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This paper describes the use of integer and fractional electrical elements, for modelling two
electrochemical systems. A first type of system consists of botanical elements and a second type is
implemented by electrolyte processes with fractal electrodes. Experimental results are analyzed in
the frequency domain, and the pros and cons of adopting fractional-order electrical components
for modelling these systems are compared.

1. Introduction

Fractional calculus (FC) is a generalization of the integration and differentiation to a nonin-
teger order. The fundamental operator is aD

α
t , where the order α is a real or even, a complex

number and the subscripts a and t represent the two limits of the operation [1–8].
Recent studies brought FC into attention revealing that many physical phenomena can

be modelled by fractional differential equations [9–17]. The importance of fractional-order
models is that they yield a more accurate description and lead to a deeper insight into the
physical processes underlying a long-range memory behavior.

Capacitors are one of the crucial elements in integrated circuits and are used exten-
sively in many electronic systems [18]. However, Jonscher [19] demonstrated that the ideal
capacitor cannot exist in nature, because an impedance of the form 1/[(jω)C] would violate
causality [20, 21]. In fact, the dielectric materials exhibit a fractional behavior yielding
electrical impedances of the form 1/[(jω)α CF], with α ∈ �+ [22, 23].

Bearing these ideas in mind, this paper analyzes the fractional modelling of several
electrical devices and is organized as follows. Section 2 introduces the fundamental concepts
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of electrical impedances. Sections 3 and 4 describe botanical elements and fractal capacitors,
respectively, and present the experimental results for both cases. Finally, Section 5 draws the
main conclusions.

2. On the Electrical Impedance

In an electrical circuit, the voltage u(t) and the current i(t) can be expressed as a function of
time t:

u(t) = U0 cos(ωt),

i(t) = I0 cos
(
ωt + φ

)
,

(2.1)

where U0 and I0 are the amplitudes of the signals, ω is the angular frequency, and φ is the
current phase shift. The voltage and current can be expressed in complex form as

u(t) = Re
{
U0e

jωt
}
,

i(t) = Re
{
I0e

j(ωt+φ)
}
,

(2.2)

where Re{ } represents the real part and j =
√−1.

Consequently, in complex form, the electrical impedanceZ(jω) is given by the expres-
sion:

Z
(
jω

)
=
U
(
jω

)

I
(
jω

) = Z0e
jφ. (2.3)

Fractional-order elements occur in several fields of engineering [24]. A brief reference about
the constant phase element (CPE) and the Warburg impedance is presented here due to their
application in the work. In fact, to model an electrochemical phenomenon, it often used a
CPE due to the fact that the surface is not homogeneous [24].

In the case of a CPE, we have the model:

Z
(
jω

)
=

1
(
jω

)α
CF

, (2.4)

where CF is a “capacitance” of fractional order 0 < α ≤ 1, occurring at the classical ideal
capacitor when α = 1 [25, 26].

It is well known that, in electrochemical systems with diffusion, the impedance is
modelled by the so-called Warburg element [24, 26]. The Warburg element arises from
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one-dimensional diffusion of an ionic species to the electrode. If the impedance is under an
infinite diffusion layer, the Warburg impedance is given by

Z
(
jω

)
=

R
(
jω

)0.5
CF

, (2.5)

where R is the diffusion resistance. If the diffusion process has finite length, the Warburg
element becomes

Z
(
jω

)
= R

tanh
(
jωτ

)0.5

(τ)0.5
, (2.6)

with τ = δ2/D, where R is the diffusion resistance, τ is the diffusion time constant, δ is the
diffusion layer thickness, andD is the diffusion coefficient [26, 27].

Based on these concepts, and in the previous works developed by the authors [12,
26–29], we verify that the Z(jω) of the fruits, vegetables, and also fractal capacitors exhibit
distinct characteristics according with the frequency range.

This different behavior, for low and for high frequencies, makes difficult the modelling
of these systems in all frequency range. This fact motivated the study of both systems with
different type of RC electrical approximation circuits, namely, the use of series and parallel
two-element associations of integer and fractional order.

Table 1 shows simple series and parallel element associations of integer and fractional
order for constructing electrical circuits, that are adopted in this work.

