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This paper further considers more general high-order stochastic nonlinear system driven by noise
of unknown covariance and its adaptive state-feedback stabilization problem. A smooth state-
feedback controller is designed to guarantee that the origin of the closed-loop system is globally
stable in probability.

1. Introduction

In this paper, we consider the following high-order stochastic nonlinear system:

dx1 = x
p

2dt + f1(x1)dt + g1(x1)Σdω,

dx2 = x
p

3dt + f2(x2)dt + g2(x2)Σdω,

...

dxn = updt + fn(xn)dt + gn(xn)Σdω,

(1.1)

where x = (x1, . . . , xn) ∈ Rn, u ∈ R, are the state and control input, respectively. xi = (x1, . . . ,
xi), i = 1, . . . , n. p ≥ 1 is odd integer. w is an r-dimensional standard Wiener process defined
in a complete probability space (Ω,F, {Ft}t≥0, P) with Ω being a sample space, F being a σ-
field, {Ft}t≥0 being a filtration, and P being the probability measure. Σ : R+ → Rr×r is an
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unknown bounded nonnegative definite Borel measurable matrix function and ΣΣT denotes
the infinitesimal covariance function of the driving noise Σdω. fi : Ri → R and gi : Ri → Rr ,
i = 1, . . . , n, are assumed to be smooth with fi(0) = 0 and gi(0) = 0.

When p = 1, system (1.1) reduced to the well-known normal form whose study on
feedback control problem has achieved great development in recent years. According to the
difference of selected Lyapunov functions, the existing literature on controller design can be
mainly divided into two types. One type is based on quadratic Lyapunov functions which
are multiplied by different weighting functions, see, for example, [1–5] and the references
therein. Another essential improvement belongs to Krstić and Deng. By introducing the
quartic Lyapunov function, [6, 7] presented asymptotical stabilization control in the large
under the assumption that the nonlinearities equal to zero at the equilibrium point of the
open-loop system. Subsequently, for several classes of stochastic nonlinear systems with
unmodeled dynamics and uncertain nonlinear functions, by combining Krstić and Deng’s
method with stochastic small-gain theorem [8], and with dynamic signal and changing
supply function [9, 10], different adaptive output-feedback control schemes are studied.

When p > 1, some intrinsic features of (1.1), such as that its Jacobian linearization is
neither controllable nor feedback linearizable, lead to the existing design tools hardly appli-
cable to this kind of systems. Motivated by the fruitful deterministic results in [11, 12]
and the related papers and based on stochastic stability theory in [13–15], and so forth,
[16] firstly considered, this class of systems with stochastic inverse dynamics. Subsequently,
[17–21] considered respectively, the state-feedback stabilization problem for more general
systems with different structures. [22, 23] solved the output-feedback stabilization, and [24]
addressed the inverse optimal stabilization.

All the papers mentioned above, however, only consider the case of ΣΣT = I. In this
paper, we will further consider more general high-order stochastic nonlinear system driven
by noise of unknown covariance and its adaptive state-feedback stabilization problem. A
smooth state-feedback controller is designed to guarantee that the origin of the closed-loop
system is globally stable in probability. A simulation example verifies the effectiveness of the
control scheme.

The paper is organized as follows. Section 2 provides some preliminary results.
Section 3 gives the state-feedback controller design and stability analysis, following a simula-
tion example in Section 4. In Section 5, we conclude the paper.

2. Preliminary Results

The following notations definitions and lemmas are to be used throughout the paper.
R+ stands for the set of all nonnegative real numbers, Rn is the n-dimensional

Euclidean space, Rn×m is the space of real n × m-matrixes. C2 denotes the family of all the
functions with continuous second partial derivatives. |x| is the usual Euclidean norm of a
vector x. ‖X‖ = (Tr{XXT})1/2, where Tr{X} is its trace when X is a square matrix and
XT denotes the transpose of X. K denotes the set of all functions: R+ → R+, which are
continuous, strictly increasing and vanishing at zero; K∞ is the set of all functions which are
of class K and unbounded; KL denotes the set of all functions β(s, t): R+ × R+ → R+, which
are of class K for each fixed t and decrease to zero as t → ∞ for each fixed s. To simplify the
procedure, we sometimes denote χ(t) by χ for any variable χ(t).

