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Combining the hybrid displacement variational formulation and the radial basis point interpola-
tion, a truly meshless and boundary-only method is developed in this paper for the numerical
solution of solid mechanics problems in two and three dimensions. In this method, boundary
conditions can be applied directly and easily. Besides, it is truly meshless, that is, it only requires
nodes generated on the boundary of the domain, and does not require any element either for
variable interpolation or for numerical integration. Some numerical examples are presented to
demonstrate the efficiency of the method.

1. Introduction

Boundary integral equations (BIEs) have widely been used for the numerical solution of a
variety of boundary value problems in solid mechanics as they can reduce the computational
dimensions of the original problem by one and give a simple discretization of the exterior
problems. The numerical discretization of BIEs is commonly known as the boundary element
method (BEM) [1]. For many problems, the BEM is undoubtedly superior to the “domain
discretization” types of methods, such as the finite element method (FEM) and the finite
difference method. In the BEM, for example, only the two-dimensional bounding surface of
a three-dimensional body needs to be discretized. However, as the FEM, the BEM depends
on the generation of meshes, adapted or not. In some cases, this can be time-consuming and
very difficult.

Meshless (or meshfree) methods for numerical solutions of boundary value problems
have been developed for alleviating the meshing-related difficulties. Compared to the FEM
and the BEM, the core of this type of method is to get rid of, or at least to alleviate, the
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difficulty of meshing and remeshing the entire structure by simply adding or deleting nodes.
Some domain-type meshless methods, such as the element-free Galerkin method, the h − p
meshless method, the reproducing kernel particle method, the point interpolation method,
and the meshless local Petrov-Galerkin (MLPG) methods, have been proposed and gained
great success in solving a wide range of problems for solids. These meshless methods are
domain based, as the FEM, in which the problem domain is discretized. For an extensive
overview on the subject of meshless methods, containing most of the previously proposed
methods, some monographs [2, 3] can be read.

The meshless idea has also been used in BIEs. The first BIEs-based meshless method
was the boundary node method (BNM) [4, 5]. This approach takes the advantages of both
BIEs in dimension reduction and moving least squares (MLSs) approximations in elements
elimination. Nevertheless, background cells are required for numerical integration. In order
to get rid of background cells, Atluri et al. proposed the meshless local boundary integral
equation (LBIE) method [6]. Although absolutely no domain and boundary elements are
required, the LBIE method is not strictly a boundary method since it requires evaluation of
integrals over certain surfaces (called Ls in [6]) that can be regarded as “closure surfaces”
of boundary elements. To avoid this hindrance, Zhang et al. proposed the hybrid boundary
node method (HBNM) that combines the MLS approximation with the hybrid displacement
variational formulation [7]. In this method, the integration is limited to a fixed local region,
thus no cells are needed either for interpolation or for integration.

However, because the MLS approximation lacks the delta function property of the
usual FEM and BEM shape functions, it is difficult to impose boundary conditions in the
BNM and the HBNM. This problem becomes even more serious in boundary-type meshless
methods, since a large number of boundary conditions need to be satisfied [2]. The technique
used in the BNM involves a new definition of the discrete norm used for the construction of
the MLS approximation and thus doubles the number of system equations. This technique is
also employed in the HBNM, together with the addition of a penalty formulation. In the BNM
and the HBNM, the basic unknown quantities are approximations of the nodal variables.
They are not the real nodal variables, and thus boundary conditions could not be directly
applied. To restore the delta function property of the MLS, Liew et al. presented an improved
MLS approximation that uses weighted orthogonal polynomials as basis functions [8]. The
improved MLS has been inserted into BIEs to develop the boundary element-free method
(BEFM). The BEFM is a direct boundary type meshless method, which has been used for
problems in linear elasticity [8], elastodynamics [9], and potential theory [10]. Additional,
via combining a variational form of BIEs and the MLS approximation, another technique is
developed in the Galerkin BNM to impose boundary conditions [11, 12].

