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A method is given for obtaining equivalence subgroups of a family of differential equations from
the equivalence group of simpler equations of a similar form, but in which the arbitrary functions
specifying the family element depend on fewer variables. Examples of applications to classical
equations are presented, some of which show how the method can actually be used for a much
easier determination of the equivalence group itself.

1. Introduction

Denote collectively by A the set of all arbitrary functions specifying the family element in a
collection F of differential equations of the form

Δ
(
x, y(n);A

)
= 0, (1.1)

where x = (x1, . . . , xp) is the set of independent variables and y(n) denotes y and all its
derivatives up to the order n. In the most general case, the function A may depend on x,y,
and the derivatives of y up to a certain order not exceeding n, but quite often A is simply a
function of x, or a constant.

Let G be the Lie pseudo-group of point transformations of the form

x = ϕ(z,w), y = ψ(z,w), (1.2)

where z = (z1, . . . , zp) is the new set of independent variables, while w = w(z) is the
new dependent variable. The group G is infinite because, as explained in a paper by Tresse
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[1, Page. 11], its elements depend in general on arbitrary functions and not on arbitrary
constants, and a Lie pseudo-group is to be understood here in the sense of [2, 3], that is,
as the infinite-dimensional counterpart of a local Lie group of transformations. We say that
G is the group of equivalence transformations of (1.1) if it is the largest Lie pseudo-group of
point transformations that map (1.1) into an equation of the same form, that is, if in terms
of the same function Δ appearing in (1.1), the transformed equation has an expression of the
form

Δ
(
z,w(n);B

)
= 0, (1.3a)

where

B = T(A), (1.3b)

for a certain function T , is the new set of arbitrary functions specifying the family element
in the transformed equation. Equivalently, G will map elements of F into F, and, when this
holds, (1.2) is called an equivalence transformation of the original equation (1.1). By a result
of Lie [4], (1.3b) defines another group of transformations Gc induced by G, and acting on
the arbitrary functions A of the original equation. Invariants of the group Gc are termed
invariants of the differential equation (1.1). These invariants are functions which depend
on the arbitrary functions A of the original equation, and which have exactly the same
expression when they are also formed for the transformed equation, and they play a crucial
role in the classification of the family of equation [5, 6].

Early developments in applications of Lie groups for finding equivalence transfor-
mations of a given differential equation (DE) started in the work of Lie [7] and were later
pursued by Tresse [1] and Ovsiannikov [8]. More recent developments based on Cartan
equivalence methods originated in the works of Olver and collaborators [2, 9], and this has
led to new methods for computing the differential invariants and Maurer-Cartan structure
equations of a Lie pseudo-group.

In this paper, we show that for a given differential equation in which the arbitrary
functions defining the family element are functions of independent variables alone, the
equivalence group is a subgroup of a differential equation of a similar form, but in which
the arbitrary functions also depend on the dependent variable and its derivatives up to a
given order. An extension of the theorem to equations with arbitrary functions depending on
a subset of the set consisting of all independent variables and the dependent variable and its
derivatives up to a given order is provided. Examples of applications to a number of classical
equations show how to obtain equivalence subgroups of a more complex family of equations
from those of simpler ones.

2. Dummy Variables of the Equivalence Group

If we consider, for instance, the general linear differential equation

y(n) + a1(x)y(n−1) + a2(x)y(n−2) + · · · + an(x)y = 0, (2.1)
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the arbitrary functions A in (1.1) are the coefficients ai(x), for i = 1, . . . , n. Thus in this case it
appears thatA = A(x) is a function of the independent variable alone. This is quite often the
case with various other linear or nonlinear equations. However, more generally,A arises as a
function of the independent variables and the dependent variable y and its derivatives up to
a certain order.

Theorem 2.1. Denote by (A) (1.1) with A = A(x) and by (B) the same equation, but in which A
depends on x, y, and the derivatives of y up to a certain order s, that is, in which A = A(x, y(s)).
Similarly, denote by GA and GB the equivalence groups for (A) and (B), respectively. Then GA is a
subgroup of GB.