In this line of thought, in the following two sections, the impedances of botanical and
fractal electrolyte systems are analyzed. In both cases, a large number of measurements were
performed in order to understand andminimize the effect of nonlinearities, initial conditions,
and experimental and instrumentation limitations.

3. Botanical Elements

The structures of fruits and vegetables have cells that are sensitive to heat, pressure, and other
stimuli. These systems constitute electrical circuits exhibiting a complex behavior. Bearing
these facts in mind, in our work, we study the electrical impedance of the Solanum tuberosum
(the common potato) and the Actinidia deliciosa (the common Kiwi), under the point of view
of FC.

We apply sinusoidal excitation signals v(t) to the botanical system for several distinct
frequencies ω and the impedance Z(jω) is measured based on the resulting voltage u(t) and
current i(t).

We start by analyzing the impedance for an amplitude of input signal of V0 = 10 volt,
a constant adaptation resistance Ra = 15 kΩ, applied to one potato, with a weight W = 1.24 ×
10−1 kg, environmental temperature T = 26.5◦C, dimensionD = (7.97×10−2)× (5.99×10−2)m,
and electrode length penetration Δ = 2.1 × 10−2 m. Figure 1 presents the corresponding polar
and Nichols diagrams for the Z(jω).

For the approximate modelling of the results presented in Figure 1, we must have in
mind the polar plots of the impedance Z(jω) for the circuits presented in Table 1.
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Table 1: Elementar circuits of integer and fractional order.

Circuit Circuit

C1 R1R1 CPE

i = 2i = 1

CPE

i = 4i = 3

C1R1

R0R0

CPE

i = 5 i = 6

C1

R1

C1 C2 R1

R0R0

CPE

i = 7 i = 8

C1

R1

R1

CPE

i = 9 i = 10

C1

C2

R1

R1

CPE

i = 11 i = 12

C1

C2

R1R1

C1

R0R0

C1

R1
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Table 1: Continued.

Circuit Circuit

CPE1

i = 13 i = 14

C1

C2

R1R1

R0R0

R2R2

4

CPE
CPE1 CPE2

i = 15 i = 16

C2

R1
R1

C1

R0R0

R2

R2

CPE1

CPE2

i = 17

R1

C2

R0

CPE1

CPE2

i = 18

R2

R1

In the botanical system are applied the circuits i = {1, . . . , 6} and i = {13, . . . , 18}, for
modelling Z(jω). It minimized the errors JiA for the Polar diagram and JiB for the Nichols
diagram, between the experimental data (Z), and the approximation model (Zapp), in the
perspective of the expressions:

JiA =
w2∑

w=w1

(
ReZ − ReZapp

)2 +
(
ImZ − ImZapp

)2

(
ReZ + ReZapp

)2 +
(
ImZ + ImZapp

)2 ,

JiB =
w2∑

w=w1

[(20 log(M2/M1)
K1

)2

+
(
F2 − F1

K2

)2
]

,

(3.1)
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Figure 1: Polar and Nichols diagrams of the impedance Z(jω) for the Solanum tuberosum.

where M1 = Max |Z|, M2 = Max |Zapp|, F1 = Max(phase Z), F2 = Max(phase Zapp), K1 =
20 log(Max(|Z|)/min(|Z|)), and K2 = Max(phase Z) −min(phase Z), and where w1 ≤ w ≤
w2 is the frequency range.

The resulting numerical values of {R0, R1, R2, C1, C2, CF1,∝1, CF2,∝2, J} for the different
impedances are depicted in Tables 2 and 3 for JiA and JiB, respectively. It is possible to analyze
the approximation errors JiA and JiB as function as the number of electrical elements E and
the number of parameters P to be adjusted for the circuits i = {1, . . . , 6} and {13, . . . , 18}. We
verify a significant decreasing of the errors JiA and JiB, respectively, for the polar and Nichols
diagrams, with the number of elements and parameters. In Figure 2, we present the polar
and Nichols diagrams for Z(jω), and the approximations Zapp(jω), i = {2, 4, 5, 6, 13, 14, 15,
16, 17, 18}, and for JiA and JiB, for the Solanum tuberosum. The results for circuits {1, 3} are not
presented because they lead to severe errors.
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Table 2: Comparison of circuit parameters for the circuits {1, . . . , 6} and {13, . . . , 18}, with JiA and for the
Solanum tuberosum.

