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The convergence of model-free adaptive control (MFAC) algorithm can be guaranteed when
the system is subject to measurement data dropout. The system output convergent speed gets
slower as dropout rate increases. This paper proposes a MFAC algorithm with data compensation.
The missing data is first estimated using the dynamical linearization method, and then the
estimated value is introduced to update control input. The convergence analysis of the proposed
MFAC algorithm is given, and the effectiveness is also validated by simulations. It is shown that
the proposed algorithm can compensate the effect of the data dropout, and the better output
performance can be obtained.

1. Introduction

Model free adaptive control (MFAC) is an attractive technique which has gained a large
amount of interest in the recent years [1]. The key feature of this technique is to design
controller only using the I/O data of the controlled system and can realize the adaptive
control both in parametric and structural manner [2–4]. Instead of identifying a, more or
less, known global nonlinear model of the plant, a series of equivalent dynamical linearized
time varying models is built along the dynamic operation points of the controlled plant
using a novel concept called pseudopartial derivative (PPD), which is estimated merely
using the I/O data of the controlled plant. Since the model is valid only for a small domain
around the operation point, the PPD estimation algorithm has to be repeated at each time
instant. Based on the equivalent dynamical linearized model, the analysis and design for
the MAFC scheme then should be implemented. The dynamic linearization method includes



2 Mathematical Problems in Engineering

the compacted form dynamic linearization (CFDL), partial form dynamic linearization
(PFDL), and full form dynamic linearization (FFDL). Up to now, this technique has been
extensively studied with significant progress in both theoretical aspects and applications
[5–12].

When MFAC is used in practical systems, robustness is an important aspect that
should be considered. In traditional model-based control theory, robustness refers to the
ability to deal with unknown uncertainties or unmodeled dynamics of the plants. However,
the unmodeled dynamics has no meanings in MFAC because its controller designs without
any model information. In [13], the robustness of model-free control algorithms proposed
should focus on the influences of unknown disturbances or data dropouts, and then the
robustness of MFAC with disturbance or data dropout is discussed in [13–17]. When the
MFAC scheme is implemented via an NCS [16, 17], it includes plant, controller, actuators,
sensors, and a network that connects all these components. In this case, missing data is usual
due to a failing sensor, actuator, or network failure, resulting in what it is called intermittent
MFAC. Thus, when it is said intermittent MFAC, two different kinds of data dropouts are
considered. The first one occurs when the control input is updated. During the control signal
translation through the network, the signal may miss by actuator failure, network failure
or data collision. The second data dropout is due to the measurement data loss during
the signal transfer from the sensor to the controller, which is caused by sensor or network
failure.

It is shown that theMFAC is still convergent as long as not all the output measurement
data is lost [16, 17]. Compared with existing intermittent theories with having critical
data dropout rates [18–23], the intermittent MFAC has no critical data dropout rate.
However, the output convergent speed gets slower as dropout rate increases, and the
tracking performance will be destroyed when data dropout is serious. In this paper, we
propose a robust MFAC algorithm with data dropout compensation. The algorithm first
estimated the missing measurement output, and then the estimated value is introduced
to the control algorithm. The convergence of the proposed MFAC algorithm is given, and
effectiveness is also supported by simulations. The result shows that the proposed algorithm
can compensate the effect of the data dropout, and the better output performance can be
obtained.

The paper is organized as follows. In Section 2, theMFAC algorithmwith data dropout
compensation is given, and then the convergence of the proposed algorithm is analyzed
in Section 3. In Section 4, a numerical example is given to validate the effectiveness of the
algorithm. Conclusions are given in Section 5.

2. Problem Formulation

For the convenience of understanding, the MFAC algorithm is first given. Considering the
following discrete-time SISO nonlinear system

y(k + 1) = f
(
y(k), . . . , y

(
k − ny

)
, u(k), . . . , u(k − nu)

)
, (2.1)

where ny, nu are the unknown orders of output y(k) and input u(k), respectively, and f(·) is
an unknown nonlinear function.
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The following assumptions are made about the controlled plant:

(A1) the partial derivative of f(·)with respect to control input u(k) is continuous;

(A2) the system (2.1) is generalized Lipschitz , that is, |Δy(k + 1)| ≤ b|Δu(k)| for any k
and Δu(k)/= 0 with Δy(k + 1) = y(k + 1) − y(k),Δu(k) = u(k) − u(k − 1), and b is a
positive constant.

