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Nonlinear vehicle control allocation is achieved through distributing the task of vehicle control
among individual tire forces, which are constrained to nonlinear saturation conditions. A high-
level sliding mode control with adaptive upper bounds is considered to assess the body yaw
moment and lateral force for the vehicle motion. The proposed controller only requires the
online adaptation of control gains without acquiring the knowledge of upper bounds on system
uncertainties. Static and dynamic control allocation approaches have been formulated to distribute
high-level control objectives among the system inputs. For static control allocation, the interior-
point method is applied to solve the formulated nonlinear optimization problem. Based on the
dynamic control allocation method, a dynamic update law is derived to allocate vehicle control
to tire forces. The allocated tire forces are fed into a low-level control module, where the applied
torque and active steering angle at eachwheel are determined through a slip-ratio controller and an
inverse tire model. Computer simulations are used to prove the significant effects of the proposed
control allocation methods on improving the stability and handling performance. The advantages
and limitations of each method have been discussed, and conclusions have been derived.

1. Introduction

In recent years by rapid emergence of electronic control devices, employing all available
actuators, or individual tire forces, for ground vehicle control has become possible [1]. The
vehicle motion is governed by tire forces which are constrained based on friction circle notion.
Thus, tire saturation constraints must be taken into account for a proper control design. The
problem of optimal actuators selection to execute a control task, while minimizing effort and
satisfying constraints, is known as Control Allocation (CA). To tackle actuator constraints
in control design of a general over-actuated nonlinear system, two approaches of Static
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Figure 1: Overall structure of the integrated vehicle dynamics control scheme.

Control Allocation (SCA) and Dynamic Control Allocation (DCA) are proposed. In SCA, the
total body forces/moments of a high-level controller are allocated to available actuators by
optimizing a suitable cost function at each sampling time, whereas DCA generates a dynamic
update law for actuators. No optimization problem needs to be solved by DCA.

In the field of Integrated Vehicle Dynamics Control (IVDC), Optimal Distribution
of tire Forces (ODF) was introduced to meet various objectives, such as maximizing
longitudinal acceleration [2], minimizing total tire workload usage [3], or adaptive-optimal
coordination of braking and steering [4]. Attempts to account for actuator constraints were
rare in these works.

To allocate control objectives to the actuators with limited amplitude/rate, SCA
methods have been subject of different studies. Algorithms using various optimization
methods, such as quadratic programming [5], multiparametric nonlinear programming [6],
and fixed point [1], were developed. Kou [7] proposed an SCA scheme based on the model
predictive control and fixed point method. The main problem in static control allocation is its
computational burden for practical applications, due to numerical solution of a constrained
optimization problem at each sampling instant.

To deal with this difficulty, Johansen [8] developed a dynamic control allocation
method for a particular class of nonlinear systems. In this regard, a dynamic update law leads
the desired actuator efforts to converge to the solution of a definite optimization problem,
without solving the optimization problem. DCA was extended for systems with unknown
parameters [9] and applied to vehicle yaw control [10].

This paper addresses nonlinear vehicle CA constrained to tire saturation conditions.
Referring to schematic view of IVDC structure in Figure 1, the required body lateral force
and yaw moment for vehicle motion are determined by a high-level sliding mode enhanced
adaptive controller. The adaptive control methodology is utilized to update the perturbation
and sliding mode control gains, so that the upper bounds of uncertainties are not required
to be known in advance. Then, the body force and moment, along with the driver’s
desired braking force, are allocated to individual lateral and longitudinal forces of each
tire. Considering tires saturation induces nonlinear constraints in CA problem. To tackle
this problem, we look into SCA and DCA methods for vehicle control. For static allocation
purpose, the interior point is formulated and employed to solve the nonlinear inequality
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constrained optimization problem. To formulate dynamic allocation control for the proposed
problem, a dynamic update law is derived and utilized in the IVDC scheme. The desired
lateral force of each tire by CA modules is mapped into the corresponding active steering
angle through an inverse tire model. In addition, the desired longitudinal forces are tracked
by a low-level slip-ratio control scheme. Simulation results are conducted to evaluate the
effectiveness of each method.

The rest of the paper is organized as follows. The high-level control is described next.
Section 3 presents the formulation of optimal distribution of tire forces in IVDC considering
nonlinear tire saturation constraints. In Section 4, the SCA is formulated based on the interior-
point method. In Section 5, the DCA approach is utilized to derive an optimized dynamic
update law for individual tire forces. The low-level slip-ratio controller has been addressed
in Section 6. Sections 7 and 8 are devoted to simulation results and concluding remarks.

2. High-Level Sliding Mode Control with Adaptive Upper Bounds

In this section we first design a high-level controller for vehicle handling and stability based
on the conventional Sliding Mode Control (SMC), then an SMC with updated upper bounds
of uncertainties is considered.

