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The propagation of Rayleigh and Stoneleywaves in a thermoelastic orthotropic granular half-space
supporting a different layer under the influence of initial stress and gravity field is studied. The
frequency equation of Rayleigh waves in the form of twelfth-order determinantal expression and
the frequency equation of Stoneley waves in the form of eighth-order determinantal expression
are obtained. The standard equation of dispersion is discussed to obtain Rayleigh and Stoneley
waves that have complex roots; the real part gives the velocity of Rayleigh or Stoneley waves but
the imaginary part gives the attenuation coefficient. Finally, the numerical results have been given
and illustrated graphically, and their physical meaning has been explained.

1. Introduction

The propagation of thermoelastic waves in a granularmedium under initial stress and gravity
field has applications in soil mechanics, earthquake science, geophysics, mining engineering,
and so forth. The theoretical outline of the development of the subject from the mid-thirties
was given by Paria [1]. The present paper, however, is based on the dynamics of granular
media as propounded by Oshima [2, 3]. The medium under consideration is discontinuous
such as one composed numerous large or small grains. Unlike a continuous body, each
element or grain cannot only translate but also rotate about its centre of gravity. This motion
is the characteristics of the medium and has an important effect upon the equation of motion
to produce internal friction. It is assumed that the medium contains so many grains that
they will never be separated from each other during the deformation, and that the grain
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has perfect elasticity. The propagation of Rayleigh waves in granular medium was given by
many authors such as Bhattacharyya [4], El-Naggar [5], Ahmed [6, 7], and others. Ahmed
[8] discussed Stoneley waves in a nonhomogeneous granular medium under the influence of
gravity.

The problem of Stoneley waves plays an important role in the earthquake science,
optics, geophysics, and plasma physics. Many authors such as Abd-Alla and Ahmed [9, 10],
El-Naggar et al. [11], Das et al. [12], and others investigated the effect of gravity of the
propagation of surface waves (Stoneley waves and Rayleigh waves) in an elastic solid
medium. Goda [13] illustrated the effect of inhomogeneity and anisotropy on Stoneleywaves;
Abd-Alla et al. [14] discussed Rayleigh waves in a magnetoelastic half-space of orthotropic
material under influence of initial stress and gravity field. Sharma et al. [15] studied the
propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic
half-space with rotation and thermal relaxation. Sharma et al. [16] investigated the problem
of propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic
materials. Sharma and Walia [17] investigated Rayleigh waves in piezothermoelastic
materials. Ting [18] illustrated the surface waves in a rotating anisotropic elastic half-space.
Abd-Alla and Abo-Dahab [19] investigated Rayleigh waves in magneto-thermo-viscoelastic
solid with thermal relaxation times. Recently, Ahmed and Abo-Dahab [20] pointed out
Propagation of Love waves in an orthotropic granular layer under initial stress overlying
a semi-infinite granular medium. Vinh and Seriani [21] illustrated explicit secular equations
of Rayleigh waves in a nonhomogeneous orthotropic elastic medium under the influence
of gravity. Vinh and Seriani [22] discussed the explicit secular equations of Stoneley waves
in a nonhomogeneous orthotropic elastic medium under the influence of gravity. Vinh
[23] discussed the explicit secular equations of Rayleigh waves in elastic media under the
influence of gravity and initial stress. Lo [24] investigated the propagation and attenuation
of Rayleigh waves in a semi-infinite unsaturated poroelastic medium. El-Naggar [25]
investigated the dynamical problem of a generalized thermoelastic granular infinite cylinder
under initial stress. Recently, Abd-Alla et al. [26] investigated Rayleigh waves in generalized
magneto-thermo-viscoelastic granular medium under the influence of rotation, gravity field.

This paper is devoted to study the effect of gravity field and the initial stress on
the propagation of Rayleigh and Stoneley waves in thermoelastic orthotropic granular half-
space supporting a different layer under initial stress and gravity field. The frequency
equations are obtained: the frequency equation of Rayleighwaves in the form of twelfth-order
determinantal expression and the frequency equation of Stoneleywaves in the form of eighth-
order determinantal expression. The standard equation of dispersion is discussed to obtain
the Rayleigh and Stoneley waves that have complex roots; the real part gives the velocity
of Rayleigh or Stoneley waves but the imaginary part gives the attenuation coefficient. The
results obtained are displayed graphically and their physical meaning has been explained.

2. Formulation of the Problem

Let us consider an initially stressed orthotropic granular layer of finite thicknessH overlaying
a semi-infinite orthotropic granular medium. The upper surface of the upper layer is assumed
to be free and horizontal. We take a set of orthogonal Cartesian axes Ox1x2x3 such that
the interface and the free surface of the granular layer resting on the granular half-space of
different material are the planes x3 = H and x3 = 0, respectively, with the origin O being any
point on the interface surface; x3-axis is positive in the direction towards the exterior of the
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half-space, and x1-axis is positive along the direction of Rayleigh waves and Stoneley waves
propagation. Let the both media be under initial compression stress P along x1-axis, with the
influence of gravity and at initial temperature T0. It is assumed that both media exchange
heat freely with their surroundings; an initial stress is produced by a slow process of creep,
where the shear stresses tend to become small or vanish after a long interval of time.