Consider the nonlinear stochastic system

dx = f(x)dt + g(x)dω, (2.1)
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where x ∈ Rn is the state, w is an r-dimensional independent Wiener process with incre-
mental covariance ΣΣTdt, that is, E{dωdωT} = ΣΣTdt, where Σ is a bounded function taking
values in the set of nonnegative definite matrices, f : Rn → Rn and g : Rn → Rn×r are locally
Lipschitz functions.

Definition 2.1 (see [13]). For any given V (x) ∈ C2 associated with stochastic system (2.1), the
differential operator L is defined as

LV (x) � ∂V (x)
∂x

f(x) +
1
2

Tr

{
gT (x)

∂2V (x)
∂x2

g(x)

}
. (2.2)

Definition 2.2 (see [25]). For the stochastic system (2.1) with f(0) = 0, g(0) = 0, the equilibri-
um x(t) = 0 is globally asymptotically stable (GAS) in probability if for any ξ > 0, there exists
a class KL function β(·, ·) such that

P
{|x(t)| < β(|x0|, t)

} ≥ 1 − ξ, t ≥ 0, ∀x0 ∈ Rn \ {0}. (2.3)

Lemma 2.3 (see [14]). Consider the stochastic system (2.1). If there exist a C2 function V (x), class
K∞ function α1 and α2, constants c1 > 0 and c2 ≥ 0, and a nonnegative function W(x) such that for
all x ∈ Rn, t ≥ 0

α1(|x|) ≤ V (x) ≤ α2(|x|), LV ≤ −c1W(x) + c2, (2.4)

then,

(a) there exists an almost surely unique solution on [0,∞) for each x0 ∈ Rn,

(b) when c2 = 0, f(0) = 0, g(0) = 0, and W(x) is continuous, then the equilibrium x = 0 is
globally stable in probability and the solution x(t) satisfies P{limt→∞W(x(t)) = 0} = 1.

Lemma 2.4 (see [12]). Let x, y be real variables, for any positive integersm,n, positive real number
b and nonnegative continuous function a(·), then

a(·)xmyn ≤ b|x|m+n +
n

m + n

(
m + n

m

)−m/n

(a(·))(m+n)/nb−m/n
∣∣y∣∣m+n

, (2.5)

when a(·) = 1, b = (m/(m + n))d, d is a positive constant, then the above inequality is

xmyn ≤ m

m + n
d|x|m+n +

n

m + n
d−m/n

∣∣y∣∣m+n
. (2.6)

Lemma 2.5 (see [12]). Let x, y and zi, i = 1, . . . , p, be real variables and let l1(·) and l2(·) be smooth
mappings. Then for any positive integers m, n and real number N > 0, there exist two nonnegative
smooth functions h1(·) and h2(·) such that the following inequalities hold:

(i) |xm[(y + xl1(x))
n − (xl1(x))

n]| ≤ |x|m+n/N + |y|m+nh1(x, y),

(ii) |ym(zn1 + · · · + znp + yn)l2(z1, . . . , zp, y)| ≤ (1/N)
∑p

k=1|zk|m+n + |y|m+nh2(z1, . . . , zp, y).
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Lemma 2.6 (see [12]). Let x1, . . . , xn, p, be positive real variables, then

(x1 + · · · + xn)p ≤ max
{
np−1, 1

}(
x
p

1 + · · · + x
p
n

)
. (2.7)

3. Controller Design and Stability Analysis

The objective of this paper is to design a smooth state-feedback controller for system (1.1),
such that the solution of the closed-loop system is GAS in probability. To achieve the control
objective, we need the following assumption.