Circuit i R0 R1 R2 C1 C2 CF1 α1 CF2 α2 JiA

1 2487.00 1.70E − 9 4.23
2 2271.00 2.83E − 7 0.84 1.97
3 116.00 2309.00 3.70E − 9 0.57
4 55.70 3198.00 3.06E − 5 0.68 0.06
5 115.00 2325.00 3.70E − 9 5.00E − 14 0.57
6 61.50 3274.00 5.34E + 5 3.06E − 5 0.68 0.06
13 137.90 0.10 2384.80 4.00E − 9 1.00E − 10 0.63
14 18.50 0.0002 4998.00 1.09E − 3 0.52 0.46
15 18.80 0.0002 4968.90 2.70E − 1 1.09E − 3 0.52 0.46
16 17.50 0.0002 1.09E − 3 0.52 9.99E − 1 0.001 0.46
17 62.60 2976.90 759.00 1.53E − 4 0.62 2.25E − 4 0.64 0.18
18 662.40 79.30 1.20E − 9 5.56E + 2 4.00E − 2 0.31 1.98E − 4 0.65 2.67

Table 3: Comparison of circuit parameters for the circuits {1, . . . , 6} and {13, . . . , 18}, with JiB and for the
Solanum tuberosum.

Circuit i R0 R1 R2 C1 C2 CF1 α1 CF2 α2 JiB

1 1472.10 1.00E − 9 15.70
2 2889.60 2.13E − 4 0.59 1.58
3 104.50 2309.10 3.10E − 9 1.91
4 67.50 3198.00 2.97E − 5 0.68 0.19
5 103.60 2325.00 3.10E − 9 4.00E − 14 1.91
6 64.30 2691.90 5.34E + 5 2.55E − 5 0.69 0.14
13 104.90 0.10 2384.80 3.00E − 9 4.00E − 11 1.91
14 35.90 0.0002 3019.00 5.79E − 4 0.55 0.83
15 34.60 0.0002 4968.90 2.70E − 1 7.90E − 4 0.53 1.28
16 43.40 0.0002 3.12E − 4 0.58 1.00 2.00E − 7 0.62
17 59.10 2189.70 630.90 1.47E − 4 0.62 1.22E − 6 0.85 0.16
18 0.10 79.30 9.00E − 11 5.56E + 2 2.27E − 2 0.35 1.73E − 4 0.66 3.78

In a second experiment, we organized similar studies for a Kiwi. In this case, the
constant adaptation resistance is Ra = 750Ω, with a weight W = 8.95 × 10−2 kg, dimension
D = (6.52 × 10−2) × (5.50 × 10−2)m. Figure 3 presents the polar and the Nichols diagrams for
Z(jω).

In this case, for modelling Z(jω), we apply again the circuits adopted for the potato,
namely, the circuits i = {1, . . . , 6} and i = {13, . . . , 18}, and the same expressions for the
error measures (J). The resulting numerical values of {R0, R1, R2, C1, C2, CF1,∝1, CF2,∝2, J}
for the different impedances are depicted in Tables 4 and 5, for JiA and JiB, respectively.
We can analyze the approximation errors JiA and JiB as function as the number of electrical
elements E and the number of parameters P to be adjusted for the circuits i = {1, . . . , 6} and
i = {13, . . . , 18}, for the Actinidia deliciosa.

We verify that a significant decreasing of the error JiA and JiB with the number of
elements and parameters occurs. In Figure 4, we present the polar and Nichols diagrams for
Z(jω), and the approximationsZapp iB(jω), i = {2, 4, 5, 6, 13, 14, 15, 16, 17, 18}, for the Actinidia
deliciosa revealing a very good fit.
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Figure 2: Polar and Nichols diagrams ofZ(jω) and the approximationsZapp(jω) for i = {2, 4, 5, 6, 13, 14, 15,
16, 17, 18} of the electrical impedance of the Solanum tuberosum for JiA and JiB, respectively.

4. Fractal Capacitors

Fractals can be found both in nature and abstract objects. The impact of the fractal structures
and geometries, is presently recognized in engineering, physics, chemistry, economy, mathe-
matics, art, and medicine [9, 30].
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Figure 3: Polar and Nichols diagrams of the impedance Z(jω) for the Actinidia deliciosa.