2.1. Conventional Sliding Mode Control

In general, vehicle handling and stability are achieved through the control of yaw rate and
side-slip angle, respectively. The design procedure is based on the 2DoF vehicle model, where
the basic equations are [11]

mV
(
β̇ + r

)
= Y,

Izṙ = M,
(2.1)

where m and Iz denote the total mass and yaw moment of inertia, from which only the
estimates of m̂ and Îz are available, and V is the vehicle velocity. β and r stand for the actual
vehicle side-slip angle and the yaw rate, respectively. M and Y are sum of external moments
in the yaw direction and lateral forces acting on the vehicle, respectively. To account for the
unmodelled dynamics and uncertainties in modelling the actual nonlinear vehicle dynamics,
the unknown, but bounded, disturbance terms, ωβ and ωr , are embedded into each channel
to get

mV
(
β̇ + r

)
= Y +ωβ, (2.2)

Izṙ = M +ωr. (2.3)

To design the total lateral force (Y ), for a zero desired side-slip angle, the sliding surface, sβ,
is selected as

sβ = β. (2.4)
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Differentiating this equation and considering (2.2),

ṡβ =
Y

mV
− r + Δβ

m
, (2.5)

where the term Δβ = ωβ/V is assumed to be bounded by a known value Δβ:

∣
∣Δβ

∣
∣ < Δβ. (2.6)

To guarantee the sliding condition [12]

sβṡβ < 0, (2.7)

the desired body lateral force is considered as

Y = V
(
m̂r + vβ

)
(2.8)

in which m̂ is our estimate of m and vβ is to be designed. Insert (2.8) into (2.5) to get the left
side of (2.7) as

sβṡβ = sβm
−1(Δβ + vβ + m̃r

)
, (2.9)

where the mass estimation error m̃ = m̂ −m is assumed to satisfy

|m̃| = |m̂ −m| < m, m > 0, (2.10)

whose combination with (2.9) and (2.6) results in

sβṡβ ≤ m−1
(
sβvβ +

∣∣Δβ

∣∣∣∣sβ
∣∣ + |m̃||r|∣∣sβ

∣∣) < m−1
(
sβvβ + Δβ

∣∣sβ
∣∣ +m|r|∣∣sβ

∣∣
)
. (2.11)

To achieve (2.7), vβ is considered to be

vβ = −kβ sgn
(
sβ
)
, (2.12)

where sgn(·) is the signum function, and

kβ > Δβ +m|r| + ηβ, ηβ > 0. (2.13)

By substituting (2.12) into (2.8), the desired body lateral force is attained. To mitigate the
problem of chattering, the sign function is replaced by saturation function with a boundary
layer thickness of Φβ > 0. Thus, the final control law becomes

Y = V

(

m̂r − kβ sat
(

sβ

Φβ

))

. (2.14)
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In order to design the body yaw moment (M), for tracking the desired yaw rate (rd), the
sliding surface, sr , is adopted as

sr = (r − rd) + λr

∫ t

0
(r − rd)dτ, λr > 0, (2.15)

where the integral term is used to mitigate the undesirable yaw angle offset and to ensure the
desired vehicle heading. Differentiating (2.15) along with (2.3) leads to

ṡr =
M

Iz
+
ωr

Iz
− τ, τ = ṙd − λr(r − rd). (2.16)

The design process of the desired body yaw moment is similar to that of (2.14):

M = Îz(ṙd − λr(r − rd)) − kr sat
(

sr
Φr

)
, Φr > 0, (2.17)

where Îz is an estimate of Iz and

kr > Δr + Iz|ṙd − λr(r − rd)| + ηr, ηr > 0, (2.18)

with Δr > 0 and Iz > 0 being the upper bounds for |ωr | and |Ĩz| = |Îz − Iz|, respectively.

2.2. Sliding Mode Control with Adaptive Upper Bounds

From (2.13) and (2.18) it can be observed that the selection of the SMC gains kβ and kr
depends on upper bounds of uncertainties in vehicle dynamics and body mass and inertia,
that is, Δr , Δβ, m, and Iz. In practice, uncertainties and disturbances depend primarily on
the highly nonlinear dynamics of vehicle and tire which are not completely known, and one
cannot determine their exact bounds too. Therefore, no universal method is available yet
to tune the controller gains and these gains should be tuned by trial and error approach in
practical implementations. In this regard, the controller tends to be overconservative, which
may induce poor tracking performance as well as undesirable oscillations in control signal.
To overcome this drawback, adaptive control methodology with control parameters updated
online is a promising approach. In this section, we use the adaptive control technique to attain
a sliding mode controller with adaptive upper bounds. To design sliding mode controls with
variable gains, the following modified control laws are established:

Y = V
(
m̂r −

(
k̂β1 + k̂β2|r|

)
sgn
(
sβ
))

, (2.19)

M = Îzτ −
(
k̂r1 + k̂r2|τ |

)
sgn(sr), (2.20)

where

τ = ṙd − λr(r − rd) (2.21)
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and the varying controller gains are updated as follows:

˙̂kβ1 = γ−1β1
∣
∣sβ
∣
∣, γβ1 > 0, (2.22)

˙̂kβ2 = γ−1β2 |r|
∣
∣sβ
∣
∣, γβ2 > 0, (2.23)

˙̂kr1 = γ−1r1 |sr |, γr1 > 0, (2.24)

˙̂kr2 = γ−1r2 |τ ||sr |, γr2 > 0. (2.25)

Assume that there are positive constants kd
β1, k

d
β2, k

d
r1, and kd

r2 that satisfy

kd
β1 >

∣∣Δβ

∣∣, kd
β2 > |m̃|, (2.26)

kd
r1 > |Δr |, kd

r2 >
∣∣∣Ĩz
∣∣∣. (2.27)