Remark 2.1. These assumptions of the system are reasonable and acceptable from a practical
viewpoint. Assumption (A1) is a typical condition of control system design for general
nonlinear system. Assumption (A2) poses a limitation on the rate of change of the system
output permissible before the control law to be formulated is applicable. From the “energy”
point of view, the energy rate increasing inside a system cannot go to infinite if the energy
rate of change of input is in a finite altitude. For instance, in a water tank control system, since
the change of the pump flow of water tank is bounded, the liquid level change of the tank
caused by the pump flow cannot go to infinity. There exists a maximum ratio factor between
the liquid level and the pump flow, just as the positive constant b defined in assumption
(A2).

The following theorem illustrates that the general discrete time nonlinear system satis-
fying assumptions (A1) and (A2) can be transformed into an equivalent dynamical linearized
model, called CFDL model.

Theorem 2.2. For the nonlinear system (2.1) satisfying assumptions (A1) and (A2), then there must
exist a φ(k), called pseudo-partial derivative (PPD), such that if Δu(k)/= 0, the system (2.1) can be
described as the following CFDL model:

Δy(k + 1) = φ(k)Δu(k), (2.2)

and |φ(k)| ≤ b.

Proof. Equation (2.1) gives

Δy(k + 1) = f
(
y(k), . . . , y

(
k − ny

)
, u(k), . . . , u(k − nu)

)

− f
(
y(k − 1), . . . , y

(
k − ny − 1

)
, u(k − 1), u(k − 2), . . . , u(k − nu − 1)

)

= f
(
y(k), . . . , y

(
k − ny

)
, u(k), . . . , u(k − nu)

)

− f
(
y(k − 1), . . . , y

(
k − ny − 1

)
, u(k − 1), u(k − 1), . . . , u(k − nu − 1)

)

+ f
(
y(k − 1), . . . , y

(
k − ny − 1

)
, u(k − 1), u(k − 1), . . . , u(k − nu − 1)

)

− f
(
y(k − 1), . . . , y

(
k − ny − 1

)
, u(k − 1), u(k − 2), . . . , u(k − nu − 1)

)
.

(2.3)

Using assumption (A2) and the mean value theorem, (2.3) gives

Δy(k + 1) =
∂f∗

∂u(k)
Δu(k) + ζ(k), (2.4)
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where ∂f∗/∂u(k) denotes the value of gradient vector of f(·)with respect to u(k), and

ζ(k) = f
(
y(k − 1), . . . , y

(
k − ny − 1

)
, u(k − 1), u(k − 1), . . . , u(k − nu − 1)

)

− f
(
y(k − 1), . . . , y

(
k − ny − 1

)
, u(k − 1), . . . , u(k − nu − 1)

)
.

(2.5)

Considering the following equation:

ζ(k) = η(k)Δu(k), (2.6)

where η(k) is a variable. Since the condition Δu(k)/= 0, (2.6) must have a solution η(k). Let

φ(k) =
∂f∗

∂u(k)
+ η(k), (2.7)

then (2.3) can be written as Δy(k + 1) = φ(k)Δu(k).

Remark 2.3. Equation (2.2) is a dynamic linear system with slowly time-varying parameter
if Δu(k)/= 0 and Δu(k) is not too large. Therefore, when it is used for the control system
design, the condition Δu(k)/= 0 and not too large altitude of Δu(k) should be guaranteed. In
other words, some free adjustable parameter should be added in the control input criterion
function to keep the change rate of control input signal not too large.

