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This paper is concerned with the stability analysis and semistability theorems for delay impulsive
systems having a continuum of equilibria. We relate stability and semistability to the classical
concepts of system storage functions to impulsive systems providing a generalized hybrid system
energy interpretation in terms of storage energy. We show a set of Lyapunov-based sufficient
conditions for establishing these stability properties. These make it possible to deduce properties
of the Lyapunov functional and thus lead to sufficient conditions for stability and semistability.
Our proposed results are evaluated using an illustrative example to show their effectiveness.

1. Introduction

Due to their numerous applications in various fields of sciences and engineering, impulsive
differential systems have become a large and growing interdisciplinary area of research.
In recent years, the issues of stability in impulsive differential equations with time delays
have attracted increasing interest in both theoretical research and practical applications [1–
9], while difficulties and challenges remain in the area of impulsive differential equations
[10], especially those involving time delays [11]. Various mathematical models in the study
of biology, population dynamics, ecology and epidemic, and so forth can be expressed
by impulsive delay differential equations. These processes and phenomena, for which the
adequate mathematical models are impulsive delay differential equations, are characterized
by the fact that there is sudden change of their state and that the processes under
consideration depend on their prehistory at each moment of time. In the transmission of
the impulse information, input delays are often encountered. Control and synchronization
of chaotic systems are considered in [12, 13]. By utilizing impulsive feedback control, all the
solutions of the Lorenz chaotic system will converge to an equilibrium point. The application
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of networked control systems is considered in [14–17], while in [14], when analyzing
the asymptotic stability for discrete-time neural networks, the activation functions are not
required to be differentiable or strictly monotonic. The existence of the equilibrium point is
first proved under mild conditions. By constructing a new Lyapnuov-Krasovskii functional,
a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for
the discrete-time neural networks to be globally asymptotically stable. In [18], Razumikhin-
type theorems are established which guarantee ISS/iISS for delayed impulsive systems
with external input affecting both the continuous dynamics and the discrete dynamics. It
is shown that when the delayed continuous dynamics are ISS/iISS but the discrete dynamics
governing the impulses are not, the ISS/iISS property of the impulsive system can be
retained if the length of the impulsive interval is large enough. Conversely, when the delayed
continuous dynamics are not ISS/iISS but the discrete dynamics governing the impulses
are, the impulsive system can achieve ISS/iISS. In [19, 20], the authors consider linear time
invariant uncertain sampled-data systems in which there are two sources of uncertainty: the
values of the process parameters can be unknown while satisfying a polytopic condition
and the sampling intervals can be uncertain and variable. They model such systems as
linear impulsive systems and they apply their theorem to the analysis and state-feedback
stabilization. They find a positive constant which determines an upper bound on the
sampling intervals for which the stability of the closed loop is guaranteed. Population growth
and biological systems are considered in [21, 22]. Stochastic systems are considered in [23–
25], and so forth. However, the corresponding theory for impulsive systems with time delays
having a continuum of equilibria has been relatively less developed.

The purpose of this paper is to study the stability and semistability properties
for nonlinear delayed impulsive systems with continuum of equilibria. Examples of such
systems include mechanical systems having rigid-body modes and isospectral matrix
dynamical systems [26]. Such systems also arise in chemical kinetics, compartmental
modeling, and adaptive control. Since every neighborhood of a nonisolated equilibrium
contains another equilibrium, a nonisolated equilibrium cannot be asymptotically stable.
Thus asymptotic stability is not the appropriate notion of stability for systems having
a continuum of equilibria. Two notions that are of particular relevance to such systems
are convergence and semistability. Convergence is the property whereby every solution
converges to a limit point that may depend on the initial condition. Semistability is the
additional requirement that all solutions converge to limit points that are Lyapunov stable.
More precisely, an equilibrium is semistable if it is Lyapunov stable, and every trajectory
starting in a neighborhood of the equilibrium converges to a (possibly different) Lyapunov
stable equilibrium. It can be seen that, for an equilibrium, asymptotic stability implies
semistability, while semistability implies Lyapunov stability. We will employ the method of
Lyapunov function for the study of stability and semistability of impulsive systems with time
delays. Several stability criteria are established. A set of Lyapunov-based sufficient conditions
is provided for stability criteria, then we extend the notion of stability to develop the concept
of semistability for delay impulsive systems. Finally, an example illustrates the effectiveness
of our approach.

