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The practical stabilization problem is investigated for a class of linear systems with actuator
saturation and input additive disturbances. Firstly, the case of the input additive disturbance
being a bounded constant and a variety of different situations of system matrices are studied
for the three-dimensional linear system with actuator saturation, respectively. By applying the
Riccati equation approach and designing the linear state feedback control law, sufficient conditions
are established to guarantee the semiglobal practical stabilization or oscillation for the addressed
system. Secondly, for the case of the input additive disturbances being time-varying functions, a
more general class of systems with actuator saturation is investigated. By employing the Riccati
equation approach, a low-and-high-gain linear state feedback control law is designed to guarantee
the global or semiglobal practical stabilization for the closed-loop systems.

1. Introduction

Actuator saturation (control saturation), as a common and typical nonlinear constraint for
control systems, is often encountered in various industrial systems, especially in many
physical-controlled systemswithmagnitude limitation in the input. In general, linear systems
can be completely controlled by using the linear state feedback, and the semiglobal (or local)
stabilization can be achieved [1–3]. Linear systems with actuator saturation are also a special
class of nonlinear systems [4]. The occurrence of actuator saturation inevitably affects the
control systems performance and may even result in the instability of the controlled systems.
Consequently, the actuator saturation has attracted significant attention, and a variety of
approaches have been developed in the literature with respect to various types of systems
[5–13]. Specifically, the problems of the global (or semiglobal) asymptotic stabilization,
the attraction domain estimation, and the practical stabilization have been extensively
investigated.
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When the dimension of the integrator is greater than or equal to 3, the linear
systems with input saturation cannot be stabilized by using the linear state feedback control
law, so the global asymptotic stabilization of the system cannot be attained. However, if
all eigenvalues of the open-loop system have negative real parts, the global asymptotic
stabilization for the addressed system can be guaranteed by designing a globally stable
boundary control law. Accordingly, the exponentially semiglobal stabilization problems have
been widely studied in [1–3] by designing a linear state feedback control law. By employing
the linear matrix inequality (LMI) technique, much work has been done in finding the
condition of invariant set and the estimation of attraction domain, see for example, [14–18].
Very recently, networked control systems (NCSs) have attracted considerable attention due
to their successful applications in a wide range of areas with the advantage of decreasing
the installation cost and implementation difficulties [19–27]. It should be pointed out that, in
most related literature concerning the actuator saturation problems, the networked systems
with actuator saturation and input additive disturbances have not been thoroughly studied
yet.

On the other hand, the study of the linear systems with actuator saturation also covers
the practical stabilization problem, that is, a controller is designed such that the trajectories
of closed-loop system can enter into an arbitrarily small prescribed neighborhood of the
origin in finite time and remain thereafter. The practical stabilization problems have been
gaining an increasing research interest, and many important results have been reported,
see, for example, [28–30]. To mention a few, the problems of global practical stabilization
for planar linear systems have been studied [28, 29] in the presence of actuator saturation
and input additive disturbances. By tuning the value of the parameter and designing a
parameterized linear state feedback law, sufficient conditions have been established such that
all trajectories of the closed-loop systems approach to an arbitrarily small neighborhood of the
origin in a finite time and remain thereafter. Moreover, the global stabilization problem has
also been studied in [30] for a class of second-order switched systems with input saturation.
It is worth mentioning that, because of the mathematical complexity and computational
difficulty, the corresponding results for general multidimensional systems with actuator
saturation and input additive perturbations have been not reported. By designing the low-
and-high-gain and the scheduled low-and-high-gain control laws, the semiglobal asymptotic
stabilization problems have been investigated in [31, 32] for general multidimensional
linear systems. The feedback control law has been designed to deal with the matched
uncertainties and input additive disturbances. However, strict assumptions on the input
additive uncertainties and disturbances have been imposed on the systems. It is, therefore,
our aim to address the multidimensional systems with general constraints on the input
additive disturbances.

Motivated by the above discussion, we aim to investigate the practical stabilization
problem for three-dimensional (multidimensional) system with actuator saturation and
input additive disturbances. By employing the Riccati equation approach, the linear state
feedback control law is designed to guarantee the practical stabilization for the system with
actuator saturation and time-invariant input additive disturbances. Moreover, the practical
stabilization of a general multidimensional systemwith actuator saturation and time-varying
input additive disturbances is studied, and the low-and-high-gain linear state feedback
control law is synthesized by using the Riccati equation approach. The main contributions
of this paper can be highlighted as follows: (1) the practical stabilization problem of three-
dimensional linear systems is investigated for the first time, which covers actuator saturation
as well as input additive disturbances; (2) the low-and-high-gain linear state feedback control
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law is designed formultidimensional systemwith actuator saturation and time-varying input
additive disturbances.