It should be noted that we need only to assure that such constants exist without acquiring the
knowledge of these upper bounds to use in control laws. Also, consider

k̃β1 = k̂β1 − kd
β1, k̃β2 = k̂β2 − kd

β2, (2.28)

k̃r1 = k̂r1 − kd
r1, k̃r2 = k̂r2 − kd

r2. (2.29)

Then, the stability of the considered adaptive-sliding mode control laws can be shown
through Lyapunov candidates:

Vβ =
m

2
s2β +

1
2
γβ1k̃

2
β1 +

1
2
γβ2k̃

2
β2, (2.30)

Vr =
Iz
2
s2r +

1
2
γr1k̃

2
r1 +

1
2
γr2k̃

2
r2. (2.31)

To prove the stability of side-slip angle under (2.19) with adaptation laws (2.22) and (2.23),
first insert (2.19) into (2.5) so that

mṡβ =
(
m̃r + Δβ −

(
k̂β1 + k̂β2|r|

)
sgn
(
sβ
))

. (2.32)

Then, differentiate (2.30) to get

V̇β = msβṡβ +
(
γβ1k̃β1

˙̃kβ1 + γβ2k̃β2
˙̃kβ2

)
. (2.33)
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Replacing (2.32) in (2.33) and considering (2.28), we have that

V̇β =
(
m̃r + Δβ −

(
k̂β1 + k̂β2|r|

)
sgn
(
sβ
))

sβ +
(
γβ1

˙̂kβ1k̂β1 + γβ2
˙̂kβ2k̂β2

)

−
(
γβ1

˙̂kβ1k
d
β1 + γβ2

˙̂k
β2k

d
β2

)
.

(2.34)

Using adaptation laws (2.22) and (2.23) in (2.34) and considering (2.26) results in

V̇β =
(
m̃r + Δβ

)
sβ − kd

β1

∣
∣sβ
∣
∣ − kd

β2|r|
∣
∣sβ
∣
∣ ≤ (|m̃||r| + ∣∣Δβ

∣
∣)
∣
∣sβ
∣
∣ − kd

β1

∣
∣sβ
∣
∣ − kd

β2|r|
∣
∣sβ
∣
∣

=
(
|m̃| − kd

β2

)
|r|∣∣sβ

∣
∣ +
(∣
∣Δβ

∣
∣ − kd

β1

)∣
∣sβ
∣
∣ < 0,

(2.35)

where we use sβ sgn(sβ) = |sβ|. Accordingly, the convergence of sβ to zero and also
boundedness of k̃β1 and k̃β2 are resulted by Barbalat’s lemma [12].
In an identical way, the stability of the yaw motion can be demonstrated, first, by combining
(2.16) and (2.20) so that

Izṡr = Ĩzτ + Δr −
(
k̂r1 + k̂r2|τ |

)
sgn(sr). (2.36)

Differentiate (2.31) and replace (2.36) for Izṡr to get

V̇r =
(
Ĩzτ + Δr −

(
k̂r1 + k̂r2|τ |

)
sgn(sr)

)
sr +

(
γr1

˙̂kr1k̂r1 + γr2
˙̂kr2k̂r2

)
−
(
γr1

˙̂kr1k
d
r1 + γr2

˙̂kr2k
d
r2

)
.

(2.37)

Using adaptation laws (2.24) and (2.25) as well as the inequalities in (2.27), we have that

V̇r =
(
Ĩzτ + Δr

)
sr − kd

r1|sr | − kd
β2|τ ||sr | ≤

(∣∣∣Ĩz
∣
∣∣|τ | + |Δr |

)
|sr | − kd

r1|sr | − kd
r2|τ ||sr |

=
(∣∣∣Ĩz
∣∣∣ − kd

r2

)
|τ ||sr | +

(
|Δr | − kd

r1

)
|sr | < 0.

(2.38)

Thus, according to the Barbalat’s Lemma, the system state can be driven to the sliding surface
sr and the controller gains k̃r1 and k̃r2 will be bounded. Furthermore, to tackle the chattering
problem saturation function is used to derive the final adaptive control laws

Y = V

(

m̂r −
(
k̂β1 + k̂β2|r|

)
sat

(
sβ

Φβ

))

,

M = Îzτ −
(
k̂r1 + k̂r2|τ |

)
sat
(

sr
Φr

)
.

(2.39)
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Figure 2: Schematic view of forces acting on the vehicle.

3. Control Allocation in Vehicle System

The total body lateral force and yaw moment, as well as the braking acceleration command
by driver, are generated by longitudinal and lateral forces of each tire. In this paper, a 4-
wheel vehicle system with each wheel being braked/derived and steered independently
is considered. Such a full tire-actuated vehicle can be available through X-by-wire systems
[1, 13]. Thus, the overall control system contains eight actuators and only three control
objectives, raising an overactuated control system. A general approach to resolve redundancy
is to optimize a cost function for specific performance. The well-accepted cost function in
IVDC is the sum of work load of four wheels:

f =
4∑

i=1

Ai

X2
i + Y 2

i
(
μiZi

)2 , (3.1)

where i denotes wheel number, Xi and Yi stand for desired values of longitudinal force, Fxi,
and lateral force, Fyi, Zi is the vertical load, all defined in the vehicle body fixed coordinate
system, as shown in Figure 2, Ai is the weighting coefficient and μi is the friction coefficient,
of the ith tire. Defining the 8 × 1 actuator vector of u as

u = [X1 X2 X3 X4 Y1 Y2 Y3 Y4]T , (3.2)

the cost function is written in matrix form

f(u) = uTWu (3.3)
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in which W8× 8 is a diagonal weighting matrix. To get Y and M, by assuming small steering
angles in Figure 2, individual tire forces must satisfy the equality constraints:

Y =
4∑

i=1

Yi, (3.4)

M =
2∑

i=1

(
LfYi − LrY(i+2)

)
+
d

2

2∑

i=1

(
X(2i) −X(2i−1)

)
. (3.5)

Also, the longitudinal acceleration, ax, by driver is generated by longitudinal forces

X = max =
4∑

i=1

Xi. (3.6)

Equations (3.4)–(3.6) can be expressed in linear matrix form as

Au = v, (3.7)

whereA ∈ �3× 8 is a constant matrix and the vector of generalized forces/moment, v, is given
by

v = [X Y M]T . (3.8)

On the other hand, the resultant force of each tire is constrained to friction circle

(
μiZi

)2 −
(
X2

i + Y 2
i

)
≥ 0 (i = 1, . . . , 4). (3.9)

Using (3.2), (3.9) can be written as

(
μiZi

)2 −
(
u2
i + u2

i+4

)
≥ 0 (i = 1, . . . , 4). (3.10)

or

CI(u) ≥ 0, (3.11)

where CI is a 4 × 1 vector with the ith component

CIi(ui) =
(
μiZi

)2 −
(
u2
i + u2

i+4

)
(i = 1, . . . , 4). (3.12)
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The optimization problem is summarized as follows:

minimize f(u) = uTWu,

subject to

⎧
⎨

⎩

linear equality constraints, Au = v,

nonlinear inequality constraints, CI(u) ≥ 0.

(3.13)

4. Static Control Allocation: Application of Interior-Point Method

SCA solves the optimization problem (3.13) at each sampling instant. A powerful approach
for nonlinear programming is the set of interior-point (IP) methods. A benefit of such
methods is that the distance from the optimum is always known, so that one can terminate
the optimization algorithm when the solution reaches within desired tolerance. Convergence
is also uniform toward the optimal solution. The description of IP algorithm in this paper is
an excerpt from [14, 15].

4.1. Karush-Kuhn-Tucker Conditions

At the outset to avoid infeasible solutions, the equality constraints are embedded in cost
function to get

J = ρuTWu + (Au − v)T(Au − v), ρ > 0, (4.1)

which is written in the quadratic form

J =
1
2
uTGu + cTu + h, (4.2)

where

G = 2
(
ρW +ATA

)
, c = −2ATv, h = vTv. (4.3)

IP methods use barrier logarithmic functions to satisfy the inequality constraints. In this
regard, the optimization problem turns into

minimizeL =
1
2
uTGu + cTu + h − η

4∑

i=1

log(CIi), η > 0,

subject to

⎧
⎨

⎩

CI(u) − p = 0,

p ≥ 0.

(4.4)



Mathematical Problems in Engineering 11

Applying KKT formulation [16] to (4.4), the optimality conditions can be expressed as
follows,

Gu + c +AT
I λ = 0, AI(u) = −∇CI(u), CI(u) − p = 0,

Pλ − ηe = 0, e = [1 1 1 1]T , p > 0, λ > 0,
(4.5)

where λ is the vector of Lagrange multipliers and P is a 4 × 4 diagonal matrix whose diagonal
elements are the components of the vector p.

4.2. Primal-Dual Path-Following Method Steps

The Primal-dual path-following IP method steps for IVDC are as follows:

(1) Newton’s Step Direction

In each iteration, the step direction {Δp,Δu,Δλ} is obtained by applying Newton’s method
to KKT conditions (4.5):

rc + (G +Λ2)Δu +AT
I Δλ = 0,

rb −AIΔu −Δp = 0,

rs + PΔλ +ΛΔp = 0,

(4.6)

where the residuals rc, rb, and rs are obtained as

rc = Gu + c +AT
I λ, rb = CI(u) − p, rs = Pλ − ηe, (4.7)

P = diag
(
p1, p2, p3, p4

)
, Λ = diag(λ1, λ2, λ3, λ4), Λ2 = 2diag(Λ,Λ). (4.8)

Equation (4.6) is solved to achieve the step directions

Δu =
(
G +Λ2 +AT

I P
−1ΛAI

)−1(
AT

I P
−1(rs +Λrb) − rc

)
,

Δλ = −P−1(rs +Λrb) + P−1ΛAIΔu,

Δp = rb −AIΔu.

(4.9)

(2) Step Length Calculation

To satisfy nonnegativity condition (p,λ) ≥ 0, the new iteration (u+,p+,λ+) is calculated as

u+ = u + αmax
s Δu, p+ = p + αmax

s Δp, λ+ = λ + αmax
λ Δλ, (4.10)
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where

αmax
s = max{αε(0, 1] : p + αΔp ≥ (1 − τ)p}, τ ε (0, 1),

αmax
λ = max{αε(0, 1] : λ + αΔλ ≥ (1 − τ)λ}.