Assumption 3.1. There are nonnegative smooth functions fi1, gi1, i = 1, . . . , n, such that

∣∣fi(xi)
∣∣ ≤
⎛
⎝ i∑

j=1

∣∣xj

∣∣p
⎞
⎠fi1(xi),

∣∣gi(xi)
∣∣ ≤
⎛
⎝ i∑

j=1

∣∣xj

∣∣p
⎞
⎠gi1(xi). (3.1)

3.1. Controller Design

Now, we give the controller design procedure by using the backstepping method.
First, we introduce the following coordinate change:

z1 = x1, zi = xi − αi−1

(
xi−1, θ̂

)
, i = 2, . . . , n, (3.2)

where αi−1(xi−1, θ̂), i = 2, . . . , n, are smooth virtual controllers which will be designed later, θ̂
is the estimation of θ, and

θ � max
t≥0

{∥∥∥ΣΣT
∥∥∥(p+3)/2

,
∥∥∥ΣΣT

∥∥∥(p+3)/3
,
∥∥∥ΣΣT

∥∥∥}. (3.3)

Then, by Itô’s differentiation rule, one has

dzi = d
(
xi − αi−1

(
xi−1, θ̂

))

=

(
x
p

i+1 + Fi(xi) −
i−1∑
l=1

∂αi−1

∂xl
x
p

l+1 −
1
2

i−1∑
k,m=1

∂2αi−1

∂xk∂xm
gk(xk)ΣΣTgT

m(xm) − ∂αi−1

∂θ̂

˙̂θ

)
dt

+Gi(xi)Σdω,

(3.4)

where

Fi(xi) = fi(xi) −
i−1∑
l=1

∂αi−1

∂xl
fl(xl), Gi(xi) = gi(xi) −

i−1∑
l=1

∂αi−1

∂xl
gl(xl). (3.5)
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Step 1. Define the first Lyapunov function

V1

(
z1, θ̂

)
=

1
4
z4

1 +
1

2Γ
θ̃2, (3.6)

where Γ is a positive constant, θ̃ = θ − θ̂ is the parameter estimation error. By (3.2)–(3.4) and
Assumption 3.1, there exist nonnegative smooth functions μ11 and μ15 such that

LV1 = z3
1x

p

2 + z3
1f1(x1) +

3
2
z2

1g1(x1)ΣΣTgT
1 (x1) − θ̃

Γ
˙̂θ

≤ z3
1

(
x
p

2 − α
p

1

)
+ z3

1α
p

1 + z
p+3
1 μ11(z1) + z

p+3
1 μ15(z1)θ − θ̃

Γ
˙̂θ

≤ z3
1

(
x
p

2 − α
p

1

)
+ z3

1α
p

1 + z
p+3
1 μ11(z1) + z

p+3
1 μ15(z1)

√
1 + θ̂2 − θ̃

Γ

( ˙̂θ − Γzp+3
1 μ15(z1)

)
.

(3.7)

Choosing the first smooth virtual controller

α1

(
x1, θ̂

)
= −z1β1

(
z1, θ̂

)
, β1

(
z1, θ̂

)
=
(
c11 + μ11(z1) + μ15(z1)

√
1 + θ̂2

)1/p

, (3.8)

and the tuning function

τ1(z1) = Γzp+3
1 μ15(z1), (3.9)

one has

LV1 ≤ −c11z
p+3
1 + z3

1

(
x
p

2 − α
p

1

)
− θ̃

Γ

( ˙̂θ − τ1

)
, (3.10)

where c11 > 0 is a design parameter.

Step i (2 ≤ i ≤ n). For notational coherence, denote u = xn+1. Assuming that at step i − 1, one
has

LVi−1 ≤ −
i−1∑
j=1

cj,i−1z
p+3
j −

⎛
⎝ θ̃

Γ
+

i−1∑
j=2

z3
j

∂αj−1

∂θ̂

⎞
⎠( ˙̂θ − τi−1

)
+ z3

i−1

(
x
p

i − α
p

i−1

)
, (3.11)
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where τi−1 = τi−2 + Γzp+3
i−1 (μi−1,4 + μi−1,5). In the sequel, we will prove that (3.11) still holds for

the ith Lyapunov function Vi(zi, θ̂) = Vi−1(zi−1, θ̂) + (1/4)z4
i . By (3.4) and (3.11), one has

LVi ≤ LVi−1 + z3
i

(
x
p

i+1 + Fi(xi) −
i−1∑
l=1

∂αi−1

∂xl
x
p

l+1 −
1
2

i−1∑
k,m=1

∂2αi−1

∂xk∂xm
gk(xk)ΣΣTgT

m(xm)