The radial basis point interpolation (RBPI) [2, 13] is another meshless interpolation
technique that uses radial basis functions and polynomial basis to construct meshless shape
functions. Compared to the MLS approximation, the shape functions so constructed have the
delta function property. Consequently, the construction of an RBPI shape function is more
efficient than the MLS procedures. There have been many meshless methods based on the
RBPI for the numerical solution of mathematical problems in engineering. Typical of them
are the radial point interpolation method [13], the local radial point interpolation method
[14], and the local boundary integral equation method based on radial basis functions [15].
Besides, some boundary type meshless methods are developed by the combination of the
RBPI with BIEs, such as the boundary radial point interpolation method (BRPIM) [16] and
the hybrid BRPIM [17]. Since the RBPI shape functions possess Kronecker delta function
properties, these BRPIMs have some advantages. It is easy to enforce boundary conditions,
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and it is computationally efficient. However, similar to the BNM and the BEFM, an
underlying background cell structure is still used in these BRPIMs for numerical integration.

This paper extends the previous works to develop a truly meshless and boundary-
only method for the numerical solution of two- and three-dimensional problems in solid
mechanics by a combined use of the RBPI with the hybrid displacement variational
formulation. This method is called the hybrid radial boundary node method. As has been
illustrated in [18], the RBPI is used in this method to construct shape functions with delta
function properties based on arbitrary distributed boundary nodes. So unlike the BNM and
the HBNM, the present method is a direct numerical approach in which the basic unknown
quantity is the real solution of nodal variables, and boundary conditions can be applied
directly and easily, which leads to greater computational precision. Besides, with the help
of the hybrid displacement variational formulation, the present method does not involve any
mesh for either interpolation or integration. Thus, the inherent inefficiency of the BNM, the
BEFM, and the BRPIMs due to the use of the background integration cell is alleviated in this
novel method, which leads to tremendous improvement in computational efficiency.

The following discussions begin with a description of the boundary variational
principle for solid mechanics problems in Section 2. Then, a detailed variables interpolation is
provided in Section 3. Section 4 assembles the final system of equations. Numerical examples
are given in Section 5. Section 6 contains some conclusions.

2. Boundary Variational Principle for Solid Mechanics Problems

Let Ω be a bounded domain in R
d (d = 2, 3) with boundary Γ = Γu + Γt. A general point in R

d

is denoted by x = (x1, x2, . . . , xd) or y = (y1, y2, . . . , yd).
Consider the following two- and three-dimensional problem of solid mechanics

μΔu +
(
λ + μ

)∇(∇ · u) = 0, in Ω,

u = u, on Γu,

t := Tu = t, on Γt,

(2.1)

where u = (u1, u2, . . . , ud) is the unknown displacement field; μ > 0 and λ > −μ are given
Lamé constants; Δ, ∇ and ∇· stand for the Laplacian, gradient, and divergence operators,
respectively; u = (u1, u2, . . . , ud) and t = (t1, t2, . . . , td) are prescribed boundary displacement
and traction, respectively; and T is the following conformal derivative operator:

Tu = λ(∇ · u) · n + 2μ
∂u
∂n

+ μn × curlu, (2.2)

where n = (n1, n2, . . . , nd) is the unit outward normal on Γ.
Based on the modified variational principle, the solution of problem (2.1) is the

function u which minimizes the following functional [19]:

Π =
1
2

∫

Ω
uI,JCIJKLuK,LdΩ −

∫

Γ
t̃I(uI − ũI)dΓ −

∫

Γt
tI ũIdΓ, (2.3)
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where t̃I is the boundary traction, ũI is the boundary displacement satisfying ũI = uI on Γu,
CIJKL = 2GνδIJδKL/(1 − 2ν) +GδILδJK, G is the shear modulus and ν is the Poisson’s ratio.