Notations. The notations in this paper are quite standard except where otherwise stated.
The superscript “T” stands for matrix transposition; R

n (Rn×m) denote, respectively, the n-
dimensional Euclidean space, the set of all n ×m matrices; the notation P > 0 (P ≥ 0) means
that matrix P is real symmetric and positive definite (positive semi-definite); 0 represents
a zero matrix with appropriate dimension, respectively; ‖ · ‖ denotes the Euclidean norm
of a vector and its induced norm of a matrix. In symmetric block matrices or long matrix
expressions, we use a star “∗” to represent a term that is induced by symmetry. Matrices,
if their dimensions are not explicitly stated, are assumed to be compatible for algebraic
operations.

2. The Case of Bounded Constant Input Disturbance

Consider the following three-dimensional systemwith actuator saturation and input additive
disturbance:

ẋ = Ax + Bσ(u + d), (2.1)

where x ∈ R
3 is the state, A and B are real matrices of appropriate dimensions, u ∈ R is the

control input, and d ∈ R is the disturbance.
The saturation function σ(·) is defined as

σ(u) = sign(u)min{1, |u|}, (2.2)

where the notation of “sign” denotes the signum function.
Before proceeding further, we make the following assumptions.

Assumption 2.1. The matrix pair (A,B) is controllable, and the eigenvalues of A have
nonpositive real parts.

Assumption 2.2. The input disturbance is bounded, that is, |d| ≤ D, where D is an arbitrarily
large positive scalar.

Based on Assumption 2.1, let B = [0 0 1]T , matrix A is in one of the following forms:

(a) A =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦, (b) A =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 0 −a

⎤
⎥⎥⎦, (c) A =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 −a 0

⎤
⎥⎥⎦,
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(d) A =

⎡
⎢⎢⎣

0 1 0

0 0 1

−a 0 0

⎤
⎥⎥⎦, (e) A =

⎡
⎢⎢⎣

0 1 0

0 0 1

−a −b 0

⎤
⎥⎥⎦,

(
f
)
A =

⎡
⎢⎢⎣

0 1 0

0 0 1

−a 0 −b

⎤
⎥⎥⎦,

(
g
)
A =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 −a −b

⎤
⎥⎥⎦, (h) A =

⎡
⎢⎢⎣

0 1 0

0 0 1

−a −b −c

⎤
⎥⎥⎦,

(2.3)

where a, b, and c are positive scalars.
These forms of the matrix pair (A,B) correspond to eight different cases for system

(2.1). In the following, the problem of practical stabilization for system (2.1) will be
investigated by designing the linear state feedback control law. To facilitate our development,
we introduce the following definition.

Definition 2.3. Define an ellipsoid Ω(P, ρ) as follows:

Ω
(
P, ρ

)
:=
{
x ∈ R

3, xTPx ≤ ρ
}
, (2.4)

where P ∈ R
3×3 is a symmetric positive definite matrix and ρ is a positive scalar.

For system (2.1), the control law under consideration is of the following structure:

u = −1
ε
BTPx, (2.5)

where ε ∈ (0, 1], and P is a symmetric positive definite matrix to be determined according to
the form of (A,B) defined in (2.3).

Lemma 2.4 (see [10]). Letting u, v ∈ R with |v| ≤ 1, E1 = 0 and E2 = 1, one has

σ(u) ∈ co{u, v} = co
{
Eiu + E−

i v, i = 1, 2
}
, (2.6)

where “co” denotes the convex hull and E−
i = 1 − Ei.

Theorem 2.5. Consider the system (2.1) with (A,B) defined in (2.3) and the control law (2.5).

(i) If A satisfies case (g) with b2 > 2a or case (h) with bc > a in (2.3), then for any given
arbitrarily small set χ0 ⊂ R

3 containing origin in its interior and for any positive scalarD,
there always exists ε∗ ∈ (0, 1] such that, for any ε ∈ (0, ε∗], all trajectories of the closed-loop
system will enter into the set χ0 in finite time and remain thereafter.

(ii) If A satisfies cases (a) or (b) or (c) in (2.3), when the initial state is in some bounded
set, then for any given arbitrarily small set χ0 ⊂ R

3 containing origin in its interior and
any positive number D, there always exists ε∗ ∈ (0, 1], such that, for any ε ∈ (0, ε∗], all
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trajectories of the closed-loop system will enter into the set χ0 in finite time and remain
thereafter.

(iii) If A satisfies cases (d) or (e) or (f) in (2.3), then all trajectories of the closed-loop system
are oscillatory.