In view of the two-dimensional nature of the problem, we assume that the state of
initial stress is

τ11 = τ33 = τ, τ13 = 0, (2.1)

the equilibrium conditions of the initial stress field are given by [12]

∂τ

∂x1
= 0,

∂τ

∂x3
− ρg = 0. (2.2)

The state of deformation in the granular medium is described by the displacement
vector �U = (u1, 0, u3) of the centre of gravity of a grain and the rotation vector �ξ = (ξ, η, ζ) of
the grain about its centre of gravity. There exist a stress tensor and a couple stress which are
nonsymmetric, that is,

τij /= τji, Mij /=Mji

(
i, j = 1, 2, 3

)
. (2.3)

The stress tensor τij can be expressed as the sum of symmetric and antisymmetric
tensors

τij = σij + σ ′
ij , (2.4)

where

σij =
1
2
(
τij + τji

)
, σ ′

ij =
1
2
(
τij − τji

)
. (2.5)

The symmetric tensor σij = σji is related to the symmetric strain tensor

eij = eji =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)

(2.6)

by the Hook’s law.
The antisymmetric stress σ ′

ij is given by

σ ′
23 = −F ∂ξ

∂t
, σ ′

31 = −F ∂η
∂t
, σ ′

12 = −F ∂ζ
∂t
, σ ′

11 = σ
′
22 = σ

′
33 = 0, (2.7)
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the couple stressMij is given by

Mij =Mνij ,

ν11 =
∂ξ

∂x1
, ν22 = 0, ν33 =

∂ζ

∂x3
, ν23 = 0,

ν31 =
∂ξ

∂x3
, ν12 =

∂

∂x1

(
η +ω2

)
, ν32 =

∂

∂x3

(
η +ω2

)
,

ν13 =
∂ζ

∂x1
, ν21 = 0,

(2.8)

where, ω2 = ∂u1/∂x3 − ∂u3/∂x1.
The six equations of motion are [9, 11, 12]

∂τ11
∂x1

+
∂τ31
∂x3

− P

2
∂ω2

∂x3
− ρg ∂u3

∂x1
= ρ

∂2u1
∂t2

,

∂τ12
∂x1

+
∂τ32
∂x3

= 0,

∂τ13
∂x1

+
∂τ33
∂x3

− P

2
∂ω2

∂x1
+ ρg

∂u1
∂x1

= ρ
∂2u3
∂t2

,

τ23 − τ32 + ∂M11

∂x1
+
∂M31

∂x3
= 0,

τ31 − τ13 + ∂M12

∂x1
+
∂M32

∂x3
= 0,

τ12 − τ21 + ∂M13

∂x1
+
∂M33

∂x3
= 0.

(2.9)

The components of stress for orthotropic body, under the effect of an initial
compression stress P , are given by [11]

τ11 = (c11 + P)
∂u1
∂x1

+ (c13 + P)
∂u3
∂x3

− υ1T, τ33 = c13
∂u1
∂x1

+ c33
∂u3
∂x3

− υ3T,

τ31 = c55
(
∂u1
∂x3

+
∂u3
∂x1

)
− F ∂η

∂t
, τ13 = c55

(
∂u1
∂x3

+
∂u3
∂x1

)
+ F

∂η

∂t
,

(2.10)

where

υ1 = (c11 + c12)α1 + c13α2, υ3 = 2c13α1 + c33α2. (2.11)
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Substituting (2.9) into (2.10), we obtain

(c11 + P)
∂2u1

∂x2
1

+
(
c55 +

P

2

)
∂2u1

∂x2
3

+
(
c13 + c55 +

P

2

)
∂2u3
∂x1∂x3

− ∂

∂x1
(υ1T) − ρg ∂u3

∂x1

− F ∂

∂t

(
∂η

∂x3

)
= ρ

∂2u1
∂t2

,

F
∂

∂t

(
∂ξ

∂x3
− ∂ζ

∂x1

)
= 0,

(
c55 + c13 +

P

2

)
∂2u1
∂x1∂x3

+
(
c55 − P

2

)
∂2u3

∂x2
1

+ c33
∂2u3

∂x2
3

− ∂

∂x3
(υ3T) + ρg

∂u1
∂x1

+ F
∂

∂t

(
∂η

∂x1

)
= ρ

∂2u3
∂t2

,

− 2F
∂ξ

∂t
+∇2(Mξ) = 0, −2F ∂η

∂t
+∇2

[
M

(
η +

∂u1
∂x3

− ∂u3
∂x1

)]
= 0,

− 2F
∂ζ

∂t
+∇2(Mζ) = 0

(2.12)

The heat conduction equation is given by [11]

∇2T − 1
χ

∂T

∂t
− ε∇ ·

(
∂ �U

∂t

)

= 0, (2.13)

where χ = (δ1 + δ2)/2ρs, ε = T0(υ1 + υ3)/(δ1 + δ2).

