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This paper proposes a mathematical model of the multirotor system with a flexible coupling on
spring supports on Lagrange’s approach, which has taken into account the effects of dynamic an-
gular misalignment and mass unbalance. Then its nonlinear dynamic behaviors of the system are
discussed based on the method of multiple scales and numerical technique, respectively. The
results show that the responses of the system in lateral directions contain a similar component to
that of the mass unbalanced system on both the vibrating frequency and amplitude and involve the
typical nonlinear components such as the ones from some combined frequencies; the results also
reveal that the numerical agreements on the above-mentioned methods are perfect for the transient
responses.

1. Introduction

The misalignment of rotor system is one of the most common mechanical faults in rotating
machinery, which can cause excessive vibrations, produce bothering noises, and create da-
maging forces on rotors, bearings, and couplings. For large-scale rotating system, there are
several reasons that lead to the misalignments such as the various deformations of rotors,
uncoaxiality of bearings and couplings. According to the geometric relationship between the
two rotors, the types of misalignment may be divided into the parallel and angle ones or their
combination. In practical engineering, generally the misalignment appears in some main
form, for example, the ground subsidence or looseness and improper assembly of the rotor
system can induce the faults of angle misalignment. In fact, even a multirotor system is well
aligned in static equilibrium state; it still presents the dynamic misalignment or offset in a
rotor system which couples by a flexible coupling.
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During the past decades, the dynamics of effects on the rotor misalignments has been
studied in a variety of aspects, that is, firstly Gibbons [1] established a model to predict the
additional forces due to the misalignment of the gear coupling, Dewell and Mitchell [2] anal-
yzed the lateral vibration frequencies for a misaligned rotor system which were based on
the experiment, and Li and Yu [3] discussed the coupled lateral and torsional vibration of a
rotor-bearing system with the misalignment by a gear coupling. In paper [4], Al-Hussain and
Redmond studied the effect of parallel misalignment on the lateral and torsional responses of
two-rotor system, and in [5], Al-Hussain considered the effect of angular misalignment on the
stability of rotors connected by a flexible mechanical coupling. Prabhakar et al. [6] dealt with
the transient responses of a rotor system with a rotor misalignment by using the finite ele-
ment method. Recently, Hili et al. [7] established a linear dynamic model of a multirotor
system which couples a Cardan joint by using the finite element method, in which both of the
faults misalignment and unbalance were considered. Lees [8] studied the misalignment of a
rigidly coupled rotor which mounted on idealized linear bearings with a linear time-vary-
ing stiffness. Li [9] developed a mathematical model of a multirotor system by taking into
account the effects of parallel misalignment and unbalance of rotors, in which the misalig-
nment was dealt with as a holonomic constraint, and Slim et al. [10] paid attention to the
dynamic behaviors of misaligned rotor system mounted on two journal bearings. Patel and
Darpe [11] investigated vibrating responses of misaligned rotors modeled by using Timo-
shenko beam elements with six degrees of freedom, and in paper [12], they studied the freq-
uency spectra of the system supported on rolling element bearings by experiment. In 2010,
Redmond [13] developed a dynamic modal of misaligned shafts, which included both the
static angular and parallel misalignment.

For the multirotor system, flexible couplings are commonly used to transmit torque
from one rotor to another when the adjacent shafts are slightly misaligned. And yet it is re-
quired coaxially during the installation for avoiding the additional forces on bearings, for ex-
ample, the force is not permitted to be produced for a flexible coupling under static condi-
tions; however, it is aligned or coaxial in this state, the coupling still appears a dynamic mis-
alignment at work [14], that is, a dynamic angular deformation is generated on the flexible
coupling duo to the dynamic load. In the above discussions, while much work has been done
on the dynamics of the system that an initial or static misalignment exists, the little attention
has been paid to the dynamic one. Accordingly, the purpose of the present paper is to explain
the vibration mechanism and dynamic characteristics of rotor system with a flexible coupling
after considering the effect on the dynamic angular misalignment.

2. Motion Equations

The proposed model of the multirotor system connected by a flexible coupling is shown in
Figure 1, in whichm1 andm2 denote the lumped masses, respectively; k1 and k2 represent the
stiffness of the bearings; kt is the equivalent angular stiffness for the flexible couple. For sim-
plification, the following assumptions upon the system of concern will be used hereinafter:
(1) the two rotors are rigid; (2) the bearings are isotropic on dynamic performances; (3) the
misaligned angle between the adjacent rotors is small.