Remark 2.4. Theorem 2.2 requires that |Δu(k)|/= 0 is satisfied for every k. As a matter of fact, if
the caseΔu(k) = 0 comes forth at certain sampling time, the new dynamic linearization can be
applied after shifting σk ∈ Z+ time instants till u(k)/=u(k − σk) holds. In this case, the system
(2.1) can be transformed into the CFDLmodel as y(k+1)−y(k−σk+1) = φ(k)(u(k)−u(k−σk)).
The proof of the conclusion is similar to the proof of Theorem 2.2.

Rewritten (2.2) as

y(k + 1) = y(k) + φ(k)Δu(k). (2.8)

For the control law algorithm, a weighted one-step-ahead control input cost function
is adopted, and given by

J(u(k)) =
∣∣y∗(k + 1) − y(k + 1)

∣∣2 + λ|u(k) − u(k − 1)|2, (2.9)

where y∗(k + 1) is the expected system output signal, and k is a positive weighted constant.
Substituting (2.8) into (2.9), solving the equation ∂J(u(k))/∂u(k) = 0 gives the control

law as follows:

u(k) = u(k − 1) +
ρφ(k)

λ +
∣∣φ(k)

∣∣2
(
y∗(k + 1) − y(k)

)
, (2.10)

where ρ is the step factor.
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The objective function for parameter estimation is used as

J
(
φ(k)

)
=
∣
∣y(k) − y(k − 1) − φ(k)Δu(k − 1)

∣
∣2 + μ

∣
∣
∣φ(k) − φ̂(k − 1)

∣
∣
∣
2
. (2.11)

Using the similar procedure of control law equations, the parameter estimation algo-
rithm can be obtained as follows:

φ̂(k) = φ̂(k − 1) +
ηΔu(k − 1)

μ + Δu(k − 1)2
(
Δy(k) − φ̂(k − 1)Δu(k − 1)

)
. (2.12)

Summarizing, the MFAC algorithm based on CFDL model for a SISO system is given
as follows:

φ̂(k) = φ̂(k − 1) +
ηΔu(k − 1)

μ + |Δu(k − 1)|2
[
Δy(k) − φ̂(k − 1)Δu(k − 1)

]
, (2.13)

φ̂(k) = φ̂(1), if
∣∣∣φ̂(k)

∣∣∣ ≤ ε, or |Δu(k − 1)| ≤ ε, (2.14)

u(k) = u(k − 1) +
ρφ̂(k)

λ +
∣∣∣φ̂(k)

∣∣∣
2

[
y∗(k + 1) − y(k)

]
, (2.15)

where η, ρ are the step size, and they are usually set as η, ρ ∈ (0, 1). μ, λ are weight factors, ε
is a small positive constant, and φ̂(1) is the initial value of φ̂(k).

Remark 2.5. In order to make the condition Δu(k)/= 0 in Theorem 2.2 be satisfied, and
meanwhile to make the parameter estimation algorithm have stronger ability in tracking
time-varying parameter, a reset algorithm has been added into this MFAC scheme as (2.14).

Remark 2.6. The control law (2.15) has no relationship with any structural information
(mathematical model, order, structure, etc.) of the controlled plant. It is designed only using
input and output data of the plant.

From (2.13) and (2.15), we know that the current control input u(k) update depends
on the current measurement output y(k). Due to sensor or network failures, themeasurement
data y(k) loss occurs. Our previous work shows that the MFAC is still convergent as long as
not all the output data is lost (see [16, 17]). The system output convergent speed gets slower
as dropout rate increases, and the tracking performance will be destroyed when data dropout
is serious. In this paper, we develop a compensation scheme to suppress the influence of data
dropout.

From Theorem 2.2, we can obtain that

y(k) = y(k − 1) + φ(k − 1)Δu(k − 1); (2.16)
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which can be viewed as one-step-ahead predict of the output y(k). Therefore, if y(k) is lost,
we can estimate it using φ̂(k − 1) and Δu(k − 1), then the estimated value ŷ(k) can be used in
control algorithm update when y(k) is lost.