Table 4: Comparison of circuit parameters for i = {1, . . . , 6} and i = {13, . . . , 18}, with JiA and for the Actin-
idia deliciosa.

Circuit i R0 R1 R2 C1 C2 CF1 α1 CF2 α2 JiA

1 178.00 1.80E − 9 2.48
2 222.00 3.30E − 5 0.69 0.35
3 56.00 180.40 1.90E − 8 0.60
4 27.30 250.70 1.49E − 3 0.54 0.09
5 56.30 180.50 1.90E − 8 4.00E − 12 0.61
6 34.60 257.10 2887 2.40E − 4 0.63 0.13
13 60.20 192.9 2.42E + 3 3.00E − 3 2.00E − 8 0.62
14 19.90 0.009 284.10 7.68E − 3 0.45 0.11
15 20.10 0.0004 283.60 11.30 7.68E − 3 0.45 0.12
16 30.20 0.0013 6.89E − 3 0.46 0.994 0.001 0.19
17 28.10 249.30 755.10 1.24E − 3 0.55 0.86 1.64 0.09
18 16.80 30.20 1.10E − 9 86.50 4.33E − 1 0.13 0.0069 0.49 0.68

The concept of fractal is associated with Benoit Mandelbrot, that led to a new per-
ception of the geometry of the nature [31]. However, the concept was initially proposed by
several well-known mathematicians, such as George Cantor (1872), Giuseppe Peano (1890),
David Hilbert (1891), Helge von Koch (1904), Waclaw Sierpinski (1916), Gaston Julia (1918),
and Felix Hausdorff (1919).

A geometric important index consists in the fractal dimension (FDim) that represents
the occupation degree in the space and that is related with its irregularity. The FDim is given
by

FDim ≈ log(N)
log

(
1/η

) , (4.1)
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Table 5: Comparison of circuit parameters for i = {1, . . . , 6} and i = {13, . . . , 18}, with JiB and for the
Actinidia deliciosa.

Circuit i R0 R1 R2 C1 C2 CF1 α1 CF2 α2 JiB

1 142.80 8.00E − 10 9.63
2 217.80 3.37E − 4 0.59 1.48
3 39.70 158.40 5.00E − 9 3.13
4 14.20 241.30 1.25E − 3 0.54 0.21
5 39.60 158.20 5.00E − 9 7.00E − 14 3.13
6 21.80 242.00 2887 1.86E − 4 0.63 0.44
13 39.70 169.9 2.42E + 3 8.00E − 4 5.00E − 9 3.13
14 4.30 0.009 279.00 9.54E − 3 0.43 0.32
15 3.50 0.0004 280.90 11.30 9.54E − 3 0.43 0.33
16 8.50 0.0013 3.18E − 3 0.49 1.00 6.00E − 6 0.19
17 16.60 239.30 755.10 1.07E − 3 0.55 0.86 1.64 0.25
18 0.10 30.20 7.00E − 10 86.50 4.29E − 1 0.13 0.0069 0.49 2.85

where N represents the number of boxes, with size η(N) resulting from the subdivision of
the original structure. This is not the only description for the fractal geometry, but it is enough
for the identification of groups with similar geometries.

In this work, we adopted the classical fractal Carpet of Sierpinski and the Triangle of
Sierpinski with FDim = 1.893 and FDim = 1.585, respectively.

The simplest capacitors are constituted by two parallel electrodes separated by a layer
of insulating dielectric. There are several factors susceptive of influencing the characteristics
of a capacitor [32]. However, three of them have a special importance, namely, the surface
area of the electrodes, the distance among them, and the material that constitutes the
dielectric. In this study, the capacitors adopt electrodes that are construted with the fractal
structures of Carpet of Sierpinski and Triangle of Sierpinski. The size of the fractals was
adjusted so that their copper surface yields identical values, namely, S = 0.423m2.

We apply sinusoidal excitation signals v(t) to the apparatus, for several distinct
frequencies ω, and the impedance Z(jω) between the electrodes is measured based on the
resulting voltage u(t) and current i(t).