)

− z3
i

∂αi−1

∂θ̂

˙̂θ +
3
2
z2
i Tr
{
ΣTGT

i (xi)Gi(xi)Σ
}

≤ −
i−1∑
j=1

cj,i−1z
p+3
j −

⎛
⎝ θ̃

Γ
+

i−1∑
j=2

z3
j

∂αj−1

∂θ̂

⎞
⎠( ˙̂θ − τi−1

)
+ z3

i−1

(
x
p

i − α
p

i−1

)

+ z3
i

(
x
p

i+1 + Fi(xi) −
i−1∑
l=1

∂αi−1

∂xl
x
p

l+1 −
1
2

i−1∑
k,m=1

∂2αi−1

∂xk∂xm
gk(xk)ΣΣTgT

m(xm)

)

− z3
i

∂αi−1

∂θ̂

˙̂θ +
3
2
z2
i Tr
{
ΣTGT

i (xi)Gi(xi)Σ
}
+ z3

i

∂αi−1

∂θ̂
τi−1 − z3

i

∂αi−1

∂θ̂
τi−1.

(3.12)

To proceed further, an estimate for each term in the right-hand side of (3.12) is needed. Using
Itô’s differentiation rule, Lemmas 2.4–2.6, (3.2), and (3.3), it follows that

z3
i−1

(
x
p

i − α
p

i−1

)
= z3

i−1

(
(zi + αi−1)p − α

p

i−1

)

≤ ξi1z
p+3
i−1 + μi1

(
zi, θ̂
)
z
p+3
i ,

z3
i Fi(xi) ≤ |zi|3

i∑
j=1

∣∣zj∣∣pρi2j(zi, θ̂)

≤
i−1∑
j=1

ξi2jz
p+3
j + μi2

(
zi, θ̂
)
z
p+3
i ,

−z3
i

i−1∑
l=1

∂αi−1

∂xl
x
p

l+1 ≤ |zi|3
i−1∑
j=1

∣∣zj∣∣pρi3j(zi, θ̂)

≤
i−1∑
j=1

ξi3jz
p+3
j + μi3

(
zi, θ̂
)
z
p+3
i ,

−1
2
z3
i

i−1∑
k,m=1

∂2αi−1

∂xk∂xm
gk(xk)ΣΣTgT

m(xm) ≤ |zi|3
i−1∑
j=1

∣∣zj∣∣2pρi4j(zi, θ̂)∥∥∥ΣΣT
∥∥∥

≤
i−1∑
j=1

ξi4jz
p+3
j + μi4

(
zi, θ̂
)
z
p+3
i θ,

3
2
z2
i Tr
{
ΣTGT

i (xi)Gi(xi)Σ
}
≤ z2

i

i∑
j=1

z
p+1
j ρi5j

(
zi, θ̂
)∥∥∥ΣΣT

∥∥∥
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≤
i−1∑
j=1

ξi5jz
p+3
j + μi5

(
zi, θ̂
)
z
p+3
i θ,

−z3
i

∂αi−1

∂θ̂
τi−1 ≤ |zi|3

i−1∑
j=1

∣∣zj∣∣pρi6j(zi, θ̂)

≤
i−1∑
j=1

ξi6jz
p+3
j + μi6

(
zi, θ̂
)
z
p+3
i ,

(3.13)

where ξi1, ξi2j , ξi3j , ξi4j , ξi5j , ξi6j , j = 1, . . . , i − 1, are positive constants and μi1, μi2, μi3, μi4, μi5,
μi6, ρi2j , ρi3j , ρi4j , ρi5j , ρi6j , j = 1, . . . , i, are nonnegative smooth functions. Substituting (3.13)
into (3.12), one has

LVi ≤ −
i−1∑
j=1

cj,i−1z
p+3
j + ξi1z

p+3
i−1 −

⎛
⎝ θ̃

Γ
+

i−1∑
j=2

z3
j

∂αj−1

∂θ̂

⎞
⎠( ˙̂θ − τi−1

)
+ z3

i α
p

i

+ z
p+3
i

(
μi1 + μi2 + μi3 + μi6 +

(
μi4 + μi5

)√
1 + θ̂2

)
+
θ̃

Γ
(
μi4 + μi5

)
Γzp+3

i

+
i−1∑
j=1

(
ξi2j + ξi3j + ξi4j + ξi5j + ξi6j

)
z
p+3
j + z3

i

(
x
p

i+1 − α
p

i

)
.