Then, we can give the following estimation scheme

ŷ(k) = y(k − 1) + φ̂(k − 1)Δu(k − 1), (2.17)

thus, the output signal of the controller received at time instant k is

y(k) =

{
y(k), if β(k) = 1,
ŷ(k), if β(k) = 0,

(2.18)

where β(k) ∈ {0, 1} is a binary random variable, and it is uncorrelated with u(k), y(k), and
φ̂(k). If β(k) = 1, there is no data dropout, the output signal y(k) is exactly y(k). Otherwise,
if β(k) = 0, there could be the measurement data dropout; in this case, y(k) is estimated by
ŷ(k).

Assuming that the probability of β(k) satisfies

P
(
β(k) = 1

)
= E

{
β(k)

}
= β,

P
(
β(k) = 0

)
= 1 − E

{
β(k)

}
= 1 − β,

(2.19)

where E{·} denotes the expectation, and β is the data successful transfer rate, it is a constant
with 0 ≤ β ≤ 1. In this paper, we assume that β is known.

Therefore, the MFAC with dropout compensation scheme can be described as

φ̂(k) = φ̂(k − 1) +
ηΔu(k − 1)

μ + |Δu(k − 1)|2
(
Δy(k) − φ̂(k − 1)Δu(k − 1)

)
, (2.20)

φ̂(k) = φ̂(1), if
∣∣∣φ̂(k)

∣∣∣ ≤ ε, or |Δu(k − 1)| ≤ ε, (2.21)

u(k) = u(k − 1) +
ρφ̂(k)

λ +
∣∣∣φ̂(k)

∣∣∣
2

[
y∗(k + 1) − y(k)

]
, (2.22)

where Δy(k) = y(k) − y(k − 1).

3. Stability Analysis

In order to obtain the convergence of the proposed MFAC algorithm, another assumption
about the system should be made.
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h(x)

x

Case 1 Case 2 Case 3

√
λ

⸢⸣⸤⸥

ε
⸢⸣⸤⸥

ε
⸢⸣⸤⸥

εꉱb ꉱb ꉱb

Figure 1: The curve of h(x) respects to x.

(A3) The PPD satisfies that φ(k) ≥ b1 > 0 (or φ(k) ≤ −b1 < 0), and b1 is a positive
constant. Without loss of generality, it is assumed that φ(k) ≥ b1 > 0 in this paper.

Remark 3.1. Most of plants in practice satisfy this condition, and its practical meaning is
obvious; that is, the plant output should increase (or decrease) when the corresponding
control input increase. For example, the water tanks control system, the temperature control
system, and so on.

To prove our main result the following lemma is developed first.

Lemma 3.2. Define that ϑ(k) = ρφ̂(k)φ(k)/(λ + φ̂2(k)), if ρ, λ are chosen as λ > (ρb)2/4, then it
exists constants d1, d2, such that

0 < d1 ≤ ϑ(k) ≤ d2 < 1. (3.1)

Proof. From (2.14), it can be assumed that 0 < ε ≤ φ̂(k) ≤ b̂, where b̂ is a positive constant.

Denote that h(x) = x/(λ + x2), the change of h(x) respects to x is shown in Figure 1.
Obviously, when x ≥

√
λ, h(x) is decreasing respect to x, and when x <

√
λ, it is increasing.

Now we discuss the extremum of h(φ̂(k)) = φ̂(k)/(λ + φ̂2(k))when φ̂(k) ∈ [ε, b̂]. It has three
cases to be discussed as follows:

Case 1. when b̂ ≤
√
λ, ε/(λ + ε2) ≤ h(φ̂(k)) ≤ b̂/(λ + b̂2),

Case 2. when ε ≤
√
λ ≤ b̂, min(ε/(λ + ε2), b̂/(λ + b̂2)) ≤ h(φ̂(k)) ≤ 1/2

√
λ,

Case 3. when ε ≥
√
λ, b̂/(λ + b̂2) ≤ h(φ̂(k)) ≤ ε/(λ + ε2).

Considering 0 < b1 ≤ φ(k) < b gives

Case 1. ρb1ε2/(λ + ε2) ≤ ϑ(k) ≤ ρbb̂/(λ + b̂2).

Case 2. ρb1 min(ε/(λ + ε2), b̂/(λ + b̂2)) ≤ ϑ(k) ≤ ρb/2
√
λ.