Proof. To fix ideas, suppose that the equation hasm arbitrary functionsA1, . . . , Am specifying
the family element in F (and collectively denoted by A) and that in (B) we have Aj =
Aj(x, y(s)) for all j = 1, . . . , m. On the other hand, for each multi-index J = (j1, . . . , jk), where
1 ≤ jr ≤ p for r = 1, . . . , k, we use the notation

DJy ≡ ∂ ky(x)
∂xj1 , ∂xj2 , . . . , ∂xjk

. (2.2)

Suppose now that (1.2) is an equivalence transformation of (A). To perform the transforma-
tion of (B) by (1.2), we may first ignore the arguments of the functionA, in which sense these
arguments can be considered as dummy. Then, for every multi-index J with 0 ≤ #J = k ≤ n,
each partial derivativeDJy present in the equation is replaced by a function TJ(z,w(k)). When
all such replacements are made and all remaining occurrences of independent variables are
expressed in terms of z and w by another application of (1.2), the resulting equation is the
transformed equation (3.12), in which B collectively denotes the new functions B1, . . . , Bm.
According to (3.15), each transformed function Bj has an expression of the form

Bj = Fj(z,A1, . . . , Am),
(
j = 1, . . . , m

)
, rj ≤ n, (2.3)

in terms of the original functions A1, . . . , Am, and for a certain function Fj , where Fj does
not depend explicitly on the dependent variable w and its derivatives, on the assumption
that (1.2) is an equivalence transformation of (A). To complete the transformation of (B),
we may now apply again (1.2), to transform the arguments of the functions Aj , and this
will transform Aj(x, y(s)) into a composition of Aj and a function of z and w(s), and the
latter transformation will thus have no effect on the form of the transformed equation.
Consequently, the transformed version of (B) has the same form as (B), and this completes
the proof of the theorem.

The proof of Theorem 2.1 suggests the following immediate extension to the case
where the function A in (A) may depend only on a subset of the set of all variables and
the derivatives of y up to a given order.

Theorem 2.2. Denote by (A) (1.1) with A = A(X), where X is a subset of the set consisting of all
independent variables, of the dependent variable y and its derivatives up to a certain order r. Denote
also by (B) the same equation, but in which A = A(x, y(s)), with r ≤ s. Similarly, denote by GA and
GB the equivalence groups for (A) and (B), respectively. Then GA is a subgroup of GB.



4 Mathematical Problems in Engineering

Proof. Using the same notation as in the proof of Theorem 2.1, and reasoning in a similar way,
if we apply GA to transform (B) while first ignoring the arbitrary functions’ arguments, the
form of the equation is preserved, and the new arbitrary functions Bj now take the form

Bj = Fj
(
z,w(r), A1, . . . , Am

)
,

(
j = 1, . . . , m

)
. (2.4)

We can then transform the arguments (x, y(s)) in each of the functions Aj appearing in (2.4),
to obtain expressions of the form Aj = Aj(z,w(s)) in (2.4), and the latter transformation will
not affect the form of the equation, as already seen.

It should however be noted that, as stated, Theorems 2.1 and 2.2 holds only under
the assumption that, in (B), the function A depends explicitly on x = (x1, . . . , xp), y, and all
derivatives of y up to the stated order s. This is first because when a derivative of y of a given
order s is transformed under a given group, the resulting expression depends in general
on all derivatives of the new dependent variable w up to the order s. On the other hand,
the transformed function Bj will in general depend on the full set of the new independent
variables z = (z1, . . . , zp) and not only on a subset of this set. Thus, if in (B) the function
A does not explicitly depend on all independent variables or on all derivatives of y up to
the stated order s, this restriction should be imposed on GA, and this will yield in general a
smaller equivalence subgroup for (B).

On the other hand, the converse is not true in Theorem 2.1, and this is simply because
if (A) is transformed by an equivalence transformation of (B), there is no guarantee that in
the transformed equation the functions Bj will not depend on w or its derivatives. Similarly,
the converse to Theorem 2.2 is not true.

3. Application to Classical Equations

3.1. The General Linear Homogeneous ODE

In the sequel, we will use the notation fa = ∂f/∂a, for every function f with argument a,
hence subscripts in such functions will denote differentiation. We shall also use the notation
∂a = ∂/∂a for every variable a, and a transformed equation will be assumed to be expanded
as a polynomial in the dependent variable and its derivatives.