(3.14)

Choosing the ith smooth virtual controller αi

αi

(
xi, θ̂

)
= −ziβi

(
zi, θ̂
)
,

βi
(
zi, θ̂
)
=

⎛
⎝cii + μi1 + μi2 + μi3 + μi6 +

(
μi4 + μi5

)⎛⎝√1 + θ̂2 +
i∑

j=2

z3
j

∂αj−1

∂θ̂
Γ

⎞
⎠
⎞
⎠

1/p

,

(3.15)

and tuning function τi

τi(zi) = τi−1(zi−1) + Γzp+3
i

(
μi4 + μi5

)
, (3.16)

and substituting (3.15) and (3.16) into (3.14), it follows that

LVi

(
zi, θ̂
)
≤ −

i∑
j=1

cjiz
p+3
j −

⎛
⎝ θ̃

Γ
+

i∑
j=2

z3
j

∂αj−1

∂θ̂

⎞
⎠( ˙̂θ − τi

)
+ z3

i

(
x
p

i+1 − α
p

i

)
, (3.17)

where cji = cjj − ξj+1,1 −
∑6

k=2ξikj , j = 1, . . . , i − 1.
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Hence at step n, the smooth adaptive state-feedback controller

u = αn

(
xn, θ̂

)
= −znβn

(
zn, θ̂

)
, ˙̂θ = τn(zn),

βn
(
zn, θ̂

)
=

⎛
⎝cnn + μn1 + μn2 + μn3 + μn6 +

(
μn4 + μn5

)⎛⎝√1 + θ̂2 +
n∑
j=2

z3
j

∂αj−1

∂θ̂
Γ

⎞
⎠
⎞
⎠

1/p

,

τn(zn) = Γzp+3
1 μ15(z1) +

n∑
j=2

Γzp+3
j

(
μj4 + μj5

)
,

(3.18)

such that the nth Lyapunov function

Vn

(
zn, θ̂

)
=

1
4

n∑
j=1

z4
j +

1
2Γ

θ̃2 (3.19)

satisfies

LVn ≤ −
n∑
j=1

cjnz
p+3
j , (3.20)

where μnl, l = 1, . . . , 6, are nonnegative smooth functions, cjn, j = 1, . . . , n, are constants, and

cjn = cjj − ξj+1,1 −
6∑

k=2

ξnkj , j = 1, . . . , n − 1. (3.21)

3.2. Stability Analysis

Theorem 3.2. If Assumption 3.1 holds for the high-order stochastic nonlinear system (1.1), under
the state-feedback controller (3.18), then

(i) the closed-loop system consisting of (1.1), (3.2), (3.8), (3.9), (3.15), (3.16), and (3.18) has
an almost surely unique solution on [0,∞) for each (x0, θ̃(0)) ∈ Rn+1,

(ii) the origin of the closed-loop system is globally stable in probability,

(iii) P{limt→∞|x(t)| = 0} = 1 and P{limt→∞θ̂(t) exists and is finite} = 1.

Proof. It is easy to verify that Vn(zn, θ̂) is C2 on zn and θ̂. For j = 1, . . . , n−1, choose the design
parameter cjj > ξj+1,1 +

∑6
k=2ξnkj , cnn > 0, then by (3.21), cjn > 0, j = 1, . . . , n− 1. Since Vn(zn, θ̂)

is continuous, positive, and radially bounded, by (3.20), (3.21), and Lemma 4.3 in [25], there
exist two class K∞ functions α1 and α2 such that α1(|x|, |θ̃|) ≤ Vn(zn, θ̂) ≤ α2(|x|, |θ̃|). Hence,
the condition of Lemma 2.3 holds.