We introduce the stress tensor σ and strain tensor ε

σIJ(u) = λδIJ
d∑

K=1

εKK(u) + 2μεIJ(u), εIJ(u) =
1
2

(
∂uI

∂xJ
+
∂uJ

∂xI

)
, I, J = 1, 2, . . . , d, (2.4)

where δIJ is the Kronecker delta symbol. Then, via carrying out the first variation of (2.3) one
gets

δΠ = −
∫

Ω
σIJ,JδuIdΩ +

∫

Γ

(
tI − t̃I

)
δuIdΓ −

∫

Γ
(uI − ũI)δt̃IdΓ −

∫

Γt

(
t̃I − tI

)
δũIdΓ. (2.5)

Thus, by setting δΠ to zero we obtain the following equivalent integral equations

∫

Γ

(
tI − t̃I

)
δuIdΓ −

∫

Ω
σIJ,JδuIdΩ = 0, (2.6)

∫

Γ
(uI − ũI)δt̃IdΓ = 0, (2.7)

∫

Γt

(
t̃I − tI

)
δũIdΓ = 0. (2.8)

If the traction boundary condition t̃I = tI is imposed, (2.8) will be satisfied and thus it can be
ignored in what follows.

Since the variational principle is a universal theory, (2.6) and (2.7) should be satisfied
in any subdomain Ωi

s, which is bounded by Γis and Li
s and contains the boundary node yi.

Figure 1 depicts the sketched geometric configuration for both two- and three-dimensional
cases. Therefore, to obtain a truly boundary-only meshless method, (2.6) and (2.7) are
replaced by

∫

Γis+Li
s

(
tI − t̃I

)
widΓ −

∫

Ωi
s

σIJ,JwidΩ = 0, (2.9)

∫

Γis+Li
s

(uI − ũI)widΓ = 0, (2.10)

where wi is a weight function or a test function. We emphasize that in the above equations
the shape and dimension of the subdomains Ωi

s can be arbitrary. This observation forms
the basis for the present truly meshless method. Obviously, a circle (or a sphere) is the
simplest regularly shaped subdomains in R

2 (or R
3). Hence, the subdomain Ωi

s is chosen
as the intersection of the domain Ω and a circle (or a sphere) centered at the boundary node
yi (see Figure 1).
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Figure 1: Subdomain Ωi
s for boundary node yi for (a) two-dimensional case and (b) three-dimensional

case.

3. Variables Interpolation

Assume that the boundary Γ is the union of piecewise smooth segments Γi, i = 1, 2, . . . ,NΓ.
To avoid the discontinuity at corners and edges, the point interpolation for displacement
uI and boundary traction tI on each Γi is constructed independently. So in the following
interpolation scheme, let the variable v denote ũI or t̃I for simplicity. Then the radial basis
point interpolation for v can be defined as

v(s) ≈ vh(s) =
Ns∑

j=1

ajBj(s) +
m∑

i=1

bipi(s) = BT(s)a + pT(s)b, (3.1)

where s is a parametric coordinate on Γi; Bj(s) is a radial basis function (RBF); Ns is
the node number of the interpolation domain; pi(s) is a monomials; m is the number of
monomials; B(s) = [B1(s), B2(s), . . . , BNs(s)]

T; a = [a1, a2, . . . , aNs]
T; b = [b1, b2, . . . , bm]

T;
p(s) = [p1(s), p2(s), . . . , pm(s)]

T; aj and bi are unknown coefficients.
The effectiveness and accuracy of the interpolation depends on the choice of the RBFs.