2. Preliminaries

Let N denote the set of positive integer numbers. Let PCt denote the set of piecewise right
continuous functions φ : [t − r, t] → R

n with the norm defined by ‖φ‖tr = sup−r≤s≤0‖φ(t + s)‖.
For simplicity, define ‖φ‖r = ‖φ‖0r , for φ ∈ PC0. For given r > 0, if x ∈ PC([t0 − r,+∞),Rn),
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then for each t ≥ t0, we define xt, xt− ∈ PC0 by xt(s) = x(t + s) (−r ≤ s ≤ 0) and xt−(s) =
x(t + s) (−r ≤ s < 0), respectively. A function α : R

+ → R
+ is of class K, if α is continuous,

strictly increasing, and α(0) = 0. For a given scalar ρ ≥ 0, let B(ρ) = {x ∈ R
n; ‖x‖ ≤ ρ}.

Let Ω ∈ R
n be an open set and B(ρ) ⊂ Ω for some ρ > 0. Given functionals f :

R
+ × PC([−r, 0],Ω) → R

n, g : R
+ ×Ω → R

n, satisfying f(t, 0) = 0, g(0, 0) = 0. Considering
the following nonlinear time-delay impulsive system Σt described by the state equation

ẋ(t) = f(t, xt), t > t0, t /= tk, k ∈ N, (2.1)

x(t+) = g(t, x(t)), t = tk, k ∈ N, (2.2)

x(t0 + θ) = φ(θ), θ ∈ [−r, 0], (2.3)

where x(t) ∈ R
n is the system state, ẋ(t) denotes the right-hand derivative of x(t), x(t+) and

x(t−) denote the limit from the right and the limit from the left at point t, respectively. t0 is
the initial time. Here we assume that the solutions of system Σt are right continuous, that is,
x(t+) = x(t). {tk}, k ∈ N is a strictly increasing sequence of impulse times in (t0,∞) where
limk→∞tk = ∞.

Definition 2.1. The function f : R × PC → R
n is said to be composite-PC, if for each t0 ∈ R

and α > 0, x ∈ PC([t0 − r, t0 + α],Rn) and x is continuous at each t /= tk in [t0, t0 + α], then the
composite function h(x) = f(t, xt) ∈ PC([t0 − r, t0 + α],Rn).

Definition 2.2. The function f : R × PC → R
n is said to be quasi-bounded, if for each t0 ∈ R

+,
α > 0, and for each compact set F ∈ R

n, there exists someM > 0, such that ‖f(t, ψ)‖ ≤ M for
all (t, ψ) ∈ [t0, t0 + α] × PC([−r, 0], F).

Definition 2.3. The function x : [t0 − r, t0 + α] → R
n with α > 0 is said to be a solution of Σt if

(i) x is continuous at each t /= tk in (t0, t0 + α];

(ii) the derivative of x exists and is continuous at all but at most a finite number of
points t in t ∈ [t0, t0 + α);

(iii) the right-hand derivative of x exists and satisfies (2.1) in t ∈ [t0, t0 + α], while for
each tk ∈ [t0, t0 + α], (2.2) holds;

(iv) Equation (2.3) holds, that is, x(t0 + θ) = φ(θ), θ ∈ [−r, 0].
We denote by x(t, t0, φ) (or x(t), if in not confusing) the solution of Σt. x(t) is said to

be a solution defined on [t0 − r,∞) if all above conditions hold for any α > 0.
We make the following assumptions on system Σt.

(A1) f(t, ψ) is composite-PC, quasi-bounded and locally Lipschitzian in ψ.

(A2) For each fixed t ∈ R
+, f(t, ψ) is a continuous function of ψ on PC([−τ, 0],Rn).

Under the assumptions above, it was shown in [11] that for any φ ∈ PC([−r, 0],Rn),
system Σt admits a solution x(t, t0, φ) that exists in a maximal interval [t0 − r, t0 + b) (0 < b ≤
+∞) and the zero solution of the system exists.

