt
= ε

3
8
c2 − ε2

51
256

c4.

(5.52)

These differential equations are the well-known equations obtained through Krylov-
Bogoliubov method [5].

As described in Section 5.1.1, the solution of the new system of differential equations,
defined by (5.50), can be obtained by introducing the solution of the above variational
equations into (4.21).

The original variables x and ẋ are calculated through (2.6), which provides the
following second-order asymptotic solution:

x = ζ1 − ε
1
32

ζ1
(
5ζ21 + 9ζ22

)
+ ε2

1
2048

(
227ζ51 + 742ζ31ζ

2
2 + 547ζ1ζ42

)
,

ẋ = ζ2 + ε
3
32

ζ2
(
5ζ21 + ζ22

)
− ε2

1
2048

(
77ζ52 + 922ζ32ζ

2
1 + 685ζ2ζ41

)
.

(5.53)

These equations are in agreement with the solution obtained through the canonical version
of the Hori method [6].

5.2. Determination of Asymptotic Solutions through Simplified Algorithm II

5.2.1. Van der Pol Equation

For the van der Pol equation, the function f(x, ẋ) is written in terms of the variables z1 = c′

and z2 = θ′ by

f(x, ẋ) = f(z1 cos(t + z2),−z1 sin(t + z2)) = −
(
z21 co s

2(t + z2) − 1
)
z1 sin(t + z2). (5.54)
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Thus, it follows from (4.30) that

Z(1) =

⎡
⎢⎢⎣

1
2
z1

(
1 − 1

4
z21 − cos 2(t + z2) +

1
4
z21 cos 4(t + z2)

)

1
2

(
1 − 1

2
z21

)
sin 2(t + z2) − 1

8
z21 sin 4(t + z2)

⎤
⎥⎥⎦. (5.55)

As mentioned before, two different choices of D(m) will be made, and two generating
functions will be determined.

(1) First Asymptotic Solution

Following the simplified algorithm II defined by (4.41) and (4.42), the first-order terms Z∗(1)

and T (1) are calculated as follows.
Taking the secular part of Z(1), with ζ replacing z, one finds

Z∗(1) =

⎡

⎣
1
2
ζ1

(
1 − 1

4
ζ21

)

0

⎤

⎦, (5.56)

and, integrating the remaining part,

T (1) =

⎡
⎢⎢⎣

−1
4
ζ1 sin 2(t + ζ2) +

1
32

ζ31 sin 4(t + ζ2)

−1
4

(
1 − 1

2
ζ21

)
cos 2(t + ζ2) +

1
32

ζ21 cos 4(t + ζ2)

⎤
⎥⎥⎦ +D(1), (5.57)

with D
(1)
i = D

(1)
i (ζ1), i = 1, 2.

Following the algorithm of the Hori method described in Section 2, the second-order
equation, (2.11), involves the term Ψ(2) given by

Ψ(2) =
1
2

[
Z(1) + Z∗(1), T (1)

]
. (5.58)
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After tedious lengthy calculations using MAPLE software, one finds

Ψ(2)
1 =

(
7
64

ζ31 −
3

128
ζ51

)
sin 2(t + ζ2)

− 1
32

ζ31 sin 4(t + ζ2) − 1
128

ζ51 sin 6(t + ζ2)

+D
(1)
1

(
1
2
− 3
8
ζ21 −

1
4
cos 2(t + ζ2) +

3
16

ζ21 cos 4(t + ζ2)
)

+D
(1)
2

(
1
2
ζ1 sin 2(t + ζ2) − 1

4
ζ31 sin 4(t + ζ2)

)

+
dD

(1)
1

dζ1

(
−1
2
ζ1 +

1
8
ζ31 +

1
4
ζ1 cos 2(t + ζ2) − 1

16
ζ31 cos 4(t + ζ2)

)
,

Ψ(2)
2 = −1

8
+

3
16

ζ21 −
11
256

ζ41 −
(

1
32

ζ21 +
1
64

ζ41

)
cos 2(t + ζ2)

+
(
− 1
32

ζ21 +
1
128

ζ41

)
cos 4(t + ζ2) − 1

128
ζ41 cos 6(t + ζ2)

+D
(1)
1

(
−1
4
ζ1 sin 2(t + ζ2) − 1

8
ζ1 sin 4(t + ζ2)

)

+D
(1)
2

((
1
2
− 1
4
ζ21

)
cos 2(t + ζ2) − 1

4
ζ21 cos 4(t + ζ2)

)

+
dD

(1)
2

dζ1

(
−1
2
ζ1 +

1
8
ζ31 +

1
4
ζ1 cos 2(t + ζ2) − 1

16
ζ31 cos 4(t + ζ2)

)
.