A number of different types of RBFs [20] such as linear distance functions, thin plates plines,
multiquadrics, Gaussians and RBFs with compact supports have been proposed and may be
used for this purpose. Characteristics of radial functions have been widely investigated. The
variable in RBFs is only the distance. Hence, the forms of interpolation formulations are the
same for both two-dimensional problems and three-dimensional problems. The following
multiquadrics radial function is used in this work (other RBF can also be used similar)

Bj(s) =
[∣∣s − sj

∣∣2 + c2
]q
, (3.2)

where c and q are shape parameters. In this situation, the required polynomial basis is linear
as p(s) = [1, s]T.
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Letting the approximation represented by (3.1) pass through all the Ns boundary
nodes, we get

v̂ = B0a + p0b, (3.3)

in which v̂ = [v(s1), v(s2), . . . , v(sNs)]
T is a vector, while B0 = [BT(s1),BT(s2), . . . ,BT(sNs)]

T

and p0 = [pT(s1),pT(s2), . . . ,pT(sNs)]
T are matrices. Besides, in order to guarantee unique

solution, the following constraints should also be satisfied

pT
0a = 0. (3.4)

Then, according to (3.3) and (3.4), we obtain a = Sav̂ and b = Sbv̂, where Sb =
[pT

0B
−1
0 p0]

−1
pT

0B
−1
0 and Sa = B−1

0 [I−p0Sb]. Consequently, substituting a and b into (3.1) yields

vh(s) =
[
BT(s)Sa + pT(s)Sb

]
v̂ = Φ(s)v̂, (3.5)

where the shape function vector is

Φ(s) = BT(s)Sa + pT(s)Sb :=
[
φ1(s), φ2(s), . . . , φi(s), . . . , φNs(s)

]
. (3.6)

Now, in (2.9) and (2.10), ũI and t̃I on Γis can be represented as

ũI(s) =
Ns∑

j=1

φj(s)u
j

I , t̃I(s) =
Ns∑

j=1

φj(s)t
j

I , (3.7)

where u
j

I and t
j

I are the nodal values uI(yj) and tI(yj), respectively; φj(s) is the contributions
from the node yj to the evaluation point x(s), which is not equal to zero in the interpolation
domain of the jth node only.

In (2.9) and (2.10), ũI and t̃I on Li
s are not defined yet. However, this problem can

be tackled by selecting the weight function wi such that the size of the support of wi is less
than the radius of the subdomain Ωi

s, then all integrals over Li
s vanish. A variety of weight

functions have been investigated in the past for meshless methods. In this paper, Gaussian
weight function is chosen and can be written as

wi(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
[
−(di/ci)

2
]
− exp

[
−(ri/ci)2

]

1 − exp
[
−(ri/ci)2

] , 0 ≤ di ≤ ri,

0, di ≥ ri,

(3.8)

where ri is the radius of Ωi
s; di is the distance between a sampling point x, in domain Ω, and

the nodal point yi; and ci is a constant controlling the shape of the weight function wi. As a
result, wi(x) vanishes on Li

s.
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Finally, the domain variables uI and tI in (2.9) and (2.10) are interpolated by the
fundamental solution as

uI(x) =
N∑

j=1

d∑

K=1

u∗
IK

(
x,yj
)
γ
j

K, tI(x) =
N∑

j=1

d∑

K=1

t∗IK
(
x,yj
)
γ
j

K, (3.9)

where γ
j

K is the unknown parameter; N is the total number of boundary nodes; t∗IK = Tu∗
IK;

u∗
IK is the fundamental solution of the Lamé system

u∗
IK(x,y) =

λ + 3μ
4π(d − 1)μ

(
λ + 2μ

)

[

γd(x,y)δIK +
λ + μ

λ + 3μ

(
xI − yI

)(
xK − yK

)T

|x − y|d
]

, (3.10)

with γd(x,y) = − ln |x − y| for d = 2 and γd(x,y) = 1/|x − y| for d = 3.