(4.11)

(3) Updating the Barrier Parameter η

The sequence of barrier parameters {ηk} converges to zero by the update law

ηk+1 = σk

pT
kλk

4
, σkε[0, 1], (4.12)

where to update the centring parameter σk, first, the predictor (affine scaling) direction
{Δuaff,Δpaff,Δλaff} and the corresponding longest step lengths αaff

s and αaff
λ are calculated by

setting η = 0 in (4.9) and (4.11). Then the value of complementarity along the affine scaling
ηaff step is defined to be

ηaff =
(
pk + αaff

s Δpaff
)T(

λk + αaff
λ Δλaff

)
. (4.13)

The centring parameter is updated as follows:

σk =

(
ηaff

pT
kλk/4

)3

. (4.14)

(4) Stopping Criteria

The algorithm is terminated, when the following error function with η = 0 has converged
sufficiently close to zero

E
(
u,p,λ, η

)
= max

{∥∥∥Gu + c +AT
I λ
∥∥∥, ‖CI(u) − p‖,

∥∥Pλ − ηe∥∥
}
. (4.15)

All of these steps have been summarized in Pseudocode 1. To reduce the time of control
allocation, the last allocated u is chosen as the initial value of the control input u0. Then, u0 is
modified (reduced) to satisfy tire saturation constraints.

5. Dynamic Control Allocation

DCA uses an optimizing update law for system inputs. Since it is not required to solve the
optimization problem at each sampling time, themain advantage of DCA is its computational
efficiency. In what follows, the procedure explained in [8] is applied to the proposed
integrated vehicle control scheme. However, the interested reader might refer to [8, 9] for
convergence study and detailed analysis.



Mathematical Problems in Engineering 13

Given A,W , and v
Compute G, c, and h in (4.2).
Choose the allocated control input of the previous sample time as the initial value u0
If each entry of u0 violates the inequality (3.9), reduce it to satisfy (3.9)
Compute initial values for p0 and λ0.
Compute the initial value for barrier parameter η.
Compute residuals rc, rb, and rs given in(4.7)
Select error tolerance ε and set k ← 0.

repeat until E(u,p,λ, 0) ≤ ε
Compute step direction from equation (4.9),
Compute step size to satisfy nonnegativity conditions using (4.11),
Update the variables u,p, and λ using (4.10),
Compute affine scaling ηaff step from (4.13) and σk according to (4.14),
Update the barrier parameter ηk+1 based on (4.12),
Compute residuals rc, rb, and rs from (4.7),
Set k ← k + 1

end

PSEUDOCODE 1: Pseudocode for interior-point algorithm.

5.1. Dynamic Control Allocation Applied to IVDC

DCA is formulated by introducing the following Lagrangian based on (3.13):

 = uTWu + (v −Au)Tλdyn −ωdyn

4∑

i=1

log(CIi(ui, ui+4)) (5.1)

with ωdyn > 0 and λdyn being a 3-component vector of Lagrange multipliers. DCA updates u
and λdyn in the form of the Newton-like update law

[
u̇

λ̇dyn

]

= −γdyn
(
H

T
H + εdynI

)−1
H

⎡

⎢⎢⎢
⎣

∂

∂u
∂

∂λdyn

⎤

⎥⎥⎥
⎦
+

[
ζ

φ

]

, (5.2)

where γdyn > 0 and εdyn ≥ 0, and for our problem H is written as

H =

⎡

⎢⎢⎢
⎣

∂2

∂u2
−∂(Au)T

∂u

−∂(Au)
∂u

0

⎤

⎥⎥⎥
⎦
. (5.3)

In (5.2) the feedforward-like terms ζ and φ are chosen so that the following scalar algebraic
equation holds:

αT
dynζ + βT

dynφ + δdyn = 0 (5.4)
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From CA
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with

[
αdyn

βdyn

]

= H

⎡

⎢⎢⎢
⎣

∂

∂u
∂

∂λdyn

⎤

⎥⎥⎥
⎦
, δdyn = −(Au − v)T v̇. (5.5)

Assume that the stability of the high-level control could be shown through a Lyapunov
function V0(t, r, β), then, by the Lyapunov function

Vdyn
(
t, r, β,u,λdyn

)
= σdynV0

(
t, r, β

)
+
1
2

(
∂T

∂u
∂

∂u
+

∂T

∂λdyn

∂

∂λdyn

)

, σdyn > 0, (5.6)

global exponential convergence to optimality conditions is achieved.

5.2. Discussion and Modification

Consider the equality-constrained optimization problem with the Lagrangian (5.1). Then the
optimizing conditions are

⎡

⎢⎢⎢
⎣

∂

∂u
∂

∂λdyn

⎤

⎥⎥⎥
⎦

= 0. (5.7)

Applying Newton’s conditions to (5.7) results in optimizing Newton’s steps Δu and Δλdyn

⎡

⎢⎢⎢⎢
⎣

∂2

∂u2

∂

∂λdyn

(
∂

∂u

)T

∂

∂u

(
∂

∂λdyn

)
∂2

∂λ2
dyn

⎤

⎥⎥⎥⎥
⎦

[
Δu

Δλdyn

]

= −

⎡

⎢⎢⎢
⎣

∂

∂u
∂

∂λdyn

⎤

⎥⎥⎥
⎦

(5.8)
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or

[
Δu

Δλdyn

]

=

⎡
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⎣

∂2

∂u2 −∂(Au)T

∂u

−∂(Au)
∂u

0

⎤

⎥⎥⎥
⎦

−1⎡

⎢⎢⎢
⎣

∂

∂u
∂

∂λdyn

⎤

⎥⎥⎥
⎦

= H
−1

⎡

⎢⎢⎢
⎣

∂

∂u
∂

∂λdyn

⎤

⎥⎥⎥
⎦
. (5.9)

By setting εdyn = 0, ignoring the terms ζ and φ, and considering the symmetry of H, it can be
demonstrated that the update law (5.2) represents the solution of Δu and Δλdyn in (5.9), that
is, one Newton’s step towards the optimum point. Therefore, (5.9) can be interpreted as one
Newton’s step from the solution of the control allocation problem at the current sampling
time for the solution at the next instant, for which the terms ζ and φ are to compensate time-
varying optimum solution.