Proof. Firstly, let us prove (i).
(i1) Consider the following system

ẋ =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 −a −b

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣
0

0

1

⎤
⎥⎥⎦ sat(u + d), (2.7)

that is, A satisfies the case (g) with b2 > 2a in (2.3).
Let P be the solution to the following algebra Riccati equation (ARE):

ATP + PA − PBBTP = −

⎡
⎢⎢⎣
a2 0 0

0 b2 − 2a 0

0 0 1

⎤
⎥⎥⎦, (2.8)

we have

P =

⎡
⎢⎢⎣
a2 + ab ab + a a

∗ b2 + b b

∗ ∗ 1

⎤
⎥⎥⎦. (2.9)

Define

Ω+ :=
{
x ∈ R

3,
1
ε
BTPx ≥ 1 +D

}
,

Ω− :=
{
x ∈ R

3,
1
ε
BTPx ≤ −1 −D

}
,

Ω0 :=
{
x ∈ R

3,

∣∣∣∣
1
ε
BTPx

∣∣∣∣ < 1 +D

}
.

(2.10)

For any x ∈ Ω+, we have BTPx ≥ ε(1 +D), that is, ax1 + bx2 + x3 ≥ ε(1 +D). From (2.7), we
obtain

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −ax2 − bx3 − 1.
(2.11)

Furthermore, there is aẋ1 + bẋ2 + ẋ3 = −1. It means that ax1 + bx2 + x3 will decrease in a
constant speed and will be less than ε(1 + D) in finite time. Hence, any trajectory departing
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from x ∈ Ω+ will enter into the interior ofΩ0 in finite time. Similarly, any trajectory departing
from x ∈ Ω− will enter into Ω0 in finite time.

We choose the Lyapunov function V (x) = xTPx with P > 0 being the solution to ARE
(2.8). For any x ∈ Ω0, we have |(1/ε(1 +D))BTPx| < 1. It follows from Lemma 2.4 that

sat
{
1
ε
BTPx − d

}
∈ co

{
Ei

(
1
ε
BTPx − d

)
+ E−

i

1
ε(1 +D)

BTPx, i = 1, 2
}
. (2.12)

Noticing that ε > 0 is a sufficiently small scalar, we have

V̇ (x) = xTP

[
Ax − B sat

(
1
ε
xTPx − d

)]
+
[
Ax − B sat

(
1
ε
xTPx − d

)]T
Px

≤ max
i∈{1,2}

{
xTP

[
Ax − BEi

(
1
ε
BTPx − d

)
+ BE−

i

1
ε(1 +D)

BTPx

]

+
[
Ax − BEi

(
1
ε
BTPx − d

)
+ BE−

i

1
ε(1 +D)

BTPx

]T
Px

}

≤ xT

[
ATP + PA − 2D

ε(1 +D)
PBBTP

]
x + 2xTPBd

≤ xT
[
ATP + PA − PBBTP

]
x + 2εD(1 +D)

= −xT

⎡
⎢⎢⎣
a2 0 0

0 b2 − 2a 0

0 0 1

⎤
⎥⎥⎦x + 2εD(1 +D).

(2.13)

Define

Ω7
d :=

⎧⎪⎪⎨
⎪⎪⎩
x ∈ R

3, xT

⎡
⎢⎢⎣
a2 0 0

0 b2 − 2a 0

0 0 1

⎤
⎥⎥⎦x ≤ 2εD(1 +D), b2 > 2a

⎫⎪⎪⎬
⎪⎪⎭
, (2.14)

then there exists a scalar ρ > 0 such that Ω(P, ρ) is the smallest ellipsoid satisfying Ω(P, ρ) ∩
Ω0 ⊃ Ω7

d ∩ Ω0. Hence, we have V̇ (x) < 0 for all x ∈ Ω(P, ρ) ∩ Ω0, and Ω(P, ρ) ∩ Ω0 is an
invariant set. Hence, any trajectory of the closed-loop system departing from Ω(P, ρ) ∩ Ω0

will enter into Ω(P, ρ) ∩ Ω0 in finite time and remain thereafter. If ε → 0, then Ω7
d
tends to

origin. Therefore, Ω(P, ρ) ∩Ω0 approaches to the origin.
(i2) Assuming that matrixA satisfies the case (h) and bc > a, then the system (2.1) can

be written as follows:

ẋ =

⎡
⎢⎢⎣

0 1 0

0 0 1

−a −b −c

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣
0

0

1

⎤
⎥⎥⎦ sat(u + d). (2.15)
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It follows from bc > a that A is stable. Then there exists P > 0 satisfying

ATP + PA = −I3. (2.16)

When x ∈ Ω+, noting that BTPx ≥ ε(1 +D), we have sat(u + d) = −1 and

V̇ (x) = xT
(
PA +ATP

)
x − 2xTPB ≤ −xTx − 2ε(1 +D) < 0. (2.17)