The coordinate system oxyz is set up in the static equilibrium position of rotor system
as shown in Figure 1. Let O1(x1, y1, 0) and O2(x2, y2, z2) be the coordinates of the mass
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Figure 1: Schematic diagram of angular-misaligned rotor system.

centers of disc 1 and disc 2, respectively, then they yield

x1 = x + e1 cos(Ωt),
y1 = y + e1 sin(Ωt),

z1 = 0,
(2.1)

x2 = x + l sin θ cos(Ωt) + e2 cos θ cos
(
Ωt + γ

)
,

y2 = y + l sin θ sin(Ωt) + e2 cos θ sin
(
Ωt + γ

)
,

z2 = l + l cos θ,

(2.2)

where x and y are the displacements of disc 1 at the geometric center C1; θ is the angle bet-
ween adjacent rotors; Ω is the rotating speed; γ is the initial phase angle; l is the rotor length;
e1, e2 are the mass unbalances. If the generalized coordinates x, y, and θ are introduced, then
(2.2) describes a nonstationary holonomic constraint because the displacement varies with
time t. Generally, the offset h of disc 2 is larger than e2; therefore, the terms related to e2 are
ignored in the paper.

The kinetic energy of the system can be written as

T =
2∑

i=1

1
2
mi

(
ẋ2
i + ẏ

2
i + ż

2
i

)
, (2.3)

and the potential energy is

U =
2∑

i=1

1
2
ki
(
x2
i + y

2
i

)
+

1
2
ktθ

2. (2.4)

For simplifying the representation furthermore, letm1 = m2 = m, k1 = k2 = k, and e1 = e, then
substituting (2.1) and (2.2) into (2.3) and (2.4), and based on Lagrange’s equation

d

dt

(
∂T

∂q̇j

)

− ∂T

∂qj
+
∂U

∂qj
= 0, qj =

[
x y θ

]T
, (2.5)
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the motion equation in the generalized coordinates becomes

2mẍ +mlθ̈ cos θ cosΩt −mlθ̇2 sin θ cosΩt − 2mlΩθ̇ cos θ sinΩt −mlΩ2 sin θ cosΩt

+ 2kx + kl sin θ cosΩt = meΩ2 cosΩt,

2mÿ +mlθ̈ cos θ sinΩt −mlθ̇2 sin θ sinΩt + 2mlΩθ̇ cos θ cosΩt −mlΩ2 sin θ sinΩt

+ 2ky + kl sin θ sinΩt = meΩ2 sinΩt,

ml2θ̈ +mlẍ cos θ cosΩt +mlÿ cos θ sinΩt −ml2Ω2 sin θ cos θ + klx cos θ cosΩt

+ kly cos θ sinΩt + kl2 sin θ cos θ + ktθ = 0.

(2.6)

The above equations are second-order ordinary differential ones with variable coefficients,
which is obviously the characteristic of strong nonlinearity. Based on the theory of differential
equations, it is difficult to solve. By applying the inverse operation, (2.6) can be expressed as

ẍ − 1
ml(1 + sin2θ)

[
ml2θ̇2 sin θ cosΩt + 2ml2Ωθ̇ cos θ sinΩt −ml2Ωθ̇ co s3θ sinΩt

+ml2Ω2sin3θ cosΩt − kl2sin3θ cosΩt − klx
(

1 + sin2θ
)
+ ktθ cos θ cosΩt

+meΩ2lcosΩt
]
= 0,

ÿ − 1
ml(1 + sin2θ)

[
ml2θ̇2 sin θ sinΩt − 2ml2Ωθ̇ cos θ cosΩt +ml2Ωθ̇cos3θ cosΩt

+ml2Ω2sin3θ sinΩt − kl2sin3θ sinΩt − kly
(

1 + sin2θ
)
+ ktθ cos θ sinΩt

+meΩ2l sinΩt
]
= 0,

θ̈ +
1

ml2(1 + sin2θ)

[
ml2θ̇2 sin θ cos θ −ml2Ω2 sin θ cos θ + kl2 sin θ cos θ + 2ktθ

+meΩ2l cos θ
]
= 0.