Despite the log-barrier term in (5.1), depending on the values of γdyn and ωdyn,
there is no guarantee that the Newton-like step (5.2) will satisfy the inequality constraints
(3.9). As the ith inequality constraint is infringed, CIi becomes negative and log(CIi) and
correspondingly the Lagrangian (5.1) turn meaningless. To tackle this problem, in this paper,
a line search is adopted for the coefficient γdyn, so that the resulting u and λdyn at the next
sampling time satisfy the inequality constraints CI > 0 and λdyn > 0. The idea of the line
search approach is taken from the second step of the interior-point stages, described in the
previous section.

Another problem with DCA is that (5.2) could induce a Newton’s step from an
infeasible point, violating the inequality constraints (3.9), because of time-varying nature of
these constraints. This arises because the term (μiZi)

2 in (3.9) is time varying. Consequently,
it is possible for the feasible solution at the current time to violate the inequality constraints
of the next sample time. In such conditions, (5.2) needs to be modified for Newton’s steps
from infeasible points [15].
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Figure 9: Tire work-load distribution by SCA in split-μ scenario.

After desired longitudinal and lateral forces of each tire are computed by either of
the proposed control allocation algorithms, the active steering angle, δi, at wheel i can be
determined as follows:

δi ≈ β +
Lfr

vxi
− αi, i = 1, 2,

δi ≈ β − Lrr

vxi
− αi, i = 3, 4,

(5.10)

where vxi is the longitudinal velocity of the ith tire and αi is the side-slip angle of the ith tire
and is obtained using the inverse of a simple tire model as

αi =

⎧
⎪⎪⎨

⎪⎪⎩

−Yi

Ci
, X2

i + Y 2
i ≤ n ∗ (μiZi

)2
, 0 < n < 1,

−μiZi ∗ arctan
(

KiYi

μiZiCi

)
, X2

i + Y 2
i > n ∗ (μiZi

)2
, i = 1, . . . , 4,

(5.11)
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in which Ci denotes the cornering stiffness of the ith tire and Kis are chosen to approximate
the saturation conditions. Longitudinal forces are fed into the low-level control unit.

6. Low-Level Slip-Ratio Control Design

The longitudinal force of each tire is related to the corresponding longitudinal slip ratio and
is adjusted through slip-ratio control (SRC). The slip ratio of the ith tire, σi, is defined as

σi =
Rωi − vxi

vxi
during braking, (6.1)

σi =
Rωi − vxi

Rωi
during acceleration, (6.2)

where R denotes the radius and ωi is the angular velocity of the ith wheel. In the case where
longitudinal slip ratio is small, the longitudinal tire force is found to be proportional to the
slip ratio. Then, it gains its maximum value at a typical value of σ∗, after which it starts
to lessen. Experimental studies have established that the tire lateral force decreases with
increasing slip ratios greater than |σ∗| as well [17].

6.1. Description of the SRC Scheme

In this paper, when the tire slip ratio is smaller than σ∗, by neglecting the wheel rotational
inertia [3], the applied braking/traction torque, Ti, at wheel i is obtained as

Ti = RXi. (6.3)

In this case, the SRC works for Desired Longitudinal Force Generation (DLFG). However,
when the demanded Xi is too high, applying (6.3) would increase the slip ratio beyond σ∗,
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Figure 11: Actually generated tire lateral forces in split-μ scenario.

inevitably leading to wheel lock and lateral tire force drop. In such conditions, the idea of
Antilock Braking System (ABS) is employed to keep the slip ratio of tires at σ∗. This idea is
utilized during both braking and traction. When traction torque applies, the proposed slip-
ratio control is in the Traction Control System (TCS) mode. The SRC scheme is shown in
Figure 3.

6.2. The ABS/TCS Design

The ith wheel rotational dynamics is stated as

Iωω̇i = Ti − RFxi , (6.4)

where Iω is wheel rotational inertia. To achieve slip-ratio differential equation when braking,
by differentiating (6.1) and replacing for ω̇i from (6.4)

σ̇i =
R

Iωvxi
(Ti − rFxi) − (1 + σi)

v̇xi

vxi
. (6.5)

During decelerating, the longitudinal force can be stated as [17]

Fxi = Cσσi + ΔFxi (6.6)
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Figure 12: Actually generated tire longitudinal forces in split-μ scenario.