3. Solution of the Problem

By Helmholtz’s theorem [27], the displacement vector �u can be written in the form of the
potentials φ(x1, x3, t) and ψ(x1, x3, t) which are related to the displacement components u1
and u3 by the relations

u1 =
∂ϕ

∂x1
− ∂ψ

∂x3
, u3 =

∂ϕ

∂x3
+
∂ψ

∂x1
. (3.1)

Substituting (3.1) into (2.12) and (2.13), we get the following wave equations satisfied
by ϕ, ψ, ξ, η, and ζ:

(c11 + P)
∂2ϕ

∂x2
1

+ (c13 + 2c55 + P)
∂2ϕ

∂x2
3

− ρg ∂ψ
∂x1

− υ1T = ρ
∂2ϕ

∂t2
, (3.2)
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∂

∂t

(
∂ζ

∂x1
− ∂ξ

∂x3

)
= 0, (3.3)

(
c55 − P

2

)
∂2ψ

∂x2
1

+
(
c33 − c31 − c55 − P

2

)
∂2ψ

∂x2
3

+ ρg
∂φ

∂x1
+ F

∂η

∂t
= ρ

∂2ψ

∂t2
, (3.4)

∇2ξ − S∂ξ
∂t

= 0, (3.5)

∇2η − S∂η
∂t

− ∇4ψ = 0, (3.6)

∇2ζ − S∂ζ
∂t

= 0, (3.7)

∇2T − 1
χ

∂T

∂t
− ε∇2

(
∂φ

∂t

)
= 0, (3.8)

S =
2F
M

. (3.9)

Eliminating η from (3.4) and (3.6), we get

(
∇2−S ∂

∂t

)[(
c55− P

2

)
∂2ψ

∂x2
1

+
(
c33− c31 − c55 − P

2

)
∂2ψ

∂x2
3

− ρ∂
2ψ

∂t2
+ ρg

∂φ

∂x1

]

+ F ∇4
(
∂ψ

∂t

)
= 0.

(3.10)

Also, T can be eliminated by using (3.8) and (3.9) as follows:

(
∇2 − 1

χ

∂

∂t

)[

(c11 + P)
∂2ϕ

∂x2
1

+ (c13 + 2c55 + P)
∂2ϕ

∂x2
3

− ρg ∂ψ
∂x1

− ρ∂
2ϕ

∂t2

]

− υ1ε∇2
(
∂φ

∂t

)
= 0.

(3.11)

Assuming that

(
ϕ, ψ

)
=
{
ϕ1(x3), ψ1(x3)

}
exp {i(Lx1 − bt)}, (3.12)
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(
ξ, η, ζ

)
=
{
ξ1(x3), η1(x3), ζ(x3)

}
exp {i(Lx1 − bt)}, (3.13)

where b is real positive and L is in general complex.
Substituting (3.13) into (3.3), (3.5), and (3.7), we get

Dξ1 − iLζ1 = 0, (3.14)

D2ξ1 + h2ξ1 = 0, (3.15)

D2ζ1 + h2ζ1 = 0, (3.16)

where h2 = ibS − L2, D ≡ d/dx.
Solutions of (3.15) and (3.16) are

ξ1 = A1e
ihx3 +A2e

−ihx3 , ζ1 = B1e
ihx3 + B2e

−ihx3 , (3.17)

respectively.
From (3.14) and (3.17), we obtain

h
(
A1e

ihx3 −A2e
−ihx3

)
− L

(
B1e

ihx3 − B2e
−ihx3

)
= 0. (3.18)

Equating the coefficients of eihx3 and e−ihx3 to zero in (3.18), we get

A1 =
L

h
B1, A2 = −L

h
B2. (3.19)

Substituting (3.12) and (3.13) into (3.10) and (3.11), we get

[(
c33 − c13 − c55 − P

2
− ibF

)
D4

+
{(

ibS − L2
)(

c33 − c13 − c55 − P

2

)
− L2

(
c55 − P

2

)
+ ρb2 + 2ibFL2

}
D2

+
(
ibS − L2

)(
ρb2 − L2

(
c55 − P

2

)
− ibFL4

)]
ψ1

+ iρgL
[
D2 − L2 + ibS

]
φ1 = 0,

(3.20)
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{
(c13 + 2c55 + P)D4

+
[
ρb2 − L2(c11 + c13 + 2c55 + 2P) + ibυ1ε +

ib

χ
(c13 + 2c55 + P)

]
D2

+
[(

ib

χ
− L2

)(
ρb2 − L2(c11 + P)

)
− ibυ1εL2

]}
φ1

− iρgL
[
D2 − L2 +

ib

χ

]
ψ1 = 0.

(3.21)

The solution of (3.20) and (3.21) has the form

φ1 = Aje
−iλjx3 + Bjeiλjx3 ,

ψ1 = Eje−iλjx3 + Fjeiλjx3
(
j = 3, 4, 5, 6

)
,

(3.22)

where the constants Aj, Bj are related with the constants Ej, Fj , respectively, by means of
(3.20) or (3.21), and λj (j = 3, 4, 5, 6) are taken to be imaginary.

Equating the coefficients of e−iλjx3 , eiλjx3 (j = 3, 4, 5, 6) to zero, we have using (3.21)

Ej = mjAj, Fj = mjBj
(
j = 3, 4, 5, 6

)
, (3.23)

where

mj =
1

iρgL
[
−λ2j − L2 + ib/χ

]

×
{
(c13 + 2c55 + P)λ4j

−
[
ρb2 − L2(c11 + c13 + 2c55 + 2P) + ibυ1ε +

ib

χ
(c13 + 2c55 + P)

]
λ2j

+
(
ib

χ
− L2

)(
ρb2 − L2(c11 + P)

)
− ibυ1εL2

}
,

(3.24)

where λ3, λ4, λ5, λ6 are the imaginary roots of the equation

k8λ
8 + k6λ6 + k4λ4 + k2λ2 + k0 = 0, (3.25)
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k8 = (c13 + 2c55 + P)
(
c33 − c13 − c55 − P