If we consider, for instance, (2.1), its equivalence transformations are given by

x = S(z), y = L(z)w, (3.1)

where S and L are arbitrary functions. It follows from Theorem 2.1 that, if we assume in (2.1)
that the coefficients ai depend also on y and its derivatives up to a certain order s, then (3.1)
remains an equivalence transformation of the resulting equation. Equations of the latter form
frequently appear with s = 0, so that ai = ai(x, y), which gives rise to a nonlinear equation of
the form

y(n) + a1
(
x, y

)
y(n−1) + a2

(
x, y

)
y(n−2) + · · · + an(x, y)y = 0. (3.2)
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After some calculations, the equivalence group of (3.2) is found for n = 3 to be of the form

x = S(z), y = L(z)w + J(z), (3.3)

where S, L, and J are arbitrary functions. It can be shown by induction that (3.3) also holds
for all n ≥ 3 in (3.2). Theorem 2.2 states that for any other variant of (3.2) in which the
coefficients ai are of the form ai = ai(X), where X ⊂ {x, y}, the equivalence group must
be of the predefined form (3.3), where the functions S, L, and J are to be specified. Finding
the equivalence group of an equation in a more specific form naturally greatly simplifies
calculations. If, for instance, we suppose that ai(X) = ai(y), for all i, so that (3.2) reduces to

y(n) + a1
(
y
)
y(n−1) + a2

(
y
)
y(n−2) + · · · + an(y)y = 0, (3.4)

then since the ai depend on y alone, L and J must be constant functions, so that the
transformation of y reduces to y = k3w + k4, for some constants k3 and k4. For n = 3, under
the corresponding transformations of x and y, the term not involving the dependent variable
w and its derivatives as a factor in the transformation of (3.4) is (k4a3S3

z)/k3. Since this term
may however depend onw but not on z, we infer that Sz must be a constant function, so that
the transformation of the independent variable x must also be a linear function of the form
x = k1z + k2. It is readily seen that the set of transformations

x = k1z + k2, y = k3w + k4 (3.5)

preserves the form of (3.4) for n = 3, and therefore defines its equivalence group. It is
also readily found by induction on n that this remains true for all n ≥ 3. Using (3.3) as
the predefined form of the equivalence group leads in a similar manner to a much easier
determination of the equivalence group for other possible values of X. In addition, X needs
not be the same for all of the coefficients ai, and thus to apply Theorem 2.2 here we only need
to have ai = ai(Xi), with Xi ⊂ {x, y}. In particular, some of the ai might be constants.

3.2. The Linear Hyperbolic Equation

Consider the PDE in two independent variables t and x of the form

utx + a1(t, x)ut + a2(t, x)ux + a3(t, x)u = 0, (3.6)

generally referred to as the linear hyperbolic second-order equation. It is well known (see e.g.,
[10, 11]) that the group G of equivalence transformations of this equation is given in terms of
new independent variables y and z and dependent variablesw, by invertible transformations
of the form

t = R
(
y
)
, x = S(z), u = L

(
y, z

)
w, (3.7)
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where R, S, and L are arbitrary functions satisfying the nonvanishing Jacobian condition

RySzL/= 0, (3.8)

where Ry = ∂yR and Sz = ∂zS. Consider now a nonlinear extension of (3.6) of the form

utx + a1(t, x, u)ut + a2(t, x, u)ux + a3(t, x, u)u = 0, (3.9)

in which the dependent variable u also appears as argument in the arbitrary coefficients. We
undertake the somewhat lengthy calculation of the equivalence group of (3.9) which is not
available in the literature, to illustrate how the knowledge of such a group can be utilized
for a much easier determination of the equivalence group of equations of a similar form. The
equivalence groupH of (3.9)must be sought in the form

t = R
(
y, z,w

)
, x = S

(
y, z,w

)
, u = T

(
y, z,w

)
, (3.10)

for some functions R, S, and T to be specified and which must satisfy the non-vanishing
Jacobian condition

(−RzSy + RySz
)
Tw + (RzSw − RwSz)Ty +

(−RySw + RwSy
)
Tz /= 0. (3.11)

However, we notice that under (3.10), ut is transformed into

ut =
−SzTy + SyTz + (SwTz − SzTw)wy +

(
SyTw − SwTy

)
wz

RzSy − RySz + (RzSw − RwSz)wy +
(
RwSy − RySw

)
wz

. (3.12)

The occurrence of derivatives of w in the denominator of this transformed expression for ut
will give rise in the expression of utx to undesired terms in wzz and wyy as well as nonlinear
terms of the form wi

zw
j
y, where i and j are some natural numbers, and they should therefore

disappear. This disappearance of derivatives is translated into the conditions

RzSw − RwSz = 0, −RySw + RwSy = 0, (3.13)

under which the Jacobian condition (3.11) is reduced to

(−RzSy + RySz
)
Tw /= 0. (3.14)