(5.59)

In order to obtain the same averaged Lagrange variational equations given by (5.28a)
and (5.28b), D(1) must be taken as

D(1) =

⎡
⎢⎣

0

−1
4
+

1
16

ζ21

⎤
⎥⎦. (5.60)

Thus, it follows that

Z∗(2) =

⎡
⎢⎣

0

−1
8
+
1
8
ζ21 −

7
256

ζ41

⎤
⎥⎦. (5.61)

In view of the choice of D(1), T (1) is then given by

T (1) =

⎡
⎢⎢⎣

−1
4
ζ1 sin 2(t + ζ2) +

1
32

ζ31 sin 4(t + ζ2)

−1
4
+

1
16

ζ21 −
1
4

(
1 − 1

2
ζ21

)
cos 2(t + ζ2) +

1
32

ζ21 cos 4(t + ζ2)

⎤
⎥⎥⎦. (5.62)
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Repeating the procedure for the third-order approximation, and, taking

D(2) =

⎡

⎣−
1
16

ζ1 +
15
256

ζ31 −
7

512
ζ51

0

⎤

⎦, (5.63)

one finds

T
(2)
1 =

1
1536

(
−96ζ1 + 90ζ31 − 21ζ51

)
+
(

1
16

ζ1 − 9
128

ζ31 +
9
768

ζ51

)
cos 2(t + ζ2)

+
(
− 1
128

ζ31 +
1

256
ζ51

)
cos 4(t + ζ2) +

1
768

ζ51 cos 6(t + ζ2),

T
(2)
2 =

(
− 1
16

+
3
64

ζ21 −
1
64

ζ41

)
sin 2(t + ζ2) +

(
1

128
ζ21 −

1
256

ζ41

)
sin 4(t + ζ2)

− 1
768

ζ41 sin 6(t + ζ2).

(5.64)

The new system of differential equations is given, up to the second-order of the small
parameter ε, by

dζ1
dt

= ε
1
2
ζ1

(
1 − 1

4
ζ21

)
, (5.65a)

dζ2
dt

= ε2
(
−1
8
+
1
8
ζ21 −

7
256

ζ41

)
. (5.65b)

These differential equations are exactly the same equations given by (5.28a) and (5.28b).
The generating function is obtained from (5.62), (5.64), and it is given, up to the

second-order of the small parameter ε, by

T1 = ε

(
−1
4
ζ1 sin 2(t + ζ2) +

1
32

ζ31 sin 4(t + ζ2)
)

+ ε2
(

1
1536

(
−96ζ1 + 90ζ31 − 21ζ51

)
+
(

1
16

ζ1 − 9
128

ζ31 +
9

768
ζ51

)
cos 2(t + ζ2)

+
(
− 1
128

ζ31 +
1

256
ζ51

)
cos 4(t + ζ2) +

1
768

ζ51 cos 6(t + ζ2)
)
,

T2 = ε

(
1
16

ζ21 −
1
4

(
1 − 1

2
ζ21

)
cos 2(t + ζ2) +

1
32

ζ21 cos 4(t + ζ2)
)

+ ε2
((

− 1
16

+
3
64

ζ21 −
1
64

ζ41

)
sin 2(t + ζ2) +

(
1

128
ζ21 −

1
256

ζ41

)

× sin 4(t + ζ2) − 1
768

ζ41 sin 6(t + ζ2)
)
.

(5.66)
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The original variables x and ẋ are calculated through (2.7), which provides, up to the
second-order of the small parameter, the following solution:

x = ζ1 cos(t + ζ2) − ε
1
32

ζ31 sin 3(t + ζ2)

+ ε2
{[

3
256

ζ31 −
9

2048
ζ51

]
cos(t + ζ2) −

[
1
128

ζ31 +
1

1024
ζ51

]
cos 3(t + ζ2)

− 5
3072

ζ51 cos 5(t + ζ2)
}
,

ẋ = −ζ1 sin(t + ζ2) + ε

{[
1
2
ζ1 − 1

8
ζ31

]
cos(t + ζ2) − 3

32
ζ31 cos 3(t + ζ2)

}

+ ε2
{[

1
8
ζ1 − 35

256
ζ31 +

65
2048

ζ51

]
sin(t + ζ2) −

[
3
128

ζ31 −
15

1024
ζ51

]

× sin 3(t + ζ2) +
25

3072
ζ51 sin 5(t + ζ2)

}
,

(5.67)

with ζ1 and ζ2 given by the solution of (5.65a) and (5.65b).
Note that (5.29) and (5.67) give the same second-order asymptotic solution for the van

der Pol equation. Recall that ζ1 and ζ2 have different meaning in these equations, but they are
related through an equation similar to (4.21).