Case 3. ρb1b̂/(λ + b̂2) ≤ ϑ(k) ≤ ρbε/(λ + ε2).
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Hence, it exists constants d1, d2 such that d1 ≤ ϑ(k) ≤ d2, where

Case 1. d1 = ρb1ε
2/(λ + ε2), d2 = ρbb̂/(λ + b̂2),

Case 2. d1 = ρb1 min(ε/(λ + ε2), b̂/(λ + b̂2)), d2 = ρb/2
√
λ,

Case 3. d1 = ρb1b̂/(λ + b̂2), d2 = ρbε/(λ + ε2).

Using the fact that ρ > 0, λ > 0, then d1 > 0 for all the three cases. Now we discuss d2

in detail.

Case 1. Since λ > (ρb)2/4, it leads to

d2 =
ρbb̂

λ + b̂2
=

ρb

λ/b̂ + b̂
≤ ρb

2
√
λ
< 1. (3.2)

Case 2. Since λ > (ρb)2/4, it is obvious that d2 = ρb/2
√
λ < 1.

Case 3. Since λ > (ρb)2/4, it implies that

d2 =
ρbε

λ + ε2
=

ρb

λ/ε + ε
≤ ρb

2
√
λ
< 1. (3.3)

Hence, we can conclude that if ρ, λ satisfies λ > (ρb)2/4, then 0 < d1 ≤ ϑ(k) ≤ d2 < 1.

Remark 3.3. From the lemma, the parameters should satisfy λ > (ρb)2/4. However, the
constant b is difficult to be obtained because MFAC is designed merely using the I/O data
and has nomodel information involved. In this case, λmust be chosen large enough to ensure
the condition.

With the above lemma, the following result can be given.

Theorem 3.4. For the system (2.1), using the MFAC algorithm (2.20)–(2.22) and dropout
compensation scheme (2.17), when and y∗ = const, if β /= 0 and ρ, λ are chosen as λ > (ρb)2/4,
then the expectation of output error is convergent.

Proof. The estimated algorithm (2.17) gives

ŷ(k) = y(k − 1) +
(
φ(k − 1) + φ̃(k − 1)

)
Δu(k − 1)

= y(k − 1) + φ(k − 1)Δu(k − 1) + φ̃(k − 1)Δu(k − 1)

= y(k) + φ̃(k − 1)Δu(k − 1).

(3.4)

From (2.18) and (3.4), we can describe y(k) as

y(k) = y(k) +
(
1 − β(k)

)
φ̃(k − 1)Δu(k − 1). (3.5)
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Substituting (3.5) into (2.22) gives

Δu(k) =
ρφ̂(k)

λ +
∣∣
∣φ̂(k)

∣∣
∣
2

[
y∗(k + 1) − y(k) − (

1 − β(k)
)
φ̃(k − 1)Δu(k − 1)

]

=
ρφ̂(k)

λ +
∣
∣
∣φ̂(k)

∣
∣
∣
2

[
e(k) − (

1 − β(k)
)
φ̃(k − 1)Δu(k − 1)

]
,

(3.6)

then

e(k + 1) = (1 − ϑ(k))e(k) − ϑ(k)
(
1 − β(k)

)
φ̃(k − 1)Δu(k − 1). (3.7)

If we choose λ > (ρb)2/4, it is exists constant d1, d2 satisfying that

0 < d1 ≤ ϑ(k) ≤ d2 < 1. (3.8)

Since β(k) ∈ {0, 1}, from (3.7), we can obtain that

|e(k + 1)| ≤ |(1 − ϑ(k))||e(k)| + |ϑ(k)|∣∣(1 − β(k)
)∣∣
∣∣∣φ̃(k − 1)Δu(k − 1)

∣∣∣

≤ (1 − d1)|e(k)| + d2
∣∣(1 − β(k)

)∣∣
∣∣∣φ̃(k − 1)Δu(k − 1)

∣∣∣,
(3.9)

which leads to

E{|e(k + 1)|} ≤ (1 − d1)E{|e(k)|} + d2

(
1 − β

)
E
{∣∣∣φ̃(k − 1)Δu(k − 1)