(2.7)

Let X = x/r, Y = y/r be the nondimensional displacements, in which r is the radius of rotor;
E = e/r, L = l/r are the nondimensional mass eccentricity and rotor length, respectively;
τ = Ωt is the nondimensional time; ω0 =

√
k/mΩ2 , ωt =

√
kt/ml2Ω2 are the nondimensional

angular frequencies and denote dx/dt = x′(dX/dτ) = X′ . . .; accordingly, (2.7) can be cast
into the following nondimensional form:

X′′ − 1
(1 + sin2θ)

[
L(θ′)2 sin θ cos τ + 2Lθ′ cos θ sin τ − Lθ′cos3θ sin τ −

(
ω2

0 − 1
)
L sin3θ cos τ

−ω2
0X

(
1 + sin2θ

)
+ω2

t Lθcosθcosτ + Ecosτ
]
= 0,



Mathematical Problems in Engineering 5

Y ′′ − 1
(1 + sin2θ)

[
L(θ′)2 sin θ sin τ − 2Lθ′ cos θ cos τ + Lθ′cos3θ cos τ

−
(
ω2

0 − 1
)
Lsin3θ sin τ −ω2

0Y
(

1 + sin2θ
)
+ω2

t Lθ cos θ sin τ + E sin τ
]
= 0,

θ′′ +
1

(1 + sin2θ)

[
(
θ′
)2 sin θ cos θ +

(
ω2

0 − 1
)

sin θ cos θ + 2ω2
t θ +

E

L
cos θ

]
= 0.

(2.8)

Equation (2.8) is a parametrically excited system with three degrees of freedom on the
theory of nonlinear vibration, in which ω0 and ωt are the frequency ratios, respectively; ε is
the nondimensional mass eccentricity L is the nondimensional length. In the above equation,
the third one is decoupled with the first two equations, that is, the generalized coordinate θ
is totally independent of X and Y thereby it can be solved in the first place.

In the case of the initial angular misalignment, it can be assumed that θ = α + ϕ(t) in
which α is the constant angle and ϕ(t) is its perturbation. After substituting θ into (2.8) and
expanding the relevant terms in the Taylor series, after neglecting the higher-order ones the
governing equations that is of the initial or static angular misalignment between two rotors
are obtained

X′′ − 1
(1 + sin2α)

[
L(ϕ′)2 sinα cos τ + Lϕ′

(
1 + sin2α

)
cosα sin τ −

(
ω2

0 − 1
)
Lsin3α cos τ

−ω2
0

(
1 + sin2α

)
X +ω2

t Lα cosα cos τ + E cos τ
]

− ϕ

(1 + sin2α)

[
L(ϕ′)2 cosα cos τ + Lϕ′

(
3cos2α − 2

)
sinα sin τ − 2ω2

0X cosα sinα

−ω2
t L(α sinα − cosα) cos τ + 3L

(
1 −ω2

0

)
sin2α cosα cos τ

]

+
ϕ sin 2α

(1 + sin2α)2

[
L(ϕ′)2 sinα cos τ + Lϕ′

(
1 + sin2α

)
cosα sin τ +ω2

t αL cosα cos τ

−ω2
0

(
1 + sin2α

)
X + L

(
1 −ω2

0

)
sin3α cos τ + E cos τ

]
= 0,

Y ′′ − 1
(1 + sin2α)

[
L(ϕ′)2 sinα sin τ − Lϕ′

(
1 + sin2α

)
cosα cos τ −

(
ω2

0 − 1
)
Lsin3α sin τ

−ω2
0

(
1 + sin2α

)
Y +ω2

t Lα cosα sin τ + E sin τ
]

− ϕ

(1 + sin2α)

[
L(ϕ′)2 cosα sin τ + Lϕ′

(
2 − 3 co s2α

)
sinα cos τ − 2ω2

0Y cosα sinα

−ω2
t L(α sinα − cosα) sin τ + 3L

(
1 −ω2

0

)
sin2α cosα sin τ

]

+
ϕ sin 2α

(1 + sin2α)2

[
L(ϕ′)2 sinα sin τ − Lϕ′

(
1 + sin2α

)
cosα cos τ +ω2

t αL cosα sin τ

−ω2
0

(
1 + sin2α

)
Y + L

(
1 −ω2

0

)
sin3α sin τ + E sin τ

]
= 0,
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ϕ′′ +
1

(1 + sin2α)

[
(
ϕ′)2 sinα cosα + 2ω2

t α +
(
ω2

0 − 1
)

sinα cosα +
E

L
cosα

]

+
ϕ

(1 + sin2α)

{
(ϕ′)2 cos 2α + 2ω2

t +
(
ω2

0 − 1
)

cos 2α − E

L
sinα

− ϕsin2α

(1 + sin2α)2

[
(ϕ′)2 sinα cosα + 2ω2

t α +
(
ω2

0 − 1
)

sinα cosα

+
E

L
cosα

]}
= 0.