Similarly, for any x ∈ Ω−, it is easy to obtain V̇ (x) < 0.
When x ∈ Ω0, considering |(1/ε(1 + D))BTPx| < 1 and noticing that ε > 0 is a

sufficiently small scalar, we have

V̇ (x) = xT
(
PA +ATP

)
x − 2

ε
xTPBBTPx + 2εD(1 +D)

< −xTx + 2εD(1 +D).
(2.18)

Set

Ω8
d :=

{
x ∈ R

3, ‖x‖2 ≤ 2εD(1 +D)
}
. (2.19)

Then there exists a scalar ρ > 0 such that Ω(P, ρ) is the smallest ellipsoid which satisfies
Ω(P, ρ) ∩ Ω0 ⊃ Ω8

d ∩ Ω0. Now, we can conclude that V̇ (x) < 0 holds for all x /∈ Ω(P, ρ) ∩ Ω0.
Therefore, all trajectories will enter intoΩ(P, ρ)∩Ω0 in finite time. When ε → 0,Ω(P, ρ)∩Ω0

approaches to the origin.
Secondly, let us prove (ii).
(ii1) Consider the following system:

ẋ =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣
0

0

1

⎤
⎥⎥⎦ sat(u + d), (2.20)

that is, A satisfies the case (a).
In this case, we choose the matrix P to be the solution to the following ARE:

ATP + PA − 2
ε(1 +D)

PBBTP = − 1
ε(1 +D)

⎡
⎢⎢⎢⎣

1 0 0

0 2 0

0 0
1 − 8ε(1 +D)

4

⎤
⎥⎥⎥⎦, (2.21)
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where 0 < ε < 1/(8(1 +D)). Then, we obtain

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2

ε(1 +D)
1

2ε(1 +D)

√
2
2

∗
√
2
2

(√
1 − ε(1 +D)
ε(1 +D)

)
1

∗ ∗
√
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.22)

For any x ∈ Ω+, BTPx ≥ ε(1 +D) and sat(u + d) = −1. The system (2.20) reduces to

ẋ =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦x −

⎡
⎢⎢⎣
0

0

1

⎤
⎥⎥⎦. (2.23)

Hence, the solution to (2.23) can be described as:

x1 = −1
6
t3 +

1
2
x03t

2 + x02t + x01,

x2 = −1
2
t2 + x03t + x02,

x3 = −t + x03,

(2.24)

where x(0) = [x01 x02 x03]
T is the initial state.

By noting BTPx ≥ ε(1+D), we have (
√
2/2)x1+x2+(

√
2/4)x3 ≥ ε(1+D). Furthermore,

we obtain

BTPẋ =
√
2
2

ẋ1 + ẋ2 +
√
2
4

ẋ3

= −
√
2
4

t2 −
(
1 −

√
2
2

x03

)
t −

√
2
4

+ x03 +
√
2
2

x02.

(2.25)

If BTPẋ < 0, then any trajectory departing from Ω+ will enter into Ω0 in finite time. Let

√
2
4

t2 +

(
1 −

√
2
2

x03

)
t +

√
2
4

− x03 −
√
2
2

x02 > 0. (2.26)

For t > 0, the discriminant of quadratic inequality is less than zero, then it is accessible to the
conditions of the initial point set.
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Define

X+
1 :=

{
x =

[
x1 x2 x3

]T ∈ Ω+ : x1 ∈ R,
1
2
x2
3 + x2 +

1
2
< 0

}
, (2.27)

then any trajectory departed from X+
1 will enter into Ω0 in finite time and remain thereafter.

Similarly, when x ∈ Ω−, a set of initial points can also be found such that any trajectory
departing from the set will enter into Ω0 in finite time and remain thereafter. After some
algebraic manipulations, the initial set of points can be expressed as follows:

X−
1 :=

{
x =

[
x1 x2 x3

]T ∈ Ω− : x1 ∈ R,
1
2
x2
3 − x2 +

1
2
< 0

}
. (2.28)

For any x ∈ Ω0, |(1/ε(1 +D))BTPx| < 1, we have

V̇ (x) ≤ xT

[
PA +ATP − 2

ε(1 +D)
PBBTP

]
x + 2εD(1 +D)

− 1
ε(1 +D)

xT

⎡
⎢⎢⎢⎣

1 0 0

0 1 0

0 0
1 − 8ε(1 +D)

4

⎤
⎥⎥⎥⎦x + 2εD(1 +D).

(2.29)

Let

Ω1
d :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ R

3, xT

⎡
⎢⎢⎢⎣

1 0 0

0 1 0

0 0
1 − 8ε(1 +D)

4

⎤
⎥⎥⎥⎦x ≤ 2ε2D(1 +D)2, ε <

1
8(1 +D)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (2.30)

Then there exists a scalar ρ > 0 such that Ω(P, ρ) is the smallest ellipsoid which satisfies
Ω(P, ρ) ∩ Ω0 ⊃ Ω1

d
∩ Ω0. Now, we can conclude that V̇ (x) < 0 holds for all x ∈ Ω(P, ρ) ∩ Ω0.