2
− ibF

)
,

k6 = −
(
ρb2 − L2(c11 + c13 + 2c55 + 2P) + ibυ1ε +

ib

χ
(c13 + 2c55 + P)

)

×
(
c33 − c13 − c55 − P

2
− ibF

)
− (c13 + 2c55 + P)

×
[(
ibS − L2

)(
c33 − c13 − c55 − P

2

)
− L2

(
c55 − P

2

)
+ ρb2 + 2ibFL2

]
,

k4 =
(
ib

χ
− L2

)(
ρb2 − L2(c11 + P) − ibυ1εL2

)(
c33 − c13 − c55 − P

2
− ibF

)

+ (c13 + 2c55 + P)
(
ibS − L2

)[
ρb2 − L2

(
c55 − P

2

)
− ibFL4

]

+
[(
ibS − L2

)(
c33 − c13 − c55 − P

2

)
+ ρb2 − L2

(
c55 − P

2

)
+ 2ibFL2

]

×
[
ρb2 − L2(c11 + c13 + 2c55 + 2P) + ibυ1ε +

ib

χ
(c13 + 2c55 + P)

]
− ρ2g2L2,

k2 =
[(
ibS − L2

)(
c33 − c13 − c55 − P

2

)
− L2

(
c55 − P

2

)
+ ρb2 + 2ibFL2

]

×
[(

ib

χ
− L2

)(
ρb2 − L2(c11 + P)

)
− ibυ1εL2

]

+
[
ρb2 − L2(c11 + c13 + 2c55 + 2P) + ibυ1ε +

ib

χ
(c13 + 2c55 + P)

]

×
(
ibS − L2

)[
ρb2 − L2

(
c55 − P

2

)
− ibFL4

]
− ρ2g2L2

(
2L2 − ibs − ib

χ

)
.

k0 =
(
ibS − L2

)[
ρb2 − L2

(
c55 − P

2

)
− ibFL4

]

×
[(

ib

χ
− L2

)(
ρb2 − L2(c11 + P)

)
− ibυ1εL2

]
− ρ2g2L2

(
ib

χ
− L2

)(
ibS − L2

)
.

(3.26)

Using (3.2), (3.3), (3.12), (3.13), (3.22), and (3.23), we get

φ =
(
Aje

−iλjx3 + Bjeiλjx3
)
exp(i(Lx1 − bt)),

ψ = mj

(
Aje

−iλjx3 + Bjeiλjx3
)
exp(i(Lx1 − bt))

(
j = 3, 4, 5, 6

)
(3.27)
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From (3.2) and (3.27), the temperature T has the form

T = nj
(
Aj e

−iλjx3 + Bj e
iλjx3

)
exp(i(Lx1 − bt))

(
j = 3, 4, 5, 6

)
, (3.28)

where

nj = − 1
υ1

[
(c13 + 2c55 + P)λ2j + L

2(c11 + P) + iLρg mj − ρb2
]

(3.29)

also, from (3.6) and (3.27), η has the form

η = Ωjmj

(
Aje

−iλjx3 + Bjeiλjx3
)
exp(i(Lx1 − bt))

(
j = 3, 4, 5, 6

)
, (3.30)

where

Ωj = −

(
λ2j + L

2
)2

λ2j + L
2 − ibS

(
j = 3, 4, 5, 6

)
. (3.31)

We use the symbols with a bar for the quantities in the lower medium (except
x3, L, b, P, g), and by assuming that the solution of (3.20) and (3.21) satisfies the condition
that the corresponding stresses vanish as x3 → −∞, we obtain

ξ1 = −L
h
B2e

−ihx3 , ζ1 = B2e
−ihx3 , η1 = Ω mjAje

−iλjx3 ,

φ1 = Aje
−iλjx3 , ψ1 = mjAje

−iλjx3 ,

T = njAj exp
(
i
(
Lx1 − bt − λjx3

)) (
j = 3, 4, 5, 6

)
.

(3.32)

4. Boundary Conditions and Frequency Equation

The boundary conditions on the interface x3 = 0 are

(i) u1 = u1, (ii) u3 = u3, (iii) ξ = ξ,

(iv) η = η , (v) ζ = ζ, (vi) M33 =M33,

(vii) M31 =M31, (viii) M32 =M32, (ix) τ33 = τ33,

(x) τ31 = τ31, (xi) τ32 = τ32, (xii) T = T,

(xiii)
∂T

∂x3
+ θT =

∂T

∂x3
+ θ T.

(4.1)
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The boundary conditions on the free surface x3 = H are

(xiv) M33 = 0, (xv) M31 = 0, (xvi) M32 = 0,

(xvii) τ33 = 0, (xviii) τ31 = 0, (xix) τ32 = 0,

(xx)
∂T

∂x3
+ θT = 0,

(4.2)

where

M33 =M
∂ζ

∂x3
, M32 =M

∂

∂x3

(
η − ∇2ψ

)
, M31 =M

∂ξ

∂x3
,

τ33 = c13
∂2ϕ

∂x2
1

+ c33
∂2ϕ

∂x2
3

+ (c33 − c13)
∂2ψ

∂x1∂x3
− υ3T, τ32 = −F ∂ξ

∂t
,

τ31 = c55

(
∂2ψ

∂x2
1

− ∂2ψ

∂x2
3

+ 2
∂2ϕ

∂x1∂x3

)