Definition 2.4. An equilibrium point of Σt is a point xe ∈ PC([t0 − r, t0 + α],Rn) satisfying
x(t, t0, φ) = xe for all t ≥ 0 where x(t, t0, φ) is the solution of Σt. Let E denote the set of
equilibrium points of Σt.
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Definition 2.5. Consider the delay impulsive system Σt.

(i) An equilibrium point x(t) ≡ xe of Σt is Lyapunov stable if for any ε > 0 there exists
δ(ε, t0), such that ‖φ − φe‖r < δ implies ‖x(t) − xe‖ < ε for all t ≥ t0, where φe is the
initial function for xe. An equilibrium point x is uniformly Lyapunov stable, if, in
addition, the number δ is independent of t0.

(ii) An equilibrium point x of Σt is semistable if it is Lyapunov stable and there exists an
open subset of Ω containing x such that for all initial conditions in Ω the trajectory
of Σt converges to a Lyapunov stable equilibrium point, that is, limt→∞x(t, t0, φ) =
y, φ ∈ Ω, where y is a Lyapunov stable equilibrium point.

(iii) System Σt is said to be uniformly asymptotically stable in the sense of Lyapunov
with respect to the zero solution, if it is uniformly stable and limt→∞‖x(t)‖ = 0.

Definition 2.6. The function V : [t0,+∞)×PC([−τ, 0],B(ρ)) → R
+ is said to belong to the class

V0 if

(i) V is continuous in each of the sets [tk−1, tk) × PC([−τ, 0],B(ρ)) and for each k ∈
N, lim(t,y)→ (t−

k
,x)V (t, y) = V (t−

k
, x) exists;

(ii) V (t, x) is locally Lipschitzian in x ∈ PC([−τ, 0],B(ρ)), and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 2.7. Let V ∈ V0. For any (t, ψ) ∈ [t0,+∞) × PC([−τ, 0],B(ρ)), the upper right-hand
derivative of V with respect to system Σt is defined by

D+V
(
t, ψ(0)

)
:= lim sup

h→ 0+

1
h

{
V
(
t + h, ψ(0) + hf

(
t, ψ

)) − V (
t, ψ(0)

)}
. (2.4)

3. Main Results

In the following, we will establish several sufficient conditions for Lyapunov stability and
semistability for impulsive differential system Σt with time delays.

Theorem 3.1. System Σt is uniformly stable, and the zero solution of Σt is asymptotically stable if
there exists a Lyapunov function V ∈ V0 which satisfies the following.

(i) ∃a, b ∈ K such that

a(‖x‖) ≤ V (t, x) ≤ b(‖x‖). (3.1)

(ii) For any t ∈ [t0,+∞), t /= tk and ψ ∈ PC([−r, 0],Rn), there exists c > 0, such that

D+V
(
t, ψ(0)

) ≤ −cV (
t, ψ(0)

)
. (3.2)

(iii) There exist a μ (0 < μ < 1) and a subsequence {tkj} of the impulsive moments {tk} such
that

∥∥∥V
(
tkj+1 , x

)∥∥∥
r
≤ μ

∥∥∥V
(
tkj , x

)∥∥∥
r
. (3.3)
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(iv) For anym, 0 ≤ m ≤ k0, for all xe ∈ E there exists a function α ∈ K, such that

‖V (tm, x − xe)‖r ≤ α
(∥∥φ − φe

∥
∥
r

)
. (3.4)

(v) For anym ∈ N, kj ≤ m < kj+1, j = 0, 1, 2, . . ., there exists a function β ∈ K such that

‖V (tm, x − xe)‖r ≤ β
∥
∥
∥V

(
tkj , x − xe

)∥∥
∥
r
. (3.5)

Proof. Let xe be an equilibrium point of the system Σt. We first prove that xe is uniformly
stable, that is, for for all ε > 0, there exists δ = δ(ε) > 0 such that ‖φ − φe‖r < δ implies
‖x(t) − xe‖ < ε for all t ≥ t0.