So Ω(P, ρ) ∩Ω0 is an invariant set. For the initial state x /∈ Ω(P, ρ) ∩Ω0, any trajectory of the
system departing from x ∈ X+

1 ∪X−
1 ∪ (Ω0 \Ω(P, ρ))will enter into Ω(P, ρ) ∩Ω0 in finite time

and remain thereafter. When ε → 0, Ω(P, ρ) ∩Ω0 approaches to the origin.
(ii2) Consider the following system:

ẋ =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 0 −a

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣
0

0

1

⎤
⎥⎥⎦ sat(u + d), (2.31)

that is, A satisfies the case (b).
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In this case, we choose the matrix P to be the solution to the following ARE:

ATP + PA − 2
ε
PBBTP = −2

ε

⎡
⎢⎢⎢⎢⎢⎣

1
16

a4 0 0

0
1
2
a2 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦
. (2.32)

Then, we obtain

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

a3

2ε
a2

2ε
1
4
a2

∗ 2
ε
a − 1

4
a2 a

∗ ∗ 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.33)

where, if a > 6, then ε < 6/a, and, if 0 < a ≤ 6, then ε ∈ (0, 1].
Define

X+
2 :=

{
x =

[
x1 x2 x3

]T ∈ Ω+ : x1 ∈ R, x2 ≤ 4
a2

, x3 ≥ − 1
a

}
,

X−
2 :=

{
x =

[
x1 x2 x3

]T ∈ Ω− : x1 ∈ R, x2 ≥ 4
a2

, x3 ≤ − 1
a

}
,

Ω2
d :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
x ∈ R

3, xT

⎡
⎢⎢⎢⎢⎢⎣

1
16

a4 0 0

0
1
2
a2 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦
x ≤ ε2D(1 +D), ε <

6
a
, a > 6, ε ∈ (0, 1], 0 < a ≤ 6

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

(2.34)

Then there exists a scalar ρ > 0 such that Ω(P, ρ) is the smallest ellipsoid which satisfies
Ω(P, ρ)∩Ω0 ⊃ Ω2

d
∩Ω0. Therefore, V̇ (x) < 0 holds for all x ∈ Ω(P, ρ)∩Ω0. HenceΩ(P, ρ)∩Ω0

is an invariant set. For the initial state x outside Ω(P, ρ) ∩ Ω0, any trajectory departing from
x ∈ X+

2 ∪ X−
2 ∪ (Ω0 \Ω(P, ρ)) will enter into Ω(P, ρ) ∩Ω0 in finite time and remain thereafter.

Moreover, when ε → 0, Ω(P, ρ) ∩Ω0 approaches to the origin.
(ii3) Consider the following system:

ẋ =

⎡
⎢⎢⎣
0 1 0

0 0 1

0 −a 0

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣
0

0

1

⎤
⎥⎥⎦ sat(u + d), (2.35)

that is, A satisfies the case (c).
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In this case, we choose the matrix P to be the solution to the following ARE:

ATP + PA − 2
ε
PBBTP = −1

ε

⎡
⎢⎢⎢⎣

2a2 0 0

0
1 − 6ε2a

2ε3
0

0 0 1

⎤
⎥⎥⎥⎦. (2.36)

Then, we obtain

P =

⎡
⎢⎢⎢⎢⎣

a2 +
a

ε2
2a
ε

a

∗ 1
ε2

1
2ε

∗ ∗ 1

⎤
⎥⎥⎥⎥⎦
, (2.37)

where, if a > 1/6, then ε <
√
(1/6)a, and, if 0 < a ≤ 1/6, then ε ∈ (0, 1].

Set

X+
3 :=

{
x =

[
x1 x2 x3

]T ∈ Ω+ : x1 ∈ R,
√
ax2 + x3 < 2ε − 1√

a

}
,

X−
3 :=

{
x =

[
x1 x2 x3

]T ∈ Ω− : x1 ∈ R,
√
ax2 + x3 < 2ε +

1√
a

}
,

Ω3
d :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ R

3, xT

⎡
⎢⎢⎢⎣

2a2 0 0

0
1 − 6ε2a

2ε3
0

0 0 1

⎤
⎥⎥⎥⎦x ≤ 2ε2D(1 +D) ,

ε <

√
1
6
a, a >

1
6
, ε ∈ (0, 1], 0 < a ≤ 1

6

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(2.38)

Then, there exists a scalar ρ > 0 such that Ω(P, ρ) is the smallest ellipsoid which satisfies
Ω(P, ρ)∩Ω0 ⊃ Ω2

d∩Ω0. Therefore, V̇ (x) < 0 is true for all x ∈ Ω(P, ρ)∩Ω0. Hence,Ω(P, ρ)∩Ω0

is an invariant set. For the initial state x /∈ Ω(P, ρ)∩ Ω0, any trajectory of the system departing
from x ∈ X+

3∪X−
3∪(Ω0\Ω(P, ρ))will enter intoΩ(P, ρ)∩Ω0 in finite time and remain thereafter.