− F ∂η
∂t
,

(4.3)

θ is the ratio of the coefficients of heat transfer to the thermal conductivity.
From the boundary conditions (iii), (v), (vi), and (vii), we get

B1e
ihH − B2e

−ihH = −B2e
−ihH,

B1e
ihH + B2e

−ihH = −B2e
ihH,

M
(
B1e

ihH − B2e
−ihH

)
= −MB2e

−ihH,

M
(
B1e

ihH + B2e
−ihH

)
= −MB2e

ihH,

(4.4)

hence

B1 = B2 = B2 = 0, ξ = ζ = ξ = ζ = 0. (4.5)

The other significant boundary conditions are responsible for the following relations:

(xvi)
(
λ2j + Ωj + L2

)(
e−iλjHAj − eiλjHBj

)
= 0,

(xvii)
(
c13L

(
L +mjλj

)
+ c33λj

(
λj − Lmj

)
+ υ3nj

)
e−iλjHAj

+
(
c13L

(
L −mjλj

)
+ c33λj

(
λj + Lmj

)
+ υ3nj

)
eiλjHBj = 0,
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(xviii)
[
c55

(
λ2j − L2

)
mj + 2Lλj + ibFΩjmj

]
e−iλjHAj

+
[
c55

(
λ2j − L2

)
mj − 2Lλj + ibFΩjmj

]
eiλjHBj = 0,

(i)
(
L +mjλj

)
Aj +

(
L −mjλj

)
Bj =

(
L +mjλj

)
Aj,

(ii)
(
Lmj − λj

)
Aj +

(
Lmj + λj

)
Bj =

(
Lmj − λj

)
Aj,

(iv) Ωjmj

(
Aj + Bj

)
= ΩjmjAj,

(viii) Mmjλj
(
λ2j + Ωj + L2

)(
Aj − Bj

)
=Mmjλj

(
λ2j + Ωj + L2

)
,

(ix)
[
c13L

(
L +mjλj

)
+ c33λj

(
λj − Lmj

)
+ υ3nj

]
Aj

+
[
c13L

(
L −mjλj

)
+ c33λj

(
λj + Lmj

)
+ υ3nj

]
Bj

=
[
c13L

(
L +mjλj

)
+ c33λj

(
λj − Lmj

)
+ υ3nj

]
Aj,

(x)
{
c55

[
mj

(
L2 + λ2j

)
− 2Lλj

]
− ibFmjΩj

}
Aj

+
{
c55

[
mj

(
L2 + λ2j

)
+ 2Lλj

]
− ibFmjΩj

}
Bj

=
{
c55

[
mj

(
L2 + λ2j

)
− 2Lλj

]
− ibFmjΩj

}
Aj,

(xii) njAj + njBj = njAj,

(xiii) nj
(
θ − iλj

)
Aj + nj

(
θ + iλj

)
Bj = nj

(
θ − iλj

)
Aj,

(xx) nj
(
θ − iλj

)
e−iλjHAj + nj

(
θ + iλj

)
eiλjHBj = 0,

(
j = 3, 4, 5, 6

)
.

(4.6)

Elimination of Aj, Bj ,Aj (j = 3, 4, 5, 6) gives the wave velocity equation in the form

det ·(drc) = 0 (r, c = 1, 2, . . . , 12), (4.7)

where the nonvanishing entries of the twelfth-order determinant of drc are given by

d11 =
(
λ23 + Ω3 + L2

)
e−iλ3H, d12 =

(
λ24 + Ω4 + L2

)
e−iλ4H,

d13 =
(
λ25 + Ω5 + L2

)
e−iλ5H, d14 =

(
λ26 + Ω6 + L2

)
e−iλ6H,
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d15 = −
(
λ23 + Ω3 + L2