By Lemma 2.3, it follows that conclusion (i), (ii) hold, and P{limt→∞|z(t)| = 0} = 1.
In view of αi(0, θ̂) = 0 and xi = zi + αi−1(xi−1, θ̂), one has P{limt→∞|x(t)| = 0} = 1. By (3.20)
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and the definition of Vn(zn, θ̂) in (3.19), it holds that θ̃(t) converges a.s. to a finite limit θ̃∞ as
t → ∞, therefore θ̂(t) converges a.s. to a finite limit as t → ∞.

4. A Simulation Example

Consider a two-order nonlinear stochastic system

dx1 = x3
2dt + f1(x1)dt + x3

1Σdω,

dx2 = u3dt + f2(x2)dt + x3
2Σdω,

(4.1)

where f1(x1) = x3
1, f2(x2) = x1x

2
2. By Lemma 2.4, one gets |f1(x1)| ≤ |x1|3, |g1(x1)| ≤ |x1|3,

|f2(x2)| ≤ (1/3)|x1|3 + (2/3)|x2|3, g2(x2) ≤ |x2|3. We choose f11(x1) = 1, g11(x1) = 1, f21(x2) =
2/3, g21(x2) = 1, Assumption 3.1 is satisfied.

We now give the design of state-feedback controller for system (4.1).

Step 1. Define z1 = x1, V1(z1, θ̂) = (1/4)z4
1 + (1/2Γ)θ̃2. A smooth virtual controller

α1

(
x1, θ̂

)
= −z1β1

(
z1, θ̂

)
,

β1

(
z1, θ̂

)
=
(
c11 + 1 + μ15(z1)

√
1 + θ̂2

)1/3

,

(4.2)

and the tuning function

τ1(z1) = Γz6
1μ15(z1) (4.3)

yield LV1(z1, θ̂) ≤ −c11z
6
1 + z3

1(x
3
2 − α3

1) + (θ̃/Γ)( ˙̂θ − τ1), where

μ15(z1) =
3
2
z2

1, θ(t) = max
t≥0

{∥∥∥Σ(t)Σ(t)T∥∥∥3
,
∥∥∥Σ(t)Σ(t)T∥∥∥2

,
∥∥∥Σ(t)Σ(t)T∥∥∥}. (4.4)

Step 2. Defining z2 = x2 − α1(x1, θ̂), V2(z2, θ̂) = V1(z1, θ̂) + (1/4)z4
2, by (3.12), one has

LV2

(
z1, θ̂

)
≤ −c11z

6
1 + z3

1

(
x3

2 − α3
1

)
+
θ̃

Γ

( ˙̂θ − τ1

)

+ z3
2

(
u3 + F2(x2) − ∂α1

∂x1
x3

2 −
1
2
∂2α1

∂x2
1

g1(x1)ΣΣTgT
1 (x1)

)

− z3
2
∂α1

∂θ̂

˙̂θ +
3
2
z2

2 Tr
{
ΣTGT

2 (x2)G2(x2)Σ
}
,

(4.5)
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where F2(x2) = f2(x2) − (∂α1/∂x1)f1(x1), G2(x2) = g2(x2) − (∂α1/∂x1)g1(x1). By Lemma 2.4,
the definition of z2, and (4.2), one can obtain

z3
1

(
x3

2 − α3
1

)
≤ 1

2
d11z

6
1 +

1
2
d−1

11z
6
2 + 3

(
2
3
d12z

6
1 +

1
3
d−1

12β
3
1z

6
2 +

5
6
d13z

6
1 +

1
6
d−1

13β
12
1 z6

2

)

= ξ21z
6
1 + μ21

(
z1, θ̂

)
z6

2,

z3
2F2(x2) ≤ 2|z2|3

(
1
3
|z1|3 + 2

3
|z2|3 + |z1|3β2

1 −
∂α1

∂x1
z3

1

)

= ξ221z
6
1 + μ22

(
z2, θ̂

)
,

−z3
2
∂α1

∂x1
x3

2 ≤ |z2|3
∣∣∣∣∂α1

∂x1

∣∣∣∣(z3
2 − 3z2

2z1β1 + 3z2z1β1 − z3
1β

3
1

)

≤ ξ231z
6
1 + μ23

(
z2, θ̂

)
z6

2,

−1
2
z3

2
∂2α1

∂x2
1

g3
1ΣΣ

Tg3
1 ≤ |z2|3 ∂

2α1

∂x2
1

z6
1

∥∥∥ΣΣT
∥∥∥

≤ ξ241z
6
1 + μ24

(
z2, θ̂

)
z6

2θ;