For the first experiment with fractal structures, we consider two identical single-face
electrodes. The voltage, the adaptation resistance Ra, and the distance between electrodes
delec are, respectively, V0 = 10V, Ra = 1.2 kΩ, and delec = 0.13m. The electrolyte process
consists in an aqueous solution of NaCl with Ψ = 10 gl−1 and two single-face copper
electrodes with the Carpet of Sierpinski printout.

The resulting polar and Nichols diagrams of the electrical impedance Z(jω) are de-
picted in Figure 5. For this chart, we apply the circuits i = {7, . . . , 18} in Table 2. The resulting
numerical values of {R0, R1, R2, C1, C2, CF1,∝1, CF2,∝2, J} for the different impedances are
shown in Tables 6 and 7, for JiA and JiB, respectively.

We can analyze the approximation errors JiA and JiB as function as the number of
electrical elements E and the number of parameters P to be adjusted for the circuits i =
{7, . . . , 18}. The tables reveal that the error decreases with the introduction of the fractional-
order elements. Figure 6 presents the polar and Nichols diagrams of Z(jω) and the approxi-
mations Zapp iB(jω), for i = {8, 10, 11, 12, 13, 14, 15, 16, 17, 18}.

In order to study the influence of the fractal printed in the surface of the electrode, we
adopted another fractal, namely, the Triangle of Sierpinski.
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Figure 4: Polar and Nichols diagrams of Z(jω) and the approximations Zapp iB(jω), i = {2, 4, 5, 6, 13, 14, 15,
16, 17, 18} of the electrical impedance of the Actinidia deliciosa for JiA and JiB, respectively.

In this case the voltage, Ra, delec, the solution and the area remain identical to the pre-
vious example.

The resulting polar and Nichols diagrams of the electrical impedance Z(jω) is de-
picted in Figure 7. For this chart, we apply the circuits i = {7, . . . , 18} in Table 1. The resulting
numerical values of {R0, R1, R2, C1, C2, CF1,∝1, CF2,∝2, J} for the different impedances are
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Figure 5: Polar and Nichols diagrams of the impedance Z(jω) for the Carpet of Sierpinski.

Table 6: Comparison of circuit parameters for i = {7, . . . , 18}, with JiA and for the Carpet of Sierpinski.

Circuit i R0 R1 R2 C1 C2 CF1 α1 CF2 α2 JiA

7 17.00 0.0027 2.03
8 14.20 0.037 0.60 0.20
9 17.20 0.0027 1.00E − 19 2.03
10 14.30 1.00E − 11 0.035 0.61 0.20
11 14.90 41.20 0.0033 8.40E − 11 0.58
12 10.20 4.10 4.00E − 11 0.038 0.60 0.18
13 15.00 70.6 6.30E + 2 0.0026 0.001 0.35
14 14.10 0.0001 1.01E + 5 0.040 0.59 0.20
15 13.90 3.00E − 5 20.90 2.00E − 8 0.045 0.56 0.27
16 14.10 3.50 0.057 0.52 9.34E − 4 0.86 0.31
17 9.80 782.40 4.30 0.019 0.68 7.03E − 6 0.79 0.26
18 11.90 2.30 2.00E − 11 1.00E − 11 0.042 0.59 1.59E − 2 0.76 0.20

Table 7: Comparison of circuit parameters for i = {7, . . . , 18}, with JiB and for the Carpet of Sierpinski.

Circuit i R0 R1 R2 C1 C2 CF1 α1 CF2 α2 JiB

7 18.30 0.004 3.36
8 14.30 0.032 0.62 0.23
9 17.60 0.0032 1.00E − 19 2.42
10 14.30 1.00E − 12 0.032 0.62 0.23
11 15.00 54.00 0.0034 2.00E − 10 0.55
12 10.20 4.10 1.00E − 11 0.031 0.61 0.28
13 14.90 52.50 6.3E + 2 0.0027 0.001 0.37
14 14.30 0.0001 9.76E + 4 0.032 0.62 0.23
15 14.00 3.00E − 5 20.90 1.00E − 8 0.041 0.58 0.28
16 14.20 0.001 0.031 0.60 0.006 0.63 0.28
17 10.50 782.50 3.90 0.026 0.66 4.22E − 6 0.60 0.43
18 11.80 2.30 1.50E − 12 9.00E − 12 0.043 0.58 0.009 1.30 0.20
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Figure 6: Polar and Nichols diagrams of Z(jω) and the approximations Zapp iB(jω), i = {8, 10, 11, 12, 13, 14,
15, 16, 17, 18} of the electrical impedance of the Carpet of Sierpinski for JiA and JiB, respectively.