4. Meshless Formulations for Solids

From (3.9) it follows that the second integral term of (2.9) is only attributed to the principal
diagonal of the matrix. This fact will be taken into account when calculating the boundary
integrals. Thus substituting (3.7) and (3.9) into (2.9) and (2.10) yields

N∑

j=1

∫

Γis

(
d∑

K=1

t∗IK
(
x,yj
)
γ
j

K − φj(x(s))t
j

I

)

wi(x)dΓ = 0,

N∑

j=1

∫

Γis

(
d∑

K=1

u∗
IK

(
x,yj
)
γ
j

K − φj(x(s))u
j

I

)

wi(x)dΓ = 0,

(4.1)

where I = 1, 2, . . . , d. Then applying the above equations to all boundary nodes provides the
final system of equations

Tγ = Ht̃, (4.2)

Uγ = Hũ. (4.3)

In the case d = 2, γ = [γ1
1 , γ

1
2 , γ

2
1 , γ

2
2 , . . . , γ

N
1 , γN2 ]T , t̃ = [t11, t

1
2, t

2
1, t

2
2, . . . , t

N
1 , tN2 ]T, ũ =

[u1
1, u

1
2, u

2
1, u

2
2, . . . , u

N
1 , uN

2 ]T, and

TIJ =
∫

Γis

[
t∗11

(
x,yj
)

t∗12

(
x,yj
)

t∗21

(
x,yj
)

t∗22

(
x,yj
)
]
wi(x)dΓ,

UIJ =
∫

Γis

[
u∗

11

(
x,yj
)

u∗
12

(
x,yj
)

u∗
21

(
x,yj
)

u∗
22

(
x,yj
)
]
wi(x)dΓ,

HIJ =
∫

Γis

[
φj(x(s)) 0

0 φj(x(s))

]
wi(x)dΓ.

(4.4)
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The evaluation of the main diagonal terms of matrix U involves only weak singularities,
while the main diagonal terms of matrix T are strongly singular ones. To avoid direct
numerical integration of these terms, a uniform displacement field is assumed as ũ1 = [1, 0]T

and ũ2 = [0, 1]T without any traction on the boundary. Substituting them into (3.9) yields
γk = U−1Hũk with k = 1, 2. Inserting γk into (4.2) leads to Tγk = H0, where 0 is a column
vector. Consequently, the main diagonal terms of matrix T can be computed by the off-
diagonal terms. In the same way we tackle for d = 3.

Once the unknowns t̃ and ũ are found, the values of the displacement u and the
traction t at any boundary point are computed using (3.7). The displacement u and the
stress σ at an internal point may be computed simply using (3.9). Although this scheme
avoids further integrations, it has the drawback of serious “boundary layer effect,” that is,
the accuracy of the result near the boundary is very sensitive to the proximity of the interior
points near the boundary. Similar to schemes proposed in [7, 18], an adaptive integration
scheme is further developed to circumvent this problem.

The displacement u and the stress σ at an internal point x are evaluated via the
following traditional BIEs,

u(x) =
∫

Γ
u∗(x,y)̃t(y)dΓy −

∫

Γ
t∗(x,y)ũ(y)dΓy

=
NΓ∑

i=1

∫

Γi
u∗(x,y)̃t(y)dΓy −

NΓ∑

i=1

∫

Γi
t∗(x,y)ũ(y)dΓy,

(4.5)

σ(x) =
∫

Γ
−σ∗(x,y)̃t(y)dΓy −

∫

Γ
t∗(x,y)ũ(y)dΓy

=
NΓ∑

i=1

∫

Γi
−σ∗(x,y)̃t(y)dΓy −

NΓ∑

i=1

∫

Γi
t∗(x,y)ũ(y)dΓy,

(4.6)

where u∗(x,y), t∗(x,y), and σ∗(x,y) are the fundamental solution with y and x being the field
point and source point, respectively; NΓ is the number of the segments which compose the
whole boundary. Since every segment can be represented by a unit sector or square in the
parametric space, the integrals on each segment in (4.5) and (4.6) can be computed easily.
Here, an adaptive technique is developed to compute these integrals on the segment. In this
technique, the unit sector is first divided into four equal quarters, as shown in Figure 2.
Then, for each quarter, we compute the diagonal length, l, and the distance between the
evaluation point and the center of the quarter, d. If l < d, this quarter is considered as a
regular integration segment. Otherwise, it will be further divided into subquarters, and this
process goes on, until all segments become regular. Finally, Gaussian quadrature is applied
for all segments. This adaptive scheme is very accurate even when the evaluation point is
very close to the boundary. It should be pointed out that the segments are in the parametric
space and are not like the boundary element in the BEM.