For all ε > 0, let 0 < δ < ε such that

a(ε) > max
{
α(δ), β(α(δ))

}
. (3.6)

For any ‖φ − φe‖r < δ, by condition (3.4), we get

‖V (tm, x − xe)‖r ≤ α
(∥∥φ − φe

∥∥
r

) ≤ α(δ), 0 ≤ m ≤ k0. (3.7)

By (3.3), it is clear that ‖V (t, x)‖r is nonincreasing along the subsequence {tkj}, so we
have

∥∥∥V
(
tkj , x − xe

)∥∥∥
r
≤ ‖V (tk0 , x − xe)‖r ≤ α(δ), j = 0, 1, 2, . . . . (3.8)

For anym, kj ≤ m < kj+1, j = 0, 1, 2, . . ., by (3.5), we get

‖V (tm, x − xe)‖r ≤ β(α(δ)). (3.9)

Combining (3.7), (3.8), and (3.9), we conclude that

‖V (tk, x − xe)‖r < a(ε), k = 1, 2, . . . . (3.10)

By condition (3.2), for any t ∈ [tk, tk+1), k = 0, 1, 2 . . ., we have

V (t, x − xe) ≤ V (tk, x − xe) < a(ε), (3.11)

and then, by (3.10), for any t ≥ t0 we derive that V (t, x−xe) < a(ε). Hence, by (3.1)we obtain
that a(‖x − xe‖) ≤ V (t, x − xe) < a(ε). Since a ∈ K, we get

‖x(t) − xe‖ < ε, t ≥ t0, (3.12)

which implies that system Σt is uniformly Lyapunov stable.
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Next, we will prove that the zero solution of Σt is asymptotically stable.
Since system Σt is uniformly stable, from (3.1), there must exist a real number M > 0

such that ‖V (t, x)‖r ≤M, t ≥ t0. Hence, there exists a v ≥ 0 such that

lim sup
t→∞

‖V (t, x)‖r = v ≤M. (3.13)

In the following, we will show that v = 0. Without loss of generality, we can suppose
that there exists a sequence {tn} ⊂ [t0,∞), n = 1, 2, . . ., such that

lim
n→∞

‖V (tn, x)‖r = lim sup
n→∞

‖V (t, x)‖r = v. (3.14)

From (3.3)we get

∥∥∥V
(
tkj , x

)∥∥∥
r
< μj‖v(tk0 , x)‖r . (3.15)

Since 0 < μ < 1, we obtain

lim
j→∞

∥∥∥V
(
tkj , x

)∥∥∥
r
= 0. (3.16)

If the sequence {tn} ⊂ [t0,∞), n = 1, 2, . . . is the same as the sequence {tkj}, j = 0, 1, 2, . . .,
then it is obvious that v = 0. If 0 ≤ n < k0, it follows from the assumptions above that (3.16)
holds. Otherwise, we assume that n ≥ k0; there exists a j ∈ N such that kj ≤ n < kj+1. Then
from condition (3.5)we get

‖V (tn, x)‖r ≤ β
(∥∥∥V

(
tkj , x

)∥∥∥
r

)
. (3.17)

So

lim
n→∞

‖V (tn, x)‖r ≤ lim
j→∞

β
(∥∥∥V

(
tkj , x

)∥∥∥
r

)
= 0, (3.18)

which implies v = 0.
Hence, we derive that limt→∞‖V (t, x)‖ = 0. Finally, by (3.1), we have limt→∞‖x(t)‖ = 0

which implies that the zero solution of the system Σt is asymptotically stable. The proof is
completed.

Next, we present a sufficient condition for semistability for system Σt.
Let L1 := {f : [0,∞) → R; f is measurable and

∫∞
0 |f(t)|dt <∞}.

Theorem 3.2. Consider the system Σt; assume that there exists nonnegative-definite continuous
functionW : R × R

n → R such that

D+V
(
t, ψ(0)

) ≤ −W(
t, ψ(0)

)
. (3.19)

LetW−1(0) := {x | W(t, x) ≡ 0, for all t ≥ t0}. If every equilibrium point of system Σt is Lyapunov
stable, then every point inW−1(0) is semistable.
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Proof. Define

ϕ(t) :=

{
W

(
t, ψ(0)

)
, t /= tk, k ∈ N,

0, t = tk, k ∈ N.
(3.20)

It follows from (3.19) and (3.3) that

∫ t

0
ϕ(s)ds ≤ V (x(t1)) − V (x(t)) ≤ V (x(t1)) . (3.21)

Since ϕ(·) is nonnegative, it follows that ϕ(·) ∈ L1. Next, we show that ϕ(t) → 0 as
t → ∞.