Moreover, when ε → 0, Ω(P, ρ) ∩Ω0 approaches to the origin.
Finally, let us prove (iii).
Assuming that matrix A satisfies any case among (d)–(f), when the actuator is

saturated, all the system trajectories departed from Ω+ and Ω− are oscillatory, that is, all
the trajectories cannot back into any arbitrarily small set containing the origin in finite time.
When the actuator is unsaturated, that is, x ∈ Ω0. The positive definite symmetric matrix
P satisfying certain ARE can be obtained. When ε → 0, there exists a small ellipsoid Ωi

d

which contains origin as its interior and approaches to the origin such that V̇ (x) < 0 for all
x ∈ Ω0 \Ωi

d
. Furthermore, there exists ρ > 0 such that Ω(P, ρ) is the smallest ellipsoid which
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satisfies Ω(P, ρ) ∩ Ω0 ⊃ Ωi
d ∩ Ω0, that is, x /∈ Ω(P, ρ) ∩ Ω0, the trajectory only starting from

Ω0 \Ω(P, ρ) can enter into Ω(P, ρ) ∩Ω0 in finite time.
Based on (i)–(iii), the proof of this theorem is now complete.

Remark 2.6. It should be pointed out that, because of the mathematical complexity and
computational difficulty, almost all papers concerning the actuator saturation and input
additive disturbances have considered the two-dimensional systems. In this paper, we make
the first attempt to investigate the practical stabilization problem for three-dimensional
system with actuator saturation and input additive disturbances. To the best of our
knowledge, the research topic addressed in this paper is new and meaningful. The above
attempts distinguish our research results from the existing ones.

Remark 2.7. The sufficient conditions are established in Theorem 2.5 for three-dimensional
system with actuator saturation and input additive disturbance. By applying the Riccati
equation approach, the linear state feedback control law is designed such that the semiglobal
practical stabilization can be guaranteed. It should be pointed out that the simultaneous
consideration of actuator saturation and input additive disturbance leads to essential
difficulties in the technical development, and the corresponding derivations are nontrivial.
More specifically, some constructive strategies are introduced to facilitate the derivation of
the main results.

3. The Case of Time-Varying Uncertain Input Disturbance

In this section, we investigate a more general class of systems with actuator saturation and
time-varying disturbance input. A low-and-high-gain is designed to guarantee the global or
semiglobal practical stabilization for the closed-loop systems.

Consider the following linear system with actuator saturation and time-varying
disturbance input

ẋ = Ax + Bσ
(
u + g(x, t)

)
, (3.1)

where x ∈ R
n is the state vector, u ∈ R

m is the control input, g(x, t) : R
n ×R → R

m represents
the time-varying uncertainty, and A and B are known real matrices with appropriate
dimensions. σ(·) : R

m → R
m is the standard saturated function, that is,

σ(s) =
[
σ1(s1) σ2(s2) · · · σm(sm)

]T
, σi(si) = sign(si)min{1, |si|}, s ∈ R

m. (3.2)

Before proceeding further, we make the following assumptions.

Assumption 3.1. The matrix pair (A,B) is asymptotically null controllable with bounded
control, that is, all the eigenvalues of A are in the left half plane (LHP) and (A,B) is
stabilizable.

Assumption 3.2. The uncertain element g(x, t) is piecewise continuous in t and locally
Lipschitz in x satisfying

∥∥g(x, t)∥∥ ≤ g0(‖x‖) +D0, ∀(x, t) ∈ R
n × R

+, (3.3)
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where D0 is a known positive scalar, and the known function g0(·) : R
+ → R

+ is local
Lipschitz and satisfies g0(‖x‖) ≤ L‖x‖ with L > 0 being a constant.

Problem 1. For the system (3.1), the purpose of this section is to design a state feedback control
law u = Fx such that the following requirements are satisfied.

(1) If D0 = 0, the closed-loop system is globally asymptotically stable at the point of
x = 0.

(2) If D0 > 0, the trajectories of the system enter into a given set which contains the
origin as an interior point and remain thereafter.

Remark 3.3. As discussed in [31], corresponding to the specific values forD0 and g0, Problem
1 refers to different names. Specifically, when g0 = 0, D0 = 0, it is called the globally
asymptotical stabilization by state feedback problem. When g0 = 0, D0 > 0, it is called the
global disturbance rejection by state feedback problem. When g0 /= 0, D0 = 0, it is called the
robust globally asymptotical stabilization by state feedback problem. When g0 /= 0, D0 > 0, it
is called the robust global disturbance rejection by state feedback problem.