From the above discussion, it can be concluded that all integrations are computed
along the boundary only and that no boundary elements are used both for interpolation and
integration purposes. Thus, the present numerical method is truly meshless and boundary-
only.
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Γi

x l ≥ d

(a)

Γi

x
d l l ≥ d

(b)

Figure 2: Subdividing of the segment Γi at an evaluation point x for (a) two-dimensional case and (b)
three-dimensional case.

5. Numerical Experiments

In order to demonstrate the efficiency and accuracy of the present method, some numerical
examples are considered and their results are compared with the analytical results. As in
many meshless methods, there exist some parameters in the present method. For numerical
computations, as in many works [2, 5, 7, 13, 16, 17], these parameters can be fixed. In all
examples, the radius ri, of local integration subdomain is taken to be 0.9h, while the size
of interpolation domain is chosen as 3.0h, where h is the minimum distance between the
adjacent nodes. Besides, the parameters in (3.2) are taken as c = 2.0h and q = 0.5, and
the parameter ci is taken to be 1.5h. In order to deal with the traction discontinuities at
corners and edges, the nodes are not arranged at these locations and the support domain
for interpolation is truncated.

5.1. Internal Pressurized Hollow Cylinder

A hollow cylinder under unit internal pressure is shown in Figure 3. The radii of the inner
and outer cylinders are R1 and R2, respectively. The plane stress condition is assumed with
the Young’s modulus E = 10 and the Poisson’s ratio ν = 0.3. In the polar coordinate system
(r, θ), the analytical solution for stresses is

σrr(r, θ) =
R2

1

R2
2 − R2

1

(

1 − R2
2

r2

)

, σθθ(r, θ) =
R2

1

R2
2 − R2

1

(

1 +
R2

2

r2

)

, σrθ(r, θ) = 0. (5.1)

The corresponding displacements are

ur(r, θ) =
R2

1

E
(
R2

2 − R2
1

)

[

(1 − ν)r + (1 + ν)
R2

2

r

]

, uθ(r, θ) = 0, (5.2)

where ur and uθ are the radial and tangential component of the displacement.
Due to the symmetry of the problem, only one quarter of the cylinder is modeled.

The boundary of the cylinder in the first quadrant is discretized by 60 boundary nodes (12
uniformly distributed nodes on AB, CD, and AD, and 24 uniformly distributed nodes on
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Figure 3: Schematic diagram for the internal pressurized hollow cylinder.
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Figure 4: Radial displacement ur along the radius for the internal pressurized hollow cylinder.

BC). In the computation, the geometry is chosen as R1 = 1 and R2 = 2. Figure 4 plots the
radial displacement versus the node position along the radius, while Figure 5 plots the stress
results. It can be clearly seen that the numerical solution is in excellent agreement with the
analytical ones.

5.2. Rigid Flat Punch on Semi-Infinite Foundation

As boundary type methods have a clear advantage over domain type methods for problems
with infinite domain, the present truly meshless method is also employed to obtain a solution
for an indentation produced by a rigid flat punch in a semi-infinite soil foundation [2], as
shown in Figure 6. In this case, only the contact surface between the punch and the half-space
needs to be discretized.

Consider a rigid punch of length L = 12 subjected to a uniform pressure of p = 100
on the top. The parameters of the soil foundation are taken as E = 3.0 × 104 and ν = 0.3.
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Figure 5: Stress σ along the radius for the internal pressurized hollow cylinder.
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Figure 6: Schematic diagram for a rigid flat punch on a semi-infinite foundation.