(2.9)

3. The Approximation Solution

For discussing the vibration mechanism and characteristics of the system conveniently, let α =
0, namely, the initial or static angular misalignment of a flexible coupling vanishes, and only
the dynamic angular misalignment presents in the system, then (2.9) reduces to

X′′ − L(ϕ′)2
ϕ cos τ − Lϕ′ sin τ +ω2

0X −ω2
t Lϕ cos τ = E cos τ,

Y ′′ − L(ϕ′)2
ϕ sin τ + Lϕ′ cos τ +ω2

0Y −ω2
t Lϕ sin τ = E sin τ,

ϕ′′ + (ϕ′)2
ϕ +

(
ω2

0 + 2ω2
t − 1

)
ϕ +

E

L
= 0.

(3.1)

The third of (3.1) is uncoupled with the first two; therefore, it can be simplified as

φ′′ + (φ′)2
φ +�2

0φ = 0, (3.2)

where φ = ϕ + E/L�2, �2
0 = ω2

0 + 2ω2
t − 1.

The method of multiple scales (MMSs) is introduced for the approximation solution
of the nonlinear vibration in this work. For the small angle φ, let T = ωτ and expand φ and ω
[15] as

φ(T, ε) = εφ1(T) + ε3φ3(T), (3.3)

ω = �0 + ε2ω2, (3.4)

where ε stands for a small nondimensional parameter characterizing the amplitude of the
motion. The term ε2φ2(τ) is missing from (3.3) because the nonlinearity appears at O(ε3).
The term εω1 is absent from (3.4) because the frequency is independent of the sign of ε. Sub-
stituting (3.3) and (3.4) into (3.2) and equating coefficients of like powers of ε, after donating
dφ/dT = φ∗, it yields

�2
0
(
φ∗∗

1 + φ1
)
= 0, (3.5)

�2
0
(
φ∗∗

3 + φ3
)
= −2�0ω2φ

∗∗
1 −�2

0
(
φ∗

1

)2
φ1. (3.6)
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The solution of (3.5) is of the form

φ1 = a cos
(
T + β

)
, (3.7)

where a and β are constants; hence, (3.6) becomes

φ∗∗
3 + φ3 =

(
ω2

�0
− 1

4
a2
)
a cos

(
T + β

)
+

1
4
a3 cos

(
3T + 3β

)
. (3.8)

Eliminating the secular term in (3.8) gives ω2 = (1/4)�0a
2, then disregarding the solution of

the homogeneous equation, its solution reduces to

φ3 = −a
3

32
cos

(
3T + 3β

)
. (3.9)

From the equation φ = ϕ + E/L�2, it follows that

ϕ = − E

L�2
0

+ εa cosψ − ε3a3

32
cos 3ψ, (3.10)

in which ψ = ωτ + β, ω = �0(1 + ε2a2/4). If imposing the initial conditions ϕ|τ=0 = 0 and
ϕ∗|τ=0 = 0, then the constants εa and β are obtained

εa cos β − ε3a3

32
cos 3β =

E

L�2
0

,

sin β
(

1 +
3

32
ε2a2 − 3

8
ε2a2 co s2β

)
= 0.

(3.11)

When β = 0, εa yields

εa − ε3a3

32
=

E

L�2
0

. (3.12)

In practice, E/L�2
0 is small, thus the solution becomes β = 0, εa ≈ E/L�2

0 . For example, if
the parameters L = 20.0 and E = 0.03, 0.05, the errors between them can be neglected at all.
The numerical results are shown in Figure 2, which indicate a good agreements under the
con-
cerned parameters.

Generally for the above nonlinear equations, there are six real solutions, in which the
root β = 0, εa ≈ E/L�2 is only satisfied for small oscillation in engineering, that is, the sys-
tematic parameters are considered as ωo = 1.2, ωt = 0.02, L = 20.0, and E = 0.05, accord-

ingly �0 =
√
ω2

0 + 2ω2
t − 1 = 0.664, and after solving (3.11) on Maple, the six real roots of
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εα

E/Lϖ 2

εα
,E

/
(L
ϖ

2 )
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εα
,E

/
(L
ϖ

2 )
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E/Lϖ 2

(b) ωt = 0.02

Figure 2: Numerical results for εa and E/L�2 with increasing ω0 or ωt.