For Problem 1, the design of low-and-high gain state feedback control law is composed
of three steps. In Steps 1 and 2, the low-gain and high-gain state feedback control law is
designed, respectively. Accordingly, the low-and-high-gain control law is designed in Step 3.

Step 1 (low-gain state feedback design). Let Q : (0, 1] → R
n×n be a continuously

differentiable and strictly increasing function such that Q(ε) is symmetric positive definite
for each ε ∈ (0, 1] and lim

ε→ 0
Q(ε) = 0. Consider the following ARE:

ATP(ε) + P(ε)A − P(ε)BBTP(ε) = −Q(ε). (3.4)

Then, the following lemma is obtained.

Lemma 3.4 (see [32]). Let Assumption 2.1 be satisfied, then, for all ε ∈ (0, 1], there exists a unique
symmetric positive definite matrix P(ε) > 0 which solves the ARE (3.4) and limε→ 0P(ε) = 0.

Now, we construct the low-gain state feedback law as follows:

uL = −BTP(ε)x, (3.5)

where P(ε) is a symmetric positive definite solution to ARE (3.4).
Based on Lemma 3.4, we can conclude that the above low-gain state feedback control

law can be arbitrarily small when ε is arbitrarily small.

Step 2 (high-gain state feedback design). We design the high-gain state feedback control law
as follows:

uH = −ρBTP(ε)x, (3.6)

where ρ ≥ 0 is called high-gain parameter, ρ = ρ0(1 + L +D0)
2/λmin(Q(ε)) with ρ0 ≥ 0 being

an adjustable constant, L and D0 are defined in Assumption 3.2.
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Step 3 (low-and-high-gain state feedback design). Taking the low-gain and high-gain state
feedback control law into account, the low-and-high-gain state feedback control law is
constructed as follows:

uLH = −(1 + ρ
)
BTP(ε)x. (3.7)

Concluded from [32], the state feedback control law (3.7) is one of the optimal control
for the linear system (3.1)without any saturation constraint. The following theorem presents
a criterion about the solution to Problem 1.

Theorem 3.5. Let Assumption 3.1 be true. There exist positive scalars ε and ρ∗0 such that, for all ε ∈
(0, ε∗] and ρ0 ≥ ρ∗0, the low-and-high-gain state feedback control law (3.7) is a solution to Problem1.

Proof. To begin with, the cases of saturation and unsaturation are discussed respectively. For
convenience, set P(ε) = P and Q(ε) = Q.

Firstly, we choose the Lyapunov function V (x) = xTPx. By calculating the derivative
of V (k) along the trajectory of closed-loop system, we have

V̇ (x) = xT
(
ATP + PA

)
x + 2xTPBσ

(
−(1 + ρ

)
BTPx + g(x, t)

)

= −xTQx + xTPBBTPx + 2xTPBσ
(
−(1 + ρ

)
BTPx + g(x, t)

)

≤ −xTQx + 2xTPBBTPx + 2xTPBσ
(
−(1 + ρ

)
BTPx + g(x, t)

)
.

(3.8)

(1) The actuator is with saturation. Here, it is proved only when (BTPx)i < 0, where
(·)i denotes the ith element of vector (·).

When 1 + ρ ≥ (−(1 + ρ)BTPx)i ≥ 1 + L‖x‖ +D0, we arrive at

(
−(1 + ρ)BTPx + g(x, t)

)
i
≥ 1, ∀(x, t) ∈ R

n × R
+,

σi

(
−(1 + ρ

)
BTPx + g(x, t)

)
= 1, i = 1, 2, . . . , m, ∀(x, t) ∈ R

n × R
+,

(3.9)

−1 ≤
(
BTPx

)
i
≤ −1 + L‖x‖ +D0

1 + ρ
≤ − 1

1 + ρ
< 0. (3.10)

Thus, we get

(
xTPB

)
i

((
BTPx

)
i
+ 1

)
≤ 0. (3.11)

Hence,

xTPBBTPx + 2xTPBH ≤ 2
m∑
i=1

(
xTPB

)
i

((
BTPx

)
i
+ 1

)
< 0, (3.12)

where H = [1 · · · 1]T .
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It follows from (3.8) that

V̇ (x) = −xTQx + xTPBBTPx + 2
m∑
i=1

(
xTPB

)
i

≤ −xTQx + 2
m∑
i=1

(
xTPB

)
i

((
BTPx

)
i
+ 1

)

< −xTQx < 0.