shown in Tables 8 and 9, for JiA and JiB, respectively.We analyze the approximation errors JiA
and JiB as function as the number of electrical elements E and the number of parameters P
to be adjusted for i = {7, . . . , 18}. The results lead to the same conclusions, revealing that
the error decreases with the introduction of the fractional-order elements. Figure 8 presents
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Figure 7: Polar and Nichols diagrams of the impedance Z(jω) for the Triangle of Sierpinski.

Table 8: Comparison of circuit parameters for i = {7, . . . , 18}, with JiA and for the Triangle of Sierpinski.

Circuit i R0 R1 R2 C1 C2 CF1 α1 CF2 α2 JiA

7 7.40 3.50E − 3 7.81
8 5.40 0.072 0.52 1.48
9 7.20 3.50E − 3 1.00E − 19 7.81
10 5.40 3.00E − 11 0.072 0.52 1.48
11 7.00 267.70 1.10E − 2 1.20E − 6 2.07
12 4.20 1.50 5.20E − 10 0.069 0.53 1.48
13 6.80 4.00E − 3 2.23E + 2 1.50E − 3 4.00E − 4 1.07
14 5.70 0.0002 987.00 0.039 0.61 0.60
15 5.60 7.00E − 5 29.3 2.00E − 8 0.063 0.60 0.56
16 5.80 0.0002 0.051 0.56 0.0009 0.87 0.64
17 5.60 337.30 30.90 0.031 0.64 0.0001 1.70 0.13
18 3.30 2.30 3.00E − 11 1.00E − 11 0.046 0.59 0.257 0.59 0.66

the polar andNichols diagrams ofZ(jω) and the approximationsZapp iB(jω) for i = {8, 10, 11,
12, 13, 14, 15, 16, 17, 18}.

In conclusion, we verify that, in general, the adoption of fractional electrical elements
leads to modelling circuits well adapted to the experimental data and that this direction of
research should be further explored in other complex systems.

5. Conclusions

FC is a mathematical tool applied in scientific areas such as electricity, magnetism, fluid
dynamics, and biology. In this paper, FC concepts were applied to the analysis of electrical
fractional impedances, in botanical elements and in electrical capacitors with fractal charac-
teristics. The introduction of the CPE element in the electric circuits led us to conclude that,
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Figure 8: Polar and Nichols diagrams of Z(jω) and the approximations Zapp iB(jω), i = {8, 10, 11, 12, 13, 14,
15, 16, 17, 18} of the electrical impedance of the Triangle of Sierpinski for JiA and JiB, respectively.

for the same number of elements, we have a better approximation model and consequently a
decrease in the error value. The different configurations of the polar and Nichols diagrams of
the systems studied led us to modelling the systems through electrical circuit with different
configurations (series and parallel) and the combination of integer and fractional-order ele-
ments in the circuits.
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Table 9: Comparison of circuit parameters for i = {7, . . . , 18}, with JiB and for the Triangle of Sierpinski.

Circuit i R0 R1 R2 C1 C2 CF1 α1 CF2 α2 JiB

7 7.20 3.20E − 3 6.35
8 5.70 0.072 0.52 1.45
9 7.20 3.20E − 3 1.00E − 19 6.35
10 5.70 2.00E − 12 0.072 0.52 1.45
11 6.80 309.70 2.00E − 2 1.00E − 5 1.18
12 4.20 1.50 5.10E − 10 0.068 0.53 1.45
13 6.70 4.00E − 3 2.71E + 2 1.80E − 3 2.40E − 4 1.05
14 6.00 0.0002 420.40 0.013 0.75 0.59
15 5.30 7.00E − 5 29.3 2.00E − 8 0.072 0.52 1.25
16 6.00 0.0002 0.997 0.0005 0.012 0.76 0.59
17 5.80 363.90 53.20 0.035 0.63 0.0001 1.60 0.34
18 3.40 2.00 9.00E − 12 1.00E − 11 0.072 0.52 1.476 0.57 1.38
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