(3.12) are

β = 0, εa = 0.00567 ≈ E

L�2
,

β = 0, εa = −5.65969,

β = 0, εa = 5.65402,

β = π, εa = −0.00567 ≈ − E

L�2
,

β = π, εa = 5.65969,

β = π, εa = −5.65402.

(3.13)

The proves that β = 0, εa ≈ E/L�2 is an available approximate solution, β = 0, and εa =
−5.696, 5.65402 are not almost changed with increasing the parameters ωo and ωt, which are
not suitable for the engineering. Thereby, the former will be paid more attention to the follow-
ing analysis, then expression (3.10) leads to

ϕ =
E

L�2
0

(cos(ωτ) − 1) − 1
32

(
E

L�2
0

)3

cos(3ωτ). (3.14)
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Figure 3: The nondimensional response and its frequency spectrum in x direction when E = 0.05: (a)
response; (b) spectrum.

Substituting expression (3.14) into (3.1), it yields

X′′ +ω2
0X = E

ω2
0 +ω

2
t − 1

�2
0

cos(τ) +
E

�2
0

(
ω2
t cos(ωτ) cos(τ) −ω sin(ωτ) sin(τ)

)
+O

(
E2

)
,

Y ′′ +ω2
0Y = E

ω2
0 +ω

2
t − 1

�2
0

sin τ +
E

�2
0

(
ω2
t cos(ωτ) sin(τ) +ω sin(ωτ) cos(τ)

)
+O

(
E2

)
,

(3.15)

and its general solution gives

X = C1 cosω0τ + C2 sinω0τ + E
ω2

0 +ω
2
t − 1

�2
0

(
ω2

0 − 1
) cos τ

+
E

2�2
0

(
ω2
t +ω

ω2
0 − (ω + 1)2

cos(ω + 1)τ +
ω2
t −ω

ω2
0 − (ω − 1)2

cos(ω − 1)τ

)

+O
(
E2

)
,
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Figure 4: The nondimensional response and its frequency spectrum in y direction when E = 0.05: (a)
response; (b) spectrum.

Y = C3 cosω0τ + C4 sinω0τ + E
ω2

0 +ω
2
t − 1

�2
0

(
ω2

0 − 1
) sin τ

+
E

2�2
0

(
ω2
t +ω

ω2
0 − (ω + 1)2

sin(ω + 1)τ − ω2
t −ω

ω2
0 − (ω − 1)2

sin(ω − 1)τ

)

+O
(
E2

)
,

(3.16)

where ω =
√
ω2

0 + 2ω2
t − 1(1 + (E/2L�2)2), and C1, C2, C3, and C4 are the constants.

If the initial conditions X(0) = X′(0) = 0 and Y (0) = Y ′(0) = 0 are introduced, the con-
stants C1, C2, C3, andC4 can be determined easily; therefore, the responses can be shown to
reduce to

X = −(A + B +D) cosω0τ +A cos τ + B cos(ω + 1)τ +D cos(ω − 1)τ,

Y =
D(ω − 1) − B(ω + 1) −A

ω0
sinω0τ +A sin τ + B sin(ω + 1)τ −D sin(ω − 1)τ,

(3.17)

in which A = E((ω2
0 + ω2

t − 1)/�2
0 (ω

2
0 − 1)), B = E(ω2

t + ω)/2�2
0 (ω

2
0 − (ω + 1)2), and D =

E(ω2
t −ω)/2�2

0 (ω
2
0 − (ω − 1)2).
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Figure 5: The nondimensional response and its frequency spectrum in x direction when E = 0.03: (a)
response; (b) spectrum.

The above solution shows that the response consists of the following components: (a)
the free vibration at natural frequency ω0 of the derived linear system. If the damping is con-
cerned in x and y direction, its amplitude will be decreased exponentially on the theory of
vibration; (b) forced vibration excited by the mass unbalance at the frequency of rotating
speed. When ω0 = 1, that is, the rotating speed coincides with the lateral natural frequency,
the bending resonance of rotor system occurs; (c) the angular motions due to the flexible
coupling, in which the frequencies ω − 1 and ω + 1 are combined by ω and the rotating
speed. It is a typical nonlinear oscillation because the combination resonances exist at ω0 =
ω − 1 and ω0 = ω + 1.