(3.13)

If (BTPx)i < −1, for each (x, t) ∈ R
n×R

+, it can be easily seen that (−(1+ρ)BTPx+g(x, t))i ≥ 1,
that is, σi(−(1 + ρ)BTPx + g(x, t)) = 1(i = 1, 2, . . . , m). Then, we have

V̇ (x) = xT
(
ATP + PA

)
x + 2

m∑
i=1

(
xTPB

)
i
≤ xT

(
ATP + PA

)
x − 2n < 0. (3.14)

According to Assumption 3.1, we have ATP + PA < 0 for any P > 0.
When −(1 + ρ) ≤ (−(1 + ρ)BTPx)i ≤ −1 − L‖x‖ −D0, we obtain

(
−(1 + ρ

)
BTPx + g(x, t)

)
i
≤ −1, ∀(x, t) ∈ R

n × R
+,

σi

(
−(1 + ρ

)
BTPx + g(x, t)

)
= 1, i = 1, 2, . . . , m, ∀(x, t) ∈ R

n × R
+,

1 ≥
(
BTPx

)
i
≥ 1 + L‖x‖ +D0

1 + ρ
≥ 1

1 + ρ
> 0.

(3.15)

That is (BTPx)i > 0. Along the same line of the above proof, we can discuss the cases
0 < (BTPx)i ≤ 1 and (BTPx)i > 1, respectively. Hence, we can conclude that V̇ (x) < 0 for
(BTPx)i > 0.

(2) The actuator is not saturated. When |(−(1 + ρ)BTPx)i + (g(x, t))i| < 1, according to
(3.8), we have

V̇ (x) = −xTQx − 2ρxTPBBTPx + 2xTPBg(x, t)

≤ −xTQx + 2
m∑
i=1

(
g(x, t)

)
i − ρ

(
BTPx

)
i

(
BTPx

)
i
.

(3.16)
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Next, we discuss the following two cases.
If |(ρBTPx)i| ≥ |gi|, by noting (BTPx)i(−ρ(BTPx)i + (g(x, t))i) < 0, we obtain

V̇ (x) = −xTQx − 2xTPB
(
−(1 + ρ

)
BTPx + g(x, t) + BTPx

)

≤ −xTQx + 2
m∑
i=1

(
−ρ
(
BTPx

)
i
+
(
g(x, t)

)
i

)

≤ −xTQx

< 0.

(3.17)

If |(ρBTPx)i| ≤ |gi|, then

V̇ (x) = −xTQx + 2xTPBg(x, t)

≤ −xTQx + 2
m∑
i=1

∣∣gi
∣∣2
ρ

≤ −xTQx + 2
(L‖x‖ +D0)

ρ

≤ −
(
λmin(Q) − 4L2

ρ

)
‖x‖2 + 4D2

0

ρ
.

(3.18)

Suppose

W0 :=

{
x ∈ R

n : ‖x‖2 ≤ 4D2
0

ρ0(1 + L +D0)2 − 4L2

}
. (3.19)

Taking ρ∗ = 4, then all trajectories will enter intoW0 in finite time and remain thereafter for all
ρ0 ≥ ρ∗. Here, W0 is an arbitrarily small set including the origin point, and ρ0 is a sufficiently
large scalar.

Specifically, it follows from D0 = 0 that V̇ (x) < 0, that is, x = 0 is globally
asymptotically stable. To this end, the proof of this theorem is complete.

Remark 3.6. In this section, the practical stabilization problem is investigated for a general
multidimensional system. From a practical point of view, it is more significant to consider
the high-dimensional systems. It is worth mentioning that the system under consideration is
comprehensive that includes the actuator saturation and the time-varying input disturbances.
By using the Riccati equation approach, the low-and-high-gain state feedback control law is
designed such that the global or semiglobal practical stabilization for the multidimensional
system can be guaranteed. On the other hand, we are now researching into a method for the
system with uncertainties, time-delay, and/or input disturbance in more general cases. The
corresponding results will appear in the near future.
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4. Conclusions

In this paper, we have made an attempt to investigate the practical stabilization problem for
a class of system with actuator saturation and input additive disturbances. For the case of the
input additive disturbance being bounded constant, the three-dimensional system has been
studied where the system matrices satisfy a class of the controllability canonical form. Eight
different forms of the system matrices have been discussed. Subsequently, by applying the
Riccati equation approach and designing the linear state feedback control law, the sufficient
conditions of the semiglobal practical stabilization or oscillation for the addressed systems
have been established. For the case when the input additive disturbances are time-varying
functions, by using of the Riccati equation approach as well as combining the low-gain linear
state feedback and high-gain linear state feedback, a low-high-gain linear state feedback
control law has been designed such that the global or semiglobal practical stabilization for
a general multidimensional system with actuator saturation can be guaranteed. One of the
future research topics would be the extension of the main results obtained in this paper to
networked control systems [27, 33–36].
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