If we suppose that Rw = 0 and Sw /= 0, then it follows from (3.13) that Ry = Rz = 0, which
contradicts (3.14). Thus we haveRw = 0 if and only if Sw = 0. On the other hand, if we assume
that Rw /= 0, then using (3.13)we may write

Sy = Ry

(
Sw
Rw

)
, Rz = Sz

(
Rw

Sw

)
, (3.15)
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which also contradicts (3.14), so that Rw = Sw = 0, and the resulting expressions in (3.10)
take the form

t = R
(
y, z

)
, x = S

(
y, z

)
, u = T

(
y, z,w

)
. (3.16)

Under the new change of variables, the terms inwyy andwzz in the transformed equation are
given by

RzSz
(−RzSy + RySz

)
Twwyy, RySy

(−RzSy + RySz
)
Twwzz, (3.17)

respectively. On account of (3.14), the vanishing of these terms is reduced to the condition

RzSz = RySy = 0, (3.18)

which on account of the Jacobian condition (3.8) readily yields

Rz = Sy = 0. (3.19)

Consequently, (3.10) reduces to

t = R
(
y
)
, x = S(z), u = T

(
y, z,w

)
. (3.20)

Under this new set of transformations, (3.9) takes the form

wywzTw,w

Tw
+wz

(
a2Ry +

Ty,w

Tw

)
+wy

(
a1Sz +

Tz,w
Tw

)

+
a3TRySz + a1SzTy + a2RyTz + Ty,z

Tw
+wy,z = 0,

(3.21)

which shows that T must be linear inw. Consequently, the required change of variables must
be of the form

t = R
(
y
)
, x = S(z), u = L

(
y, z

)
w + J

(
y, z

)
, (3.22)

and (3.22) transforms (3.9) into

Ja3RySz

L
+
(
Lz
L

+ a1Sz
)
wy +

(
Ly

L
+ a2Ry

)
wz

+
w
(
a2LzRy + a1LySz + La3RySz + Ly,z

)

L
+wy,z = 0,

(3.23)

which is of the required form since we may in this case write the constant term Ja3RySz/L
in the transformed equation in the form w(Ja3RySz/(Lw)). Therefore, (3.22) defines the
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equivalence group H of (3.9). It differs from the equivalence group G of (3.6) only by the
additional term J(y, z) in the transformation of u, which has the effect of adding a sort of
nonhomogeneous term to the transformed equation.

Now that the equivalence group (3.22) of (3.9) is available, we can clearly demonstrate
how Theorem 2.2 can be used for a much easier determination of equivalence groups for
variants of (3.9), in which the arbitrary coefficients ai have arguments of the form Xi ⊂
{t, x, u}. Indeed, since by Theorem 2.2 any such group is a subgroup of H, its equivalence
transformations must therefore be sought in the form (3.22), which greatly simplifies
calculations. We show this by considering two examples.

To begin with, consider a variant of (3.9) of the form

utx + a1(x)ut + a2(t)ux + a3(t, x)u = 0. (3.24)

Since the coefficient a3(t, x) of u does not involve u itself, we may assume that J(y, z) = 0 in
(3.22), and we thus look for equivalence transformations of (3.24) in the form

t = R
(
y
)
, x = S(z), u = L

(
y, z

)
w, (3.25)

and under which the coefficients θy of wy and θz of wz take the form

θy = a1Sz +
Lz
L
, θz = a2Ry +

Ly

L
. (3.26)

Since we have

0 =
∂θy

∂y
=
∂θz

∂z
,

∂θy

∂y
=
∂θz

∂z
=
LLy,z − LyLz

L2
, (3.27)

L must satisfy the condition ∂y(Lz/L) = 0, and hence L = e f(y)+g(z), for some arbitrary
functions f and g. This new expression for L reduces (3.25) to

t = R
(
y
)
, x = S(z), u = ef(y)+g(z)w, (3.28)

and the latter change of variables transforms (3.24) into

w
(
fy

(
gz + a1Sz

)
+ Ry

(
a2gz + a3Sz

))

+
(
gz + a1Sz

)
wy +

(
fy + a2Ry

)
wz +wy,z = 0,

(3.29)

which is of the prescribed form, and this shows that (3.28) represents the equivalence
transformations of (3.24).