Certainly, it should be noted that the above solution only reveals some dynamic beha-
viors of the rotor system connected to a flexible coupling, and some other characteristics such
as the subharmonic resonances may be emerged if suitable conditions are satisfied.

4. Numerical Analysis

Because (2.8) is a strongly nonlinear system, the numerical technique is preferable. Accord-
ingly, the Runge-Kutta method is carried out to predict the dynamic characteristics in
the present paper. As a nonautonomous system, traditionally (2.8) is discussed on the state
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Figure 6: The nondimensional response and its frequency spectrum in y direction when E = 0.03: (a)
response; (b) spectrum.

space, and hence the three second-order equations can be converted easily to six first-order
ones

X′ = η, Y ′ = ξ, θ′ = ϑ,

η′ =
1

(1 + sin2θ)

[
Lϑ2 sin θ cos τ + 2Lϑ cos θ sin τ − Lϑcos3θ sin τ

−
(
ω2

0 − 1
)
Lsin3θ cos τ −ω2

0X
(

1 + sin2θ
)
+ω2

t Lθcosθcosτ + Ecosτ
]
,

ξ′ =
1

(1 + sin2θ)

[
Lϑ2 sin θ sin τ − 2Lϑ cos θ cos τ + Lϑcos3θ cos τ

−
(
ω2

0 − 1
)
Lsin3θ sin τ −ω2

0Y
(

1 + sin2θ
)
+ω2

t Lθ cos θ sin τ + E sin τ
]
,

ϑ′ = − 1
(1 + sin2θ)

[
ϑ2 sin θ cos θ +

(
ω2

0 − 1
)

sin θ cos θ + 2ω2
t θ +

E

L
cos θ

]
.

(4.1)

For the following calculation, the values of systematic parameters are considered as
ω0 = 1.20, ωt = 0.02, and L = 20, and all the initial generalized displacements and velocities
are set to zero.

Figures 3(a) and 4(a) depict the displacement responses of rotor system in x and y
directions when E = 0.05, respectively, in which the curves are demonstrated by using MMS
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Figure 7: The nondimensional response and its frequency spectrum in x direction when ω0 = 1.20, ωt =
0.50, and E = 0.05: (a) response; (b) spectrum.

and the numerical technique. The results show that the agreements between their responses
are pretty almost at each interval, and thereby it proves that the dynamic behaviors of the
system are in the form of (3.17) under certain initial conditions. Figures 3(b) and 4(b) appear
as the frequency spectra of displacement responses by the numerical method, in which there
are mainly four components from the vibrating frequencies: f1 = (ω−1)/2π = 0.05349, f2 =
1/2π = 0.15915, f3 = ω0/2π = 0.19099, and f4 = (ω + 1)/2π = 0.26482. Actually, it reveals
that the synchronous motion f2 emerges in the responses, which are obviously from the mass
unbalance, and f3 is the natural frequency of the derived linear system as shown in (3.15), f1

and f4 are the combinations between ω/2π and the rotating speed Ω, which occur frequently
for a nonlinear system. Figures 5 and 6 also show the relevant responses and the spectra
when E = 0.03. Figures 7 and 8 illustrate the responses and their spectra when E = 0.05, and
ω0 = 1.20, ωt = 0.50, namely, the angular stiffness of flexible coupling increases these vibra-
tion characteristics display the multifrequency signatures in the rotor system connected a
flexible coupling with a dynamic angular misalignment.

5. Conclusions

The misalignment of rotor system is an important reason which causes mechanical vibration;
a dynamic misalignment or offset of the rotors can be produced at work even the system is
aligned under the static conditions. In this paper, firstly a mathematic model of the multirotor
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Figure 8: The nondimensional response and its frequency spectrum in y direction when ω0 = 1.20, ωt =
0.50, and E = 0.05: (a) response; (b) spectrum.

system with a flexible coupling is established after considering the effect on a dynamic angu-
lar misalignment based on Lagrange’s equation, and it shows that the system is of a para-
metric oscillation with strongly nonlinear characteristics. Then, the method of multiple scales
and Runge-Kutta numerical technique are carried out, respectively. And the results indicate
that the responses in lateral direction consist of some parts, that is, the synchronous vibration
due to the mass unbalance, the free vibration at natural frequency of the derived linear sys-
tem, and the angular motions caused by the flexible coupling at the combined frequencies.
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