∣∣∣
}
. (3.10)

Since E{|φ̃(k − 1)|} and E{|Δu(k − 1)|} are bounded, then it exists a positive constant ς
satisfying that

E
{∣∣∣Δu(k − 1)φ̃(k − 1)

∣∣∣
}
≤ ς, (3.11)

from (3.10) and (3.11), we can obtain that

E{|e(k + 1)|} ≤ (1 − d1)E{|e(k)|} + d2ς
(
1 − β

)
, (3.12)

where 0 < 1 − d1 < 1, hence E{|e(k)|} is convergence.
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Remark 3.5. From (3.12), it is obvious that E{|e(k)|} is convergence, but not convergent to 0,
which results from the second argument d2(1− β)E{|φ̃(k − 1)Δu(k − 1)|} in the right of (3.10).
φ̃(k − 1) is the estimated error of PPD, it is not equal to 0 in general. From [17], we know that
data dropout only affects the convergent speed not convergence, and if β /= 0, it guarantees
limk→∞Δu(k) = 0. Hence, when k → ∞, we can obtain limk→∞E{|e(k)|} = 0 from (3.10).

4. Simulation Results

Considering the SISO nonlinear system

y(k + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y(k)

1 + y(k)2
+ u(k)3, k ≤ 500,

y(k)y(k − 1)y(k − 2)u(k − 1)
(
y(k − 2) − 1

)
+ a(k)u(k)

1 + y(k − 1)2 + y(k − 2)2
, k > 500,

(4.1)

where a(k) = 1 + round(k/500), and the desired output is

y∗(k + 1) = (−1)round(k/200). (4.2)

Set the initial conditions as u(1 : 2) = 0, y(1) = −1, y(2) = 1, y(3) = 0.5, φ̂(1) = 2, ε = 10−5,
the resetting initial value of PPD is 0.5, and controller parameters are ρ = 0.5, λ = 3, η =
0.5, μ = 1. Considering three different data dropout processes β = 0.4 (60% dropout), β =
0.2 (80% dropout), and β = 0.1 (90% dropout). Using MFAC algorithm and the MFAC with
data dropout compensation algorithm, the simulation results are shown in Figures 2, 3, and 4.
It is obvious that the MFAC with data dropout compensation algorithm can obtain the better
output performance.

5. Conclusions

This paper proposes a robust model-free adaptive control algorithm with data dropout
compensation. This algorithm first estimated the missing measurement output and then
applied the estimated value into the model-free adaptive control algorithm. The convergence
of the proposedMFAC algorithm is given, and effectiveness is also supported by simulations.
It is shown that the proposed algorithm can compensate the effect of the data dropout, and
the better output performance can be obtained.
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Figure 2: The simulation result for dropout rate is 60%. (a) Output signal, (b) control input signal.
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Figure 3: The simulation result for dropout rate is 80%. (a) Output signal, (b) control input signal.
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Figure 4: The simulation result for dropout rate is 90%. (a) Output signal, (b) control input signal.

Acknowledgments

This work is supported by State Key Program (no. 60834001) of National Natural Science
Foundation of China and Program for Science & Technology Innovation Talents of Henan
Province (no. 104200510021).



14 Mathematical Problems in Engineering

References

[1] Z. S. Hou and W. H. Huang, “The model-free learning adaptive control of a class of SISO nonlinear
systems,” in Proceedings of the American control conference, vol. 1, pp. 343–344, IEEE, Albuquerque, NM
, USA, June 1997.

[2] Z. S. Hou, “On model-free adaptive control: the state of the art and perspective,” Control Theory &
Applications, vol. 23, no. 4, pp. 586–592, 2006.