0 50 100 150 200
0

2

4

Longitudinal displacement (m)

L
at

er
al

 d
is

pl
ac

em
en

t (
m

)

Driver’s intention
SCA

DCA
ODF

Figure 13: Vehicle path in SLC.

in which the term Cσσi represents the linear part, withCσ being the tire longitudinal stiffness,
and ΔFxi is the deviation from the linear part and is bounded by Fxi :

0 < ΔFxi < Fxi . (6.7)

The goal of the ABS is to regulate σi around the constant value σ∗. Applying the sliding mode
control design procedure to (6.5), an ABS is designed so that to get the sliding condition

d

dt

1
2
s2σ ≤ −ησ |sσ |, sσ = σi − σ∗, σ∗ < 0, ησ > 0, (6.8)
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Figure 14: Yaw rate in SLC.
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Figure 15: Side-slip angle in SLC.

the applied braking torque at the ith wheel is

Ti = RCσσ
∗ +

Iωv̇xi

R
(1 + σi) − Iωvxi

R
kσ sat

(
sσ
φσ

)
, kσ >

R2

Iωvxi
Fxi + ησ, φσ > 0. (6.9)

Furthermore, the applied torque during acceleration, by TCS, is computed as

Ti = RCσ |σ∗| + Iωv̇xi

R(1 − σi)
− Iωvxi

R(1 − σi)2
kσ sat

(
sσ
φσ

)
, sσ = σi − |σ∗|. (6.10)
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Figure 17: Tire work-load distribution by SCA in SLC.

7. Simulation Results

The considered methods are tested in several critical maneuvers. A 9DoF nonlinear vehicle
model is used for simulation purpose [4]. The vehicle behavior is probed during an open-
loop maneuver, with no driver model, and two closed-loop maneuvers, including the driver
model validated experimentally in [18]. The overall control scheme for simulation is shown
in Figure 4. Comparison is made with a well-recognized case [3], where tire saturation
conditions are ignored in ODF.

The simulations are performed by MATLAB/Simulink. For the sake of practical
implementations, the time for each control allocation was computed. Using a PC based on
a 2.6GHz Intel Core 2 Duo T9500 processor, the maximum time for the total IP algorithm
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Figure 19: Actually generated tire lateral forces in SLC.
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Figure 20: Actually generated tire longitudinal forces in SLC.

is about 0.002 seconds. This time can be still improved using efficient C-Programming and
effective numerical techniques.

7.1. Open-Loop Cornering Maneuver on a Split-μ Road

The vehicle behaviour is examined in an open-loop split-μ manoeuvre, where the tire-road
friction coefficients on the vehicle left and right are equal to 0.3 and 1, respectively. The vehicle
is assumed tomovewith a velocity of 110 km/hr and to turn according to the steering angle in
Figure 5. The deceleration demand is −0.1 g. In Figures 6 and 7, both Saturation Constrained
ODF (SCODF) approaches, that is, SCA and DCA, have better yaw rate tracking and side-slip
angle reduction. Using ODF, the allocated work load to the front-right wheel is substantially
beyond its actual capacity, other tires have still margin to saturation, as Figure 8 shows. On
the other hand, from Figures 9 and 10 it is seen that SCODF methods have balanced the
workload distribution and managed to use the total capacity of tire forces by saturating
all tires in critical conditions. Accordingly, as shown in Figures 11 and 12, these methods
have generated larger lateral and longitudinal forces, compared to ODF. To compare SCA
and DCA, it is noted (Figure 7) that SCA has less side slip at some points relative to DCA.
This arises because DCA has failed to completely saturate the tire on rear left in this case.
Furthermore, Figures 11 and 12 reveal that lateral and longitudinal forces by DCA have
properly converged to the optimal solution of SCA, with minor errors in some cases.
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Figure 21: Tire longitudinal slip-ratios in SLC.
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Figure 22: Vehicle path in DLC with μ = 0.5.

7.2. Close-Loop Single-Lane Change Maneuver

A closed-loop high-speed Single-Lane Changing (SLC) on a slippery road with the braking
acceleration of −0.5 g is considered. The vehicle initial speed is 120 km/h and the tire-road
friction coefficient is set at 0.5. By Figures 13, 14, 15, 16, 17, and 18, enhanced vehicle control
in terms of vehicle trajectory, yaw rate, and side-slip angle, as well as balanced work load
distribution by SCODF approaches are evident. Figure 19 illustrates that the generated tire
lateral forces by ODF are smaller than SCODF approaches. For the tires at the vehicle rear, this
is primarily due to the smaller work load assigned to these tires by ODF. However, reduction
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Figure 23: Yaw rate in DLC with μ = 0.5.
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Figure 24: Side-slip angle in DLC with μ = 0.5.

of the lateral forces at the front tires can be described referring to longitudinal forces and
slip-ratio plots in Figures 20 and 21. The ODF method has designated larger braking forces
to front tires at some points, compared with SCODF approaches. According to friction circle
concept, this reduces the corresponding generated tire lateral forces by ODF. Accordingly,
as Figure 21 demonstrates, higher longitudinal forces by ODF have increased the slip ratio
of these wheels by σ∗ = 0.2. Then, ABS is activated by SRC to regulate the front slip ratios at
σ∗ = 0.2. On the other hand, SCA and DCAmoderate the role of longitudinal forces in vehicle
control and leave out the use of ABS.
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Figure 25: Vehicle path in DLC with μ = 0.4.
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Figure 26: Yaw rate in DLC with μ = 0.4.

7.3. Close-Loop Double-Lane Change Maneuver

Another case to evaluate the system is high-speed Double-Lane Changing (DLC) on a
slippery road with driver’s braking. The maneuver conditions remain unchanged with
respect to SLC. In Figures 22, 23, and 24, SCODF approaches are still superior in controlling
the vehicle path, yaw rate, and side-slip angle.