)
eiλ3H, d16 = −

(
λ24 + Ω4 + L2

)
eiλ4H,

d17 = −
(
λ25 + Ω5 + L2

)
eiλ5H, d18 = −

(
λ26 + Ω6 + L2

)
eiλ6H,

d21 = (c13L(L +m3λ3) + c33λ3(λ3 − Lm3) + υ3n3)e−iλ3H,

d22 = (c13L(L +m4λ4) + c33λ4(λ4 − Lm4) + υ3n4)e−iλ4H,

d23 = (c13L(L +m5λ5) + c33λ5(λ5 − Lm5) + υ3n5)e−iλ5H,

d24 = (c13L(L +m6λ6) + c33λ6(λ6 − Lm6) + υ3n6)e−iλ6H,

d25 = (c13L(L −m3λ3) + c33λ3(λ3 + Lm3) + υ3n3)eiλ3H,

d26 = (c13L(L −m4λ4) + c33λ4(λ4 + Lm4) + υ3n4)eiλ4H,

d27 = (c13L(L −m5λ5) + c33λ5(λ5 + Lm5) + υ3n5)eiλ5H,

d28 = (c13L(L −m6λ6) + c33λ6(λ6 + Lm6) + υ3n6)eiλ6H,

d31 =
[
c55

(
λ23 − L2

)
m3 + 2Lλ3 + ibFΩ3m3

]
e−iλ3H,

d32 =
[
c55

(
λ24 − L2

)
m4 + 2Lλ4 + ibFΩ4m4

]
e−iλ4H,

d33 =
[
c55

(
λ25 − L2

)
m5 + 2Lλ5 + ibFΩ5m5

]
e−iλ5H,

d34 =
[
c55

(
λ26 − L2

)
m6 + 2Lλ6 + ibFΩ6m6

]
e−iλ6H,

d35 =
[
c55

(
λ23 − L2

)
m3 − 2Lλ3 + ibFΩ3m3

]
eiλ3H,

d36 =
[
c55

(
λ24 − L2

)
m4 − 2Lλ4 + ibFΩ4m4

]
eiλ4H,

d37 =
[
c55

(
λ25 − L2

)
m5 − 2Lλ5 + ibFΩ5m5

]
eiλ5H,

d38 =
[
c55

(
λ26 − L2

)
m6 − 2Lλ6 + ibFΩ6m6

]
eiλ6H,

d41 = L +m3λ3, d42 = L +m4λ4,

d43 = L +m5λ5, d44 = L +m6λ6,

d45 = L −m3λ3, d46 = L −m4λ4,

d47 = L −m5λ5, d48 = L −m6λ6,

d49 = −
(
L +m3λ3

)
, d410 = −

(
L +m4λ4

)
,

d411 = −
(
L +m5λ5

)
, d412 = −

(
L +m6λ6

)
,

d51 = Lm3 − λ3, d52 = Lm4 − λ4,
d53 = Lm5 − λ5, d54 = Lm6 − λ6,
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d55 = Lm3 + λ3, d56 = Lm4 + λ4,