[3] Z. S. Hou, Nonparametric Models and Its Adaptive Control Theory, Science Press, Beijing, China, 1999.
[4] Z. S. Hou and S. T. Jin, “A novel data-driven control approach for a class of discrete-time nonlinear

systems,” IEEE Transactions on Control Systems Technology, vol. 19, no. 6, pp. 1549–1558, 2011.
[5] J. F. Sun, Y. J. Feng, and X. S. Wang, “A kind of macroeconomic dynamic control research based on

control without model,” System Engineering-Theory & Practice, vol. 11, no. 6, pp. 45–51, 2008.
[6] Z. G. Han, “Model free control law in the production of chemical fertilizer,” Control Theory &

Applications, vol. 21, no. 6, pp. 858–863, 2004.
[7] K. K. Tan, T. H. Lee, S. N. Huang, and F. M. Leu, “Adaptive-predictive control of a class of SISO

nonlinear systems,” Dynamics and Control, vol. 11, no. 2, pp. 151–174, 2001.
[8] K. K. Tan, S. N. Huang, T. H. Lee et al., “Adaptive predictive PI control of a class of SISO systems,” in

Proceedings of the American Control Conference, vol. 6, pp. 3848–3852, IEEE, San Diego, Calif, USA, June
1999.

[9] S. C. Leandro andA. R. C. Antonio, “Model-free adaptive control optimization using a chaotic particle
swarm approach,” Chaos, Solitons and Fractals, vol. 41, no. 4, pp. 2001–2009, 2009.

[10] S. C. Leandro, W. P. Marcelo, R. R. Sumar, and A. R. C. Antonio, “Model-free adaptive control design
using evolutionary- neural compensator,” Expert Systems with Applications, vol. 37, no. 1, pp. 499–508,
2010.

[11] R. H. Chi and Z. S. Hou, “A model-free adaptive control approach for freeway traffic density via
ramp metering,” International Journal of Innovative Computing, Information and Control, vol. 4, no. 6, pp.
2823–2832, 2008.

[12] B. Zhang and W. D. Zhang, “Adaptive predictive functional control of a class of nonlinear systems,”
ISA Transactions, vol. 45, no. 2, pp. 175–183, 2006.

[13] Z. S. Hou and J. X. Xu, “On data-driven control theory: the state of the art and perspective,” Acta
Automatica Sinica, vol. 35, no. 6, pp. 650–667, 2009.

[14] X. H. Bu, Z. S. Hou, and S. T. Jin, “The robustness of model-free adaptive control with disturbance
suppression,” Control Theory & Applications, vol. 26, no. 5, pp. 505–509, 2009.

[15] X. H. Bu, Z. S. Hou, and S. T. Jin, “A statistical analysis of model free adaptive control with
measurement disturbance,” in Proceedings of the 29th Chinese Control Conference (CCC ’10), pp. 2175–
2181, Beijing, China, July 2010.

[16] X. H. Bu and Z. S. Hou, “The robust stability of model free adaptive control with data dropouts,” in
Proceedings of the 8th IEEE International Conference on Control and Automation (ICCA ’10), pp. 1606–1611,
IEEE, Xiamen, China, June 2010.

[17] Z. S. Hou and X. H. Bu, “Model free adaptive control with data dropouts,” Expert Systems with
Applications, vol. 38, no. 8, pp. 10709–10717, 2011.

[18] L. Bakule and M. de la Sen, “Non-fragile controllers for a class of time-delay nonlinear systems,”
Kybernetika, vol. 45, no. 1, pp. 15–32, 2009.

[19] P. Seiler and R. Sengupta, “An H∞ approach to networked control,” IEEE Transactions on Automatic
Control, vol. 50, no. 3, pp. 356–364, 2005.

[20] Q. Ling and M. D. Lemmon, “Power spectral analysis of networked control systems with data
dropouts,” IEEE Transactions on Automatic Control, vol. 49, no. 6, pp. 955–960, 2004.

[21] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control systems,” IEEE Control
Systems Magazine, vol. 21, no. 1, pp. 85–99, 2001.

[22] T. C. Yang, “Networked control system: a brief survey,” Control Theory and Applications, vol. 153, no.
4, pp. 403–412, 2006.

[23] L. Bakule andM. de la Sen, “Decentralized resilient H∞ observer-based control for a class of uncertain
interconnected networked systems,” in Proceedings of the American Control Conference (ACC ’10), pp.
1338–1343, Baltimore, Md, USA, June 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