To increase the challenge for the control systems, DLC is repeated on a more slippery
road, where the tire-road friction coefficient is 0.4. Figures 25, 26, and 27 show the results
in this case. Although both SCA and DCA methods have almost the same performance of
vehicle control, oscillatory yaw rate response as well as more side-slip angle by DCA are
clear. These are mainly due to transient response of DCA, specifically to panic reactions of
driver in both steering and braking in critical conditions. The transient response is an inherent
characteristic of the dynamic update law in DCA. In this scenario, the transient response
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Figure 27: Side-slip angle in DLC with μ = 0.4.

has been triggered when the DCA tries to compensate for sudden braking release demand
by driver. Another reason for oscillatory response by DCA is its relatively low robustness
against highly nonlinear characteristics of vehicle dynamics and tire forces which are more
substantial in more critical conditions. The oscillations by DCA grow more considerable
once sudden changes occur in tire/road friction coefficient, for example, when the vehicle
suddenly enters an icy road. Oscillations can intensify also after an actuator fails in a specific
manoeuvre, where DCA is used for actuator failure compensation, which is one of the
main advantages of control allocation methods [1]. In general, oscillatory response by DCA
increases as the manoeuvre conditions worsen.

8. Conclusion

Control allocation techniques can be applied effectively to enhance vehicle stability.
Nonlinear vehicle motion control is split into three tasks. First, the total body lateral force
and yawmoment were computed through a high-level sliding mode controller with adaptive
upper bounds, where the knowledge of the upper bounds of uncertainties is not required. To
allocate the vehicle high-level control objectives to saturation-constrained tire forces, static
and dynamic control allocation techniques were formulated. Interior-point method was used
to handle the nonlinear constrained optimization problem in SCA; a dynamic update law
was derived using DCA. Simulation results were conducted, and vehicle operation under
each method was evaluated and compared with a well-recognized work in the literature. It
was seen that both SCA and DCA approaches manage to utilize whole capacity of tire forces
more properly by offering balanced work-load distribution and rational adjustment of longitudinal
and lateral tire forces. Since no optimization problem is required in DCA, the main advantage
of this method is its computational efficiency for real-time implementations. Furthermore,
although by DCA the set of distributed tire forces properly approaches the optimal one, that
is, that of SCA, there is yet an amount of error, depending on the severity of maneuver.
This error of DCA is mainly due to its transient response to panic behavior of driver and
its relatively low robustness to highly nonlinear characteristics of vehicle dynamics and tire
forces. Therefore, in maneuvers with more critical conditions, the performance of the vehicle
control task can be degraded using DCA compared to SCA.
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Nomenclature

ax: Driver’s braking acceleration
Ai: Weighting coefficients of ith tire
Ci: Cornering stiffness of ith tire
CI: Vector of saturation constraints
Cσ : Tire longitudinal stiffness
d: Vehicle tread
f : Objective function
Fxi: Actual longitudinal force of ith tire
Fxi : Maximum deviation from linear part for Fxi

Fyi: Actual lateral force of ith tire
Iw: Moment of inertia of each wheel
Iz: Yaw moment of inertia of vehicle
Îz: Estimation of yaw moment of inertia
Ĩz: Estimation of yaw moment of inertia error
Iz: Upper bound for Ĩz
J : Objective function in quadratic form
kr , kβ, kσ : Sliding mode control gain
k̂β1, k̂β2, k̂r1, k̂r2: Adaptive gains
kd
β1, k

d
β2, k

d
r1, k

d
r2: Uncertainty upper bound

L: Lagrangian
Lf,r : Distance between mass center and axle
m: Vehicle mass
m̂: Vehicle mass estimation
m̃: Mass estimation error
m: Upper bound for m̃
M: Body yaw moment
R: Wheel radius
r: Yaw angle velocity
rb, rc, rs: IP residuals
sr : Sliding surface for yaw rate
sβ: Sliding surface for side-slip angle
sσ : Sliding surface for SRC
Ti: Applied torque at the ith wheel
u: Vector of allocated tire forces
V : Vehicle velocity
vxi: Longitudinal velocity of the ith tire
Vβ, Vr, Vdyn, V0: Lyapunov candidate
v: Vector of virtual control input
W: Matrix of weighting coefficients
X: Body longitudinal force
Y : Body lateral force
Xi: Allocated longitudinal force to ith tire
Yi: Allocated lateral force to ith tire
Zi: Vertical load of ith tire.
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Greek Letters

αi: Side-slip angle of ith tire
αmax
s , αmax

λ
: Newton’s step size

β: Side-slip angle
δi: Steering angle of ith tire
Δβ, Δr : Uncertainty upper bound
ηk: Barrier parameter
Φβ, Φr , φσ : Boundary layer thickness
λ: Vector of Lagrange multipliers
Λ: Matrix of Lagrange multipliers
σ: Centering parameter
σi: Slip ratio of the ith tire
σ∗: Reference value of slip ratio
μi : Friction coefficient of ith tire
ωr , ωβ: Disturbance terms
ωi: Angular velocity of ith tire.

Subscripts/Superscripts

aff: Affine scaling
f : Front
r: Rear
d: Desired value
+: N iteration
dyn: Dynamic.

Coordinate System

(x, y, z): Moving coordinate attached to vehicle centre.
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