d57 = Lm5 + λ5, d58 = Lm6 + λ6,

d59 = −Lm3 + λ3, d510 = −Lm4 + λ4,

d511 = −Lm5 + λ5, d512 = −Lm6 + λ6,

d61 = Ω3m3, d62 = Ω4m4, d63 = Ω5m5, d64 = Ω6m6,

d65 = Ω3m3, d66 = Ω4m4, d67 = Ω5m5, d68 = Ω6m6,

d69 = −Ω3m3, d610 = −Ω4m4, d611 = −Ω5m5, d612 = −Ω6m6,

d71 =Mm3λ3
(
λ23 + Ω3 + L2

)
, d72 =Mm4λ4

(
λ24 + Ω4 + L2

)
,

d73 =Mm5λ5
(
λ25 + Ω5 + L2

)
, d74 =Mm6λ6

(
λ26 + Ω6 + L2

)
,

d75 = −Mm3λ3
(
λ23 + Ω3 + L2

)
, d76 = −Mm4λ4

(
λ24 + Ω4 + L2

)
,

d77 = −Mm5λ5
(
λ25 + Ω5 + L2

)
, d78 = −Mm6λ6

(
λ26 + Ω6 + L2

)
,

d79 = −Mm3λ3
(
λ23 + Ω3 + L2

)
, d710 = −Mm4λ4

(
λ24 + Ω4 + L2

)
,

d711 = −Mm5λ5
(
λ25 + Ω5 + L2

)
, d712 = −Mm6λ6

(
λ26 + Ω6 + L2

)
,

d81 = c13L(L +m3λ3) + c33λ3(λ3 − Lm3) + υ3n3,

d82 = c13L(L +m4λ4) + c33λ4(λ4 − Lm4) + υ3n4,

d83 = c13L(L +m5λ5) + c33λ5(λ5 − Lm5) + υ3n5,

d84 = c13L(L +m6λ6) + c33λ6(λ6 − Lm6) + υ3n6,

d85 = c13L(L −m3λ3) + c33λ3(λ3 + Lm3) + υ3n3,

d86 = c13L(L −m4λ4) + c33λ4(λ4 + Lm4) + υ3n4,

d87 = c13L(L −m5λ5) + c33λ5(λ5 + Lm5) + υ3n5,

d88 = c13L(L −m6λ6) + c33λ6(λ6 + Lm6) + υ3n6,

d89 = −
[
c13L

(
L +m3λ3

)
+ c33λ3

(
λ3 − Lm3

)
+ υ3n3

]
,

d810 = −
[
c13L

(
L +m4λ4

)
+ c33λ4

(
λ4 − Lm4

)
+ υ3n4

]
,

d811 = −
[
c13L

(
L +m5λ5

)
+ c33λ5

(
λ5 − Lm5

)
+ υ3n5

]
,

d812 = −
[
c13L

(
L +m6λ6

)
+ c33λ6

(
λ6 − Lm6

)
+ υ3n6

]
,

d91 = c55
[
m3

(
L2 + λ23

)
− 2Lλ3

]
− ibFm3Ω3,
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d92 = c55
[
m4

(
L2 + λ24

)
− 2Lλ4

]
− ibFm4Ω4,

d93 = c55
[
m5

(
L2 + λ25

)
− 2Lλ5

]
− ibFm5Ω5,

d94 = c55
[
m6

(
L2 + λ26

)
− 2Lλ6

]
− ibFm6Ω6,

d95 = c55
[
m3

(
L2 + λ23

)
+ 2Lλ3

]
− ibFm3Ω3,

d96 = c55
[
m4

(
L2 + λ24

)
+ 2Lλ4

]
− ibFm4Ω4,

d97 = c55
[
m5

(
L2 + λ25

)
+ 2Lλ5

]
− ibFm5Ω5,

d98 = c55
[
m6

(
L2 + λ26

)
+ 2Lλ6

]
− ibFm6Ω6,

d99 = −
{
c55

[
m3

(
L2 + λ23

)
− 2Lλ3

]
− ibFm3Ω3

}
,

d910 = −
{
c55

[
m4

(
L2 + λ24

)
− 2Lλ4

]
− ibFm4Ω4

}
,

d911 = −
{
c55

[
m5

(
L2 + λ25

)
− 2Lλ5

]
− ibFm5Ω5

}
,

d912 = −
{
c55

[
m6

(
L2 + λ26

)
− 2Lλ6

]
− ibFm6Ω6

}
,

d101 = n3, d102 = n4, d103 = n5, d104 = n6,

d105 = n3, d106 = n4, d107 = n5, d108 = n6,

d109 = n3, d1010 = n4, d1011 = n5, d1012 = n6,

d111 = n3(θ − iλ3), d112 = n4(θ − iλ4), d113 = n5(θ − iλ5),
d114 = n6(θ − iλ6), d115 = n3(θ + iλ3), d116 = n4(θ + iλ4),

d117 = n5(θ + iλ5), d118 = n6(θ + iλ6), d119 = −n3
(
θ − iλ3

)
,

d1110 = −n4
(
θ − iλ4

)
, d1111 = −n5

(
θ − iλ5

)
, d1112 = −n6

(
θ − iλ6

)
,

d121 = n3(θ − iλ3)e−iλ3H, d122 = n4(θ − iλ4)e−iλ4H,

d123 = n5(θ − iλ5)e−iλ5H, d124 = n6(θ − iλ6)e−iλ6H,

d125 = n3(θ + iλ3)eiλ3H, d126 = n4(θ + iλ4)eiλ4H,

d127 = n5(θ + iλ5)eiλ5H, d128 = n6(θ + iλ6)eiλ6H.

(4.8)

Equation (4.7) determines the wave velocity equation for the Rayleigh waves in an
orthotropic thermoelastic granular medium under the influence of initial stress and gravity
field.
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5. Stoneley Waves

To investigate the possibility Stoneley waves in thermoelastic granular medium under the
influence of initial stress and gravity field, we replace the layer by a half-space (H → ∞), in
the preceding problem, in this case eiλjH → 0, and the coefficients of e−iλjH(j = 3, 4, 5, 6)must
vanish. Hence, the wave velocity equation (4.7) reduces to

det ·(d′
rc

)
= 0 (r, c = 1, 2, . . . , 8), (5.1)

where

d′
11 = L +m3λ3, d′

12 = L +m4λ4,

d′
13 = L +m5λ5, d′

14 = L +m6λ6,

d′
15 = L −m3λ3, d′

16 = L −m4λ4,

d′
17 = L −m5λ5, d′

18 = L −m6λ6,

d′
21 = Lm3 − λ3, d′

22 = Lm4 − λ4,

d′
23 = Lm5 − λ5, d′

24 = Lm6 − λ6,

d′
25 = Lm3 + λ3, d′

26 = Lm4 + λ4,

d′
27 = Lm5 + λ5, d′

28 = Lm6 + λ6,

d′
31 = Ω3m3, d′

32 = Ω4m4, d′
33 = Ω5m5, d′

34 = Ω6m6,

d′
35 = −Ω3m3, d′

36 = −Ω4m4, d′
37 = −Ω5m5, d′

38 = −Ω6m6,

d′
41 =Mm3λ3

(
λ23 + Ω3 + L2

)
, d′

42 =Mm4λ4
(
λ24 + Ω4 + L2

)
,

d′
43 =Mm5λ5

(
λ25 + Ω5 + L2

)
, d′

44 =Mm6λ6
(
λ26 + Ω6 + L2

)
,

d′
45 = −Mm3λ3

(
λ23 + Ω3 + L2

)
, d′

46 = −Mm4λ4
(
λ24 + Ω4 + L2

)
,

d′
47 = −Mm5λ5

(
λ25 + Ω5 + L2

)
, d′

48 = −Mm6λ6
(
λ26 + Ω6 + L2

)
,

d′
51 = c13L(L +m3λ3) + c33λ3(λ3 − Lm3) + υ3n3,

d′
52 = c13L(L +m4λ4) + c33λ4(λ4 − Lm4) + υ3n4,

d′
53 = c13L(L +m5λ5) + c33λ5(λ5 − Lm5) + υ3n5,

d′
54 = c13L(L +m6λ6) + c33λ6(λ6 − Lm6) + υ3n6,

d′
55 = c13L(L −m3λ3) + c33λ3(λ3 + Lm3) + υ3n3,
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d′
56 = c13L(L −m4λ4) + c33λ4(λ4 + Lm4) + υ3n4,