(2) Second Asymptotic Solution

Now, let us to takeD(1) andD(2) as null vectors. Equations (5.59) simplifies, andZ∗(2) is given
by

Z∗(2) =

⎡

⎣
0

−1
8
+

3
16

ζ21 −
11
256

ζ41

⎤

⎦. (5.68)

The functions T (1) and T (2) are then given by

T (1) =

⎡
⎢⎢⎣

−1
4
ζ1 sin 2(t + ζ2) +

1
32

ζ31 sin 4(t + ζ2)

−1
4

(
1 − 1

2
ζ21

)
cos 2(t + ζ2) +

1
32

ζ21 cos 4(t + ζ2)

⎤
⎥⎥⎦,

T
(2)
1 = −

(
7
128

ζ31 −
3
256

ζ51

)
cos 2(t + ζ2) +

1
128

ζ31 cos 4(t + ζ2)

+
1

768
ζ51 cos 6(t + ζ2),

T
(2)
2 = −

(
1
64

ζ21 +
1

128
ζ41

)
sin 2(t + ζ2) +

(
− 1
128

ζ21 +
1
512

ζ41

)
sin 4(t + ζ2)

− 1
768

ζ41 sin 6(t + ζ2).

(5.69)
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The new system of differential equations is obtained from (5.56) and (5.68), and it is
given, up to the second-order of the small parameter, by

dζ1
dt

= ε
1
2
ζ1

(
1 − 1

4
ζ21

)
,

dζ2
dt

= ε2
(
−1
8
+

3
16

ζ21 −
11
256

ζ41

)
.

(5.70)

These differential equations are exactly the same equations given by (5.36a) and (5.36b).
The generating function is obtained from (5.69), and it is given, up to the second-order

of the small parameter ε, by

T1 = ε

(
−1
4
ζ1 sin 2(t + ζ2) +

1
32

ζ31 sin 4(t + ζ2)
)

+ ε2
(
−
(

7
128

ζ31 −
3
256

ζ51

)
cos 2(t + ζ2) +

1
128

ζ31 cos 4(t + ζ2) +
1
768

ζ51 cos 6(t + ζ2)
)
,

T2 = ε

(
−1
4

(
1 − 1

2
ζ21

)
cos 2(t + ζ2) +

1
32

ζ21 cos 4(t + ζ2)
)

+ ε2
(
−
(

1
64

ζ21 +
1

128
ζ41

)
sin 2(t + ζ2) +

(
− 1
128

ζ21 +
1
512

ζ41

)
sin 4(t + ζ2)

− 1
768

ζ41 sin 6(t + ζ2)
)
.

(5.71)

Equations (5.71) are in agreement with the solution obtained by Ahmed and Tapley [7]
through a different integration theory for the Hori method.

A second-order asymptotic solution for the original variables x and ẋ is calculated
through (2.7), and it is given by

x = ζ1 cos(t + ζ2) + ε

{[
−1
4
ζ1 +

1
16

ζ31

]
sin(t + ζ2) − 1

32
ζ31 sin 3(t + ζ2)

}

+ ε2
{[

1
32

ζ1 − 1
32

ζ31 +
15
2048

ζ51

]
cos(t + ζ2) +

[
− 1
32

ζ31 +
5

1024
ζ51

]

× cos 3(t + ζ2) − 5
3072

ζ51 cos 5(t + ζ2)
}
,

ẋ = −ζ1 sin(t + ζ2) + ε

{[
1
4
ζ1 − 1

16
ζ31

]
cos(t + ζ2) − 3

32
ζ31 cos 3(t + ζ2)

}

+ ε2
{[

− 1
32

ζ1 − 1
32

ζ31 +
25
2048

ζ51

]
sin(t + ζ2) +

[
3
64

ζ31 −
3

1024
ζ51

]

× sin 3(t + ζ2) +
25
3072

ζ51 sin 5(t + ζ2)
}
,

(5.72)

with ζ1 and ζ2 given by the solution of (5.70).
As before, note that (5.37) and (5.72) give the same second-order asymptotic solution

for the van der Pol equation. Recall that ζ1 and ζ2 have different meaning in these equations,
but they are related through an equation similar to (4.21).
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5.2.2. Duffing Equation

For the Duffing equation, the function f(x, ẋ) is written in terms of the variables z1 = c
′
and

z2 = θ′, by

f(x, ẋ) = f(z1 cos(t + z2),−z1 sin(t + z2)) = −z31 co s3(t + z2). (5.73)

Thus, it follows from (4.30) that

Z(1) =

⎡
⎢⎢⎣

1
4
z31 sin 2(t + z2) +

1
8
z31 sin 4(t + z2)

3
8
z21 +

1
2
z21 cos 2(t + z2) +

1
8
z21 cos 4(t + z2)

⎤
⎥⎥⎦. (5.74)