(4.6)

by (4.3), Lemmas 2.4, 2.6, and the definitions of z2 and G2(x2), one has

−z3
2
∂α1

∂θ̂
τ1 ≤ |z2|3|z1|3

(
3
2
∂α1

∂θ̂
Γ|z1|5

)

≤ ξ261z
6
1 + μ26

(
z2, θ̂

)
z6

2,

3
2
z2

2 Tr
{
ΣTGT

2 (x2)G2(x2)Σ
}
≤ 3

2
z2

2

((
z2 − z1β1

)3 − ∂α1

∂x1
z3

1

)2∥∥∥ΣΣT
∥∥∥

≤ z2
2

((
3 · 25β6

1 + 3 ·
(
∂α1

∂x1

)2
)
z6

1 + 25z6
2

)∥∥∥ΣΣT
∥∥∥

≤ ξ251z
6
1 + μ25

(
z2, θ̂

)
z6

2θ,

(4.7)

where ξ21 = (1/2)d11 + 2d12 + (5/2)d13, ξ221 = (1/3)d21 + d22 + d23, ξ231 = (1/2)d31 + (1/2)d32,
ξ241 = (1/2)d41, ξ251 = (2/3)d51, ξ261 = (1/2)d61, μ21(z1, θ̂) = (1/2)d−1

11 + d−1
12β

3
1(z1, θ̂) +

(1/2)d−5
13β

12
1 (z1, θ̂), μ22(z2, θ̂) = (1/3)d−1

21 + (4/3) + d−1
22β

4
1 + d−1

23 (∂α1/∂x1)
2, μ23(z2, θ̂) = (∂α1/

∂x1)(1 − 2β3/2
1 + β6

1) + (∂α1/∂x1)
2((1/2)d−1

31 + (1/2)d−1
32 ), μ24(z2, θ̂) = (1/2)d−1

41 (∂
2α1/∂x

2
1)

2
z6

1,

μ25(z2, θ̂) = 32z2
2 + d−1

51 (128β18
1 + 4(∂α1/∂x1)

6)z6
1, μ26(z2, θ̂) = (9/8)d−1

61 (∂α1/∂θ̂)
2
Γ2z10

1 , d11, d12,
d13, d21, d22, d23, d31, d32, d41, d51, d61 are positive constants.
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Figure 1: The responses of closed-loop system (4.1)–(4.3), (4.8).

Choosing the smooth adaptive controller

u = −z2β2

(
z2, θ̂

)
, ˙̂θ = τ2(z2),

τ2(z2) = Γz6
1μ15(z1) + Γz6

2

(
μ24

(
z2, θ̂

)
+ μ25

(
z2, θ̂

))
,

β2

(
z2, θ̂

)
=
(
c22 + μ21 + μ22 + μ23 + μ26 + (μ24 + μ25)

(√
1 + θ̂2 + Γz3

2
∂α1

∂θ̂

))1/3

,

(4.8)

and substituting (4.6)–(4.8) into (4.5), one has

LV2 ≤ −c12z
6
1 − c22z

6
2, (4.9)

where c12 = c11 − ξ21 − ξ221 − ξ231 − ξ241 − ξ251 − ξ261 > 0.
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In simulation, we choose Σ(t) ≡ 1, the parameters Γ = 1, c11 = 11, c22 = 1, d11 = 1,
d12 = 1, d13 = 1, d21 = 1, d22 = 1, d23 = 1, d31 = 0.01, d32 = 1, d41 = 1, d51 = 1, d61 = 1, the
initial values θ(0) = 0, x1(0) = 0, x2(0) = −0.5, the sampling period = 0.01. Figure 1 verifies
the effectiveness of the control scheme.

5. Conclusion

In this paper, we further consider more general high-order stochastic nonlinear system driven
by noise of unknown covariance and its adaptive state-feedback stabilization problem.

There is a still remaining problem to be investigated: under current investigation, how
to design an output feedback controller for system (1.1) with Assumption 3.1?
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