d′
57 = c13L(L −m5λ5) + c33λ5(λ5 + Lm5) + υ3n5,

d′
58 = c13L(L −m6λ6) + c33λ6(λ6 + Lm6) + υ3n6,

d′
61 = c55

[
m3

(
L2 + λ23

)
− 2Lλ3

]
− ibFm3Ω3,

d′
62 = c55

[
m4

(
L2 + λ24

)
− 2Lλ4

]
− ibFm4Ω4,

d′
63 = c55

[
m5

(
L2 + λ25

)
− 2Lλ5

]
− ibFm5Ω5,

d′
64 = c55

[
m6

(
L2 + λ26

)
− 2Lλ6

]
− ibFm6Ω6,

d′
65 = c55

[
m3

(
L2 + λ23

)
+ 2Lλ3

]
− ibFm3Ω3,

d′
66 = c55

[
m4

(
L2 + λ24

)
+ 2Lλ4

]
− ibFm4Ω4,

d′
67 = c55

[
m5

(
L2 + λ25

)
+ 2Lλ5

]
− ibFm5Ω5,

d′
68 = c55

[
m6

(
L2 + λ26

)
+ 2Lλ6

]
− ibFm6Ω6,

d′
71 = n3, d′

72 = n4, d′
73 = n5, d′

74 = n6,

d′
75 = n3, d′

76 = n4, d′
77 = n5, d′

78 = n6,

d′
81 = n3(θ − iλ3), d′

82 = n4(θ − iλ4), d′
83 = n5(θ − iλ5),

d′
84 = n6(θ − iλ6), d′

85 = n3(θ + iλ3), d′
86 = n4(θ + iλ4),

d′
87 = n5(θ + iλ5), d′

88 = n6(θ + iλ6).

(5.2)

Equation (5.1) determines the wave velocity equation for the Stoneley waves in an
orthotropic thermoelastic granular medium under the influence of initial stress and gravity
field.

6. Special Cases

The transcendental equations (4.7) and (5.1), in the determinant form, have complex roots.
The real part gives the velocity of Rayleigh waves and Stoneley waves, respectively, while
the imaginary part gives the attenuation due to the granular nature of the medium. It is clear
from the frequency equations (4.7) and (5.1) that the phase velocity depends on the initial
stress P , the friction F, the gravity field, and the coupling factor ε.
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Figure 1: Effect of the density ρ on (real, imaginary, and magnitude) of Stoneley waves determinant with
respect to initial stress.

When the gravity field is neglected, there is no coupling between the constants Aj, Bj ,
and Ej, Fj (j = 3, 4, 5, 6), the equations (3.10), (3.11) become, respectively,

(
∇2 − S ∂

∂t

) [(
c55 − P

2

)
∂2ψ

∂x2
1

+
(
c33 − c31 − c55 − P

2

)
∂2ψ

∂x2
3

− ρ∂
2ψ

∂t2

]

+ F∇4
(
∂ψ

∂t

)
= 0,

(
∇2 − 1

χ

∂

∂t

)[

(c11 + P)
∂2ϕ

∂x2
1

+ (c13 + 2c55 + P)
∂2ϕ

∂x2
3

− ρ∂
2ϕ

∂t2

]

− υ1ε∇2
(
∂φ

∂t

)
= 0.

(6.1)

Equation (6.1) are in agreement with the corresponding equations obtained by Ahmed
[7].

In the absence of initial stress and when there is no coupling between the temperature
and strain fields, (4.7) takes the form as obtained by Oshima [2].
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Figure 2: Effect of the parameter b on (real, imaginary, and magnitude) of Stoneley waves determinant
with respect to initial stress.

7. Numerical Results and Discussions

For a numerical computational work, Potash material is considered as an upper granular
media with thicknessH and Fe as lower granular media [28]

ρ = 1.098, M = 0.4, F = 0.5, Q1 = 0.4, Q′
2 = 0.6,

ρ′ = 4.499, M′ = 0.6, F ′ = 0.6, Q′
1 = 0.6, Q′

2 = 0.8.
(7.1)

A Mathcad program is used to invert the transform in order to obtain the results in the
physical domain. From Figure 1, It is obvious that the determinant of Stoneley waves velocity
increases and decreases with an increasing of the various values of the initial stress P , also
with an increasing of the density ρ; the real and imaginary parts of the determinant of
Stoneley waves frequency equation increase. It is seen that magnitude of determinant of the
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frequency equation for Stoneley waves takes a large decreasing with an increasing of the
initial stress and density.

Figure 2 displays the influence of parameter b on the frequency equation of Stoneley
waves. It is concluded that the determinant of frequency equation of Stoneleywaves increases
with an increasing of the initial stress P . Also, it is clear that Re(Δ) increases with an
increasing of parameter b but Im(Δ) decreases.

Finally, it appears that the magnitude of Δ increases with the increased values of the
parameter b.

8. Conclusion

From the results obtained, we concluded the following.

(1) The determinant of frequency of Rayleigh and Stoneley waves is affected by the
influences of initial stress, density, gravity, and orthotropic of material and very
pronounced on the waves propagation phenomena that indicates their utilitarian
aspects in diverse fields as Geophysics, Geology, Acoustics, Plasma, and so forth.

(2) From Figures 1 and 2, it is obvious that the magnitude of Stoneley waves increases
clearly with the influences of the density ρ and parameter b.

(3) If the media considered are isotropic, the relevant results obtained deduce to the
results obtained by El-Naggar [25].

Nomenclature

cij : Are the elastic constants
eij : Are the components of strain tensor
F: Is the coefficient of fraction
g: Is the acceleration due to the gravity
M: Is the third elastic constant
P : Is the initial stress
s: Is the specific heat per unit mass
T : Is the temperature change about the initial temperature T0
v: Is the phase speed
α1: Is the thermal expansion coefficient in the planes of orthotropic
α2: Is the thermal expansion coefficient along the x3-axis
ρ: Is the density
τ : Is a function of depth
τij : Are the components of stress tensor
ω: Is the frequency.
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