If it is not true, then there exists ε > 0 and an infinite sequence of times τ1, τ2, . . . such
that |ϕ(τi)| ≥ ε. By definition of ϕ(·) we have τi, i = 1, 2 . . . that does not belong to the set of
impulsive times {tk}.

Note that from (3.19), it follows from Proposition 3.1 of [26] that x(t) is bounded for
all t ≥ 0. Hence, it follows from the Lipschitz continuity of f(·) that ẋ(t) is bounded for all
t ≥ 0; thus, ϕ(·) is uniformly continuous on [t0,+∞) \ {tn}. So, there exists δ > 0 such that
every τi is contained in some interval of Ii, τi ∈ Ii of length δ on which ϕ(t) ≥ ε/2, t ∈ Ii. This
contradicts ϕ(·) ∈ L1. Hence ϕ(t) → 0 as t → ∞. It follows that W(t, ψ(0)) → 0 as t → ∞.
Since x(t) is bounded, we get x(t) → W−1(0) (as t → ∞).

Next, let xe ∈ W−1(0). For every open neighborhood U and x0 ∈ U, x(t) →
W−1(0) (as t → ∞), it follows from Proposition 5.1 of [26] that there exists y ∈ W−1(0) such
that limt→∞x(t) = y. Since every point in E is Lyapunov stable, and hence y is a Lyapunov
stable equilibrium of Σt, it follows that xe is semistable. Finally, since xe ∈W−1(0) is arbitrary,
this implies every point inW−1(0) is semistable. The proof is completed.

4. Numerical Example

In this section, we give an example about compartmental systems to illustrate the
effectiveness of the proposed method. Compartmental systems involve dynamical models
that are characterized by conservation laws (e.g., mass and energy) capturing the exchange
of material between coupled macroscopic subsystems known as compartments. Each
compartment is assumed to be kinetically homogeneous, that is, any material entering the
compartment is instantaneously mixed with the material of the compartment.
Example 4.1. Consider the nonlinear two-compartment time-delay impulsive systems given
by

ẋ1(t) = −x1(t) + x2(t){1 − sin(x1(t − r))} + x3
2(t) − x3

1(t), t /= tk, k ∈ N,

ẋ2(t) = −x2(t) + x1(t){1 + sin(x1(t − r))} + x3
1(t) − x3

2(t), t /= tk, k ∈ N,

x1(t+) = 0.8x1(t), t = tk, k ∈ N,

x2(t+) = 0.9x2(t), t = tk, k ∈ N,

x(t0 + θ) = φ(θ) =
(
cos θ
sin θ

)
, θ ∈ [−0.2, 0],

(4.1)
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Figure 1: State trajectory: semistable.

where r ≥ 0. Let Lyapunov function V (ψ(0)) = (1/2)ψ2
1(0) + (1/2)ψ2

2(0), then for any ψ ∈
PC([−r, 0],B(ρ)) we have

D+V
(
ψ(0)

)
= − 1

2

(
x2
1 + x

2
2

)
− 1
2
(x1 − x2)2

(
x2
1 + x1x2 + x

2
2

)

≤ − 1
2

(
x2
1 + x

2
2

)
= −V (

ψ(0)
)
.

(4.2)

Let c = 1, a(‖x‖) = b(‖x‖) = (1/2)‖x‖, μ = 0.9, and β(‖x‖) = ‖x‖, then the conditions of
Theorem 3.1 are satisfied, which means the equilibrium points of the system are Lyapunov
stable, and

D+V
(
ψ(0)

)
= − 1

2
(x1 − x2)2

[

1 +
3
4
x2
1 +

(
1
2
x1 + x2

)2
]

≤ − 1
2
(x1 − x2)2.

(4.3)

LetW(x1, x2) = (1/2)(x1 − x2)2 then we derive that D+V (ψ(0)) ≤ −W(ψ(0)); it follows from
Theorem 3.2 that every point inW−1(0) is semistable.

The simulation result is depicted in Figure 1, where the length of the impulsive
intervals is T = 0.3 second and the time delay r = 0.1 second.
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