The punch is considered to be perfectly smooth, and there has not been any friction in the
interface between the punch and the foundation. Due to symmetry, only the right half part is
discretized by 31 uniformly boundary nodes.

The vertical displacement of the foundation is assumed to be the same of that of the
punch. A prescribed vertical displacement of the punch is imposed on the contact surface
as boundary constraints. This displacement can be expressed as ur = 0.5(uc + ue), where ur

is the vertical displacement of the rigid area in contact with the rigid punch, and uc and ue

are vertical displacements at the center and edge, respectively. The analytical solution of uc

and ue can be obtained in [21]. The analytical solution of the contact stress along the contact
surface is

σx2 =
2pL2

π
√
L2 − 4x2

1

. (5.3)
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Figure 8: Schematic diagram for the three-dimensional Lamé problem.

Figure 7 plots the comparison between the contact stresses along the contact surface com-
puted analytically and by the present meshless method. It can be found that excellent agree-
ment between the analytical and numerical solutions is achieved.

5.3. Lamé Problem

The three-dimensional Lamé problem consists of a hollow sphere under internal pressure.
The sketched geometric configuration of this problem is shown in Figure 8. For this bench-
mark problem, the analytical solutions for the radial displacement, and radial and tangential
stresses are available in the polar coordinate system as

ur =
Pa3r

E(b3 − a3)

[

(1 − 2ν) + (1 + ν)
b3

2r3

]

, σrr =
Pa3(b3 − r3)

r3(a3 − b3)
, σθθ =

Pa3(b3 + 2r3)

2r3(b3 − a3)
,

(5.4)
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where r is the radial distance from the centroid of the sphere to the point of interest in the
sphere, P is the internal pressure, a is the inner radius of sphere, and b is the outer radius. The
parameters are chosen as P = 1, a = 2.0, b = 4.0, E = 1.0, and ν = 0.3 in the computation.

Figure 9 exhibits the comparison between the present numerical results with the
analytical solutions for ur , σrr , and σθθ. In this analysis, only 48 regularly distributed
nodes are used to discretize each surface of the hollow sphere. This figure indicates that the
numerical solutions are seen to capture the behavior of the exact solutions very well.

5.4. Kirsch Problem

The three-dimensional Kirsch problem is a portion of an infinite cube with a small spherical
cavity subjected to a unidirectional tensile load of σ0 in the x3-axis direction as shown in
Figure 10. The analytical solution for the normal stress (σ33), for points in the plane x3 = 0, is

σ33 = σ0

[

1 +
4 − 5ν

2(7 − 5ν)

(
a

r

)3

+
9

2(7 − 5ν)

(
a

r

)5
]

, (5.5)

where r =
√
x2

1 + x2
2.

The problem is solved her for a = 1.0, b = 10.0, and σ0 = 1.0. Seventy-two uniformly
spaced nodes are used on the inner spherical surface and ninety-six nodes on the outer cube
boundary. Figure 11 plots a comparison between the numerical solution and the analytical
solution for the normal stress along the x1-axis ahead of the cavity. From this figure it can be
found that the numerical solution for this example is in good consistency with the analytical
solution.
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6. Conclusions

A novel numerical method has been developed in this paper for analysis of two- and
three-dimensional solid mechanics problems. The present method inherently possesses some
desirable numerical merits which include truly meshless and boundary-only. In this method,
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meshless shape functions constructed by the radial basis point interpolation possess delta
function properties, thus the basic unknown quantities are the real solutions of the nodal
variables and boundary conditions can be directly and easily implemented. Besides, it only
uses a cluster of unorganized nodes on the bounding surface of the domain to be solved,
and thus absolutely no discretization grids are required either for variable interpolation or
for numerical integration. Some examples have been given and the numerical results are
accurate.
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