Following the simplified algorithm II and repeating the procedure described in
Section 5.2.1, the first-order terms Z∗(1) and T (1) are obtained as follows. Taking the secular
part of Z∗(1), with ζ replacing z, and, integrating the remaining part, one finds

Z∗(1) =

⎡
⎢⎣

0

3
8
ζ21

⎤
⎥⎦, (5.75)

T (1) =

⎡
⎢⎢⎣

− 1
32

ζ31(4 cos 2(t + ζ2) + cos 4(t + ζ2))

1
32

ζ21(8 sin 2(t + ζ2) + sin 4(t + ζ2))

⎤
⎥⎥⎦. (5.76)

In the second-order approximation, one finds

Ψ(2) =

⎡
⎢⎢⎣

1
256

ζ51(−33 sin 2(t + ζ2) − 12 sin 4(t + ζ2) + 3 sin 6(t + ζ2))

1
256

ζ41(−51 − 99 cos 2(t + ζ2) − 18 cos 4(t + ζ2) + 3 cos 6(t + ζ2))

⎤
⎥⎥⎦. (5.77)

Taking the secular part of Ψ(2), and, integrating the remaining part, one finds

Z∗(2) =

⎡

⎣
0

− 51
256

ζ41

⎤

⎦, (5.78)

T (2) =

⎡
⎢⎢⎣

1
512

ζ51(33 cos 2(t + ζ2) + 6 cos 4(t + ζ2) − cos 6(t + ζ2))

1
512

ζ41(−99 sin 2(t + ζ2) − 9 sin 4(t + ζ2) + sin 6(t + ζ2))

⎤
⎥⎥⎦. (5.79)
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The new system of differential equations is given, up to the second-order of the small
parameter ε, by

dζ1
dt

= 0,

dζ2
dt

= ε
3
8
ζ21 − ε2

51
256

ζ41.

(5.80)

These differential equations are exactly the same equations given by (5.52).
The generating function is obtained from (5.76) and (5.79), and it is given, up to the

second-order of the small parameter ε, by

T1 = −ε 1
32

ζ31(4 cos 2(t + ζ2) + cos 4(t + ζ2))

+ ε2
1
512

ζ51(33 cos 2(t + ζ2) + 6 cos 4(t + ζ2) − cos 6(t + ζ2)),

T2 = ε
1
32

ζ21(8 sin 2(t + ζ2) + sin 4(t + ζ2))

+ ε2
1
512

ζ41(−99 sin 2(t + ζ2) − 9 sin 4(t + ζ2) + sin 6(t + ζ2)).

(5.81)

A second-order asymptotic solution for the original variables x and ẋ is calculated
through (2.7), and it is given by

x = ζ1 cos(t + ζ2) + ε
1
32

ζ31(−6 cos(t + ζ2) + cos 3(t + ζ2))

+ ε2
1

2048
ζ51(303 cos(t + ζ2) − 78 cos 3(t + ζ2) + 2 cos 5(t + ζ2)),

ẋ = −ζ1 sin(t + ζ2) − ε
1
32

ζ31(6 sin(t + ζ2) + 3 sin 3(t + ζ2))

+ ε2
1

2048
ζ51(249 sin(t + ζ2) + 162 sin 3(t + ζ2) − 10 sin 5(t + ζ2)).

(5.82)

These equations are in agreement with the solution obtained through the canonical version
of the Hori method [6]. Note that (5.53) and (5.82) give the same second-order asymptotic
solution for the Duffing equation. Recall that ζ1 and ζ2 have different meaning in these
equations, but they are related through an equation similar to (4.21).

6. Conclusions

In this paper, the Hori method for noncanonical systems is applied to theory of nonlinear
oscillations. Two different simplified algorithms are derived from the general algorithm
proposed by Sessin. It has been shown that themth-order terms T (m)

j andZ
∗(m)
j that define the

near-identity transformation and the new system of differential equations, respectively, are
not uniquely determined, since the algorithms involve at each order arbitrary functions of the
constants of integration of the general solution of the undisturbed system. This arbitrariness
is an intrinsic characteristic of perturbation methods, since some kind of averaging principle
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must be applied to determine these functions. The simplified algorithms are then applied in
determining second-order asymptotic solutions of two well-known equations in the theory
of nonlinear oscillations: van der Pol and Duffing equations. For van der Pol equation, the
appropriate use of the arbitrary functions allows the determination of the solution presented
by Hori. This solution defines a new system of differential equations with a different
frequency for the phase in comparison with the solution obtained by Ahmed and Tapley,
who used a different approach for determining the near-identity transformation and the new
system of differential equations for the Hori method, and, with the solution obtained by
Nayfeh through the method of averaging. For the Duffing equation, only one generating
function is determined, and the second simplified algorithm gives the same generating
function obtained through Krylov-Bogoliubov method.
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