For the second example of determination with a variant of (3.9), consider the equation

utx + a1(t)ut + a2(t)ux + a3(t, x)u = 0, (3.30)
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in which the coefficient of ut and ux depend on t alone. Here again, the equivalence group is
to be sought in the form (3.25), and under this change of variables, the coefficients θy of wy

and θz of wz take the form

θy = a1Sz +
Lz
L
, θz = a2Ry +

Ly

L
, (3.31)

where a1 = a1(R(y)) and a2 = a2(R(y)), and the conditions 0 = ∂zθ
y and 0 = ∂zθ

z lead to
the differential equations

−L2
z + LLzz
L2

+ a1Szz = 0,
−LyLz + LLy,z

L2
= 0. (3.32)

It follows from the arbitrariness of the coefficient a1 in the first equation of (3.32) that S =
k1z + k2 for some constants k1 and k2, while

−L2
z + LLzz = 0. (3.33)

The latter equation has solution L = g(y)ezf(y), where g /= 0 and f are arbitrary functions. A
substitution of this expression for L in the second equation of (3.32) leads to gfye2zf = 0, and
hence f = k3 is a constant function, so that the corresponding change of variables (3.25) now
takes the form

t = R
(
y
)
, x = k1z + k2, u = g

(
y
)
ek3zw. (3.34)

The transformation of (3.30) under (3.34) yields the equation

(
a1k1 +

Lz
L

)
wy +

(
a2Ry +

Ly

L

)
wz +wy,z

+
w
(
Ak1Ly + k1La3Ry + a2LzRy + Ly,z

)

L
= 0,

(3.35)

which is of the required form, and thus (3.34) represents the group of equivalence trans-
formations of (3.30).

3.3. Some Applications

It is worthwhile making some comments at this point on some applications of equivalence
transformations with regards to the integration of differential equations. By essence,
equivalence transformations are a key tool by means of which equations can be classified and
then represented in each equivalence class by a simpler and more tractable canonical form.
If we consider, for instance, the variant (3.24) of the linear hyperbolic equation it follows
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from the form of the transformed equation (3.29) that if in the corresponding equivalence
transformations (3.28)we set

f = k1 −
∫
a2(R)Rydy, g = k2 −

∫
a1(S)Szdz, (3.36)

for some constants k1 and k2 and then set RySz = 1, then the transformed equation is reduced
to

b
(
y, z

)
w +wy,z = 0, with b

(
y, z

)
= a3 − a1a2, (3.37)

which gives a much simpler canonical form for all equations of the form (3.24). In particular,
if in the latter equation we have

a3 = a1a2, (3.38)

then (3.24) is always reducible to the linear wave equation

wy,z = 0. (3.39)

The complete classification of families of equations can be realized by means of invariant
functions of these equations, which as already mentioned are defined by the equivalence
transformations. For instance, using the functions

H = a1t + a
1a2 − a3, K = a2x + a

1a2 − a3 (3.40)

known as Laplace invariants [10], Ovsiannikov obtained the contact invariants P = H/K
andQ = (ln |H|)t,x/H and used them to achieve the classification of a subfamily of the linear
hyperbolic equation (3.24) [8, 12]. Similar classifications of differential equations based on
invariant functions have also been carried out by other more recent writers on the topic [5,
6, 13, 14]. Using Cartan’s equivalence method in the form developed by Fels and Olver [9],
Morozov [13] gave a complete solution to the equivalence problem for a number of families
of partial differential equations, under the pseudo-group of contact transformations.

Significant simplifications of the equation, which may include a reduction of its order,
are often achieved by the simple vanishing of the invariants of the equation. For instance, the
condition a3 = a1a2 obtained in (3.38) by a direct analysis of the equivalence transformations
of (3.24) and which have led to the reduction of this equation to the linear wave equation
wy,z = 0, actually corresponds exactly to the vanishing of the invariant P = H/K of this
equation. Similar reductions or derivations of integrability properties of differential equations
based on the vanishing of invariant functions were carried out by Laguerre [15], followed by
Brioschi [16] for third-and fourth-order ODEs, as well as by Liouville [17] and many others.

4. Concluding Remarks

In this paper, we considered two families (A) and (B) of DEs of a similar form depending on
arbitrary functions, where the arguments of each of the arbitrary functions in (A) are a subset
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of that for the corresponding arbitrary function in (B). We then showed in Theorem 2.2 that
the equivalence group GA of (A) must be a subgroup of the equivalence group GB of (B).
We also showed through some examples of applications how the theorem can be used either
for an easier determination of equivalence subgroups or just equivalence transformations of
a complex family of DEs or for finding the equivalence group GA of type (A) DEs when GB

is known.
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