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We have examined the peristaltic flow of Carreau fluid in a rectangular channel through a porous
medium. The governing equations of motion are simplified by applying the long wavelength
and low Reynolds number approximations. The reduced highly nonlinear partial differential
equations are solved jointly by homotopy perturbation and Eigen function expansion methods.
The expression for pressure rise is computed numerically by evaluating the numerical integration.
The physical features of pertinent parameters have been discussed by plotting graphs of velocity,
pressure rise, pressure gradient, and stream functions.

1. Introduction

Investigation of flow through a porous medium has many applications in various branches of
science and technology. The applications in which flow through a porous medium is mostly
prominent are filtration of fluids, seepage of water in river beds, movement of underground
water and oils, limestone, rye bread, wood, the human lung, bile duct, gallbladder with
stones, and small blood vessels which are few examples of flow through porous medium [1].
Peristaltic mechanism is another important phenomenon which has exploited the attention
of many researchers due to its physiological and industrial applications. A large amount of
literature is available on the peristalsis involving Newtonian and non-Newtonian fluids with
different flow geometries [2–12]. The peristaltic flow through a porous medium has been also
discussed by number of researchers. Pandey and Chaube [13] have examined the peristaltic
flow of micropolar fluid through a porous medium in the presence of external magnetic
field. They pointed out that the maximum pressure is strongly dependent on permeability
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of porous medium. Interaction of peristaltic flow with pulsatile fluid through a porous
medium has been investigated by Afifi and Gad [14]. Rao and Mishra [15] have examined
the peristaltic transport of a power law fluid in a porous tube. In another paper Mishra and
Rao [16] have studied the peristaltic transport in a channel with a porous peripheral layer.
Some other papers on this topic are given in the references [17–20]. The mathematical model
of peristaltic flow in a two-dimensional symmetric and asymmetric channel was discussed
by Eytan and Elad [17] because of its application in interuterine fluid flow in a nonpregnant
uterus. A number of researchers have examined the peristaltic flow of two-dimensional flow
in an asymmetric channel [18–25]. However Reddy et al. [26] have recently given the idea
that the sagittal cross-section of the uterus may be better approximated by a tube of rect-
angular cross-section than a two-dimensional channel and presented the influence of lateral
walls on peristaltic flow in a rectangular duct. Only few papers (two or three) have been
given in literature which discuss the peristaltic flows in a rectangular channel [26, 27].

Motivated by the previous studies, in the present investigation, we have examined the
peristaltic flow of Carreau fluid in a rectangular symmetric channel through a porous
medium. In the laboratory frame under the assumptions of long wavelength and low
Reynolds number, the solutions of the governing equations of Carreau fluid in a rectangular
duct have been found by using homotopy perturbation method. The physical features of the
pertinent parameters are discussed by plotting pressure rise, velocity, pressure gradient, and
stream functions.

2. Mathematical Formulation

Consider the peristaltic flow of an incompressible Carreau fluid in a duct of rectangular
cross-section through a porous medium having the channel width 2d and height 2a. We are
considering the Cartesian coordinate system in such a way thatX-axis is taken along the axial
direction, Y -axis is taken along the lateral direction, and Z-axis is along the vertical direction
of rectangular channel.

The peristaltic waves on the walls are represented as

Z = H(X, t) = ±a ± b cos
[
2π
λ

(X − ct)
]
, (2.1)

where a and b are the amplitudes of the waves, λ is the wavelength, c is the velocity of the
propagation, t is the time, and X is the direction of wave propagation. The walls parallel to
XZ-plane remain undisturbed and are not subject to any peristaltic wave motion. We assume
that the lateral velocity is zero as there is no change in lateral direction of the duct cross-
section. Let (U, 0,W) be the velocity for a rectangular duct. The governing equations for the
flow problem are stated as follows.

Continuity equation:

∂U

∂X
+
∂W

∂Z
= 0, (2.2)

X-momentum equation:

ρ

(
∂U

∂t
+U

∂U

∂X
+W

∂U

∂Z

)
= −∂P

∂Z
+

∂

∂X
SXX +

∂

∂Y
SXY +

∂

∂Z
SXZ − μ

k1
U, (2.3)
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Y-momentum equation:

0 = −∂P
∂Y

+
∂

∂X
SYX +

∂

∂Y
SYY +

∂

∂Z
SYZ, (2.4)

Z-momentum equation:

ρ

(
∂W

∂t
+U

∂W

∂X
+W

∂W

∂Z

)
= −∂P

∂Z
+

∂

∂X
SZX +

∂

∂Y
SZY +

∂

∂Z
SZZ, (2.5)

in which ρ is the density, P is the pressure, and S is the stress tensor for Carreau fluid, which
is defined as

S = μ

(
1 +

(
Γ

·
γ
)2
)(n−1)/2 ·

γ . (2.6)

Let us define a wave frame (x, y)movingwith the velocity c away from the fixed frame (X,Y )
by the transformation

x = X − ct, y = Y, z = Z, u = U − c, w = W, p(x, z) = P(X,Z, t).
(2.7)

Define the following nondimensional quantities:

x =
x

λ
, y =

y

d
, z =

z

a
, u =

u

c
, w =

w

cδ
, t =

ct

λ
, h =

H

a
, p =

a2p

μcλ
,

Re =
ρac

μ
, δ =

a

λ
, φ =

b

a
, Sxx =

a

μc
Sxx, Sxy =

d

μc
Sxy, k =

k1
a2

,

Sx z =
a

μc
Sxz, Sy z =

d

μc
Syz, Szz =

λ

μc
Szz, Sy y =

λ

μc
Syy, β =

a

d
,

·
γ =

·
γ d1

c
, We =

Γc
d1

.

(2.8)

Using the previous nondimensional quantities in (2.2) to (2.5), the resulting equations (after
dropping the bars) can be written as

∂u

∂x
+
∂w

∂z
= 0, (2.9)

Re δ
(
u
∂u

∂x
+w

∂u

∂z

)
= −∂p

∂x
+ δ

∂

∂x
Sxx + β2

∂

∂y
Sxy +

∂

∂z
Sxz − 1

k
(u + 1),

0 = −∂p

∂y
+ δ2 ∂

∂x
Syx + δ2 ∂

∂y
Syy + δ

∂

∂z
Syz,

Re δ2
(
u
∂w

∂x
+w

∂w

∂z

)
= −∂p

∂z
+ δ2 ∂

∂x
Szx + δβ2

∂

∂y
Szy + δ2 ∂

∂z
Szz,

(2.10)
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where

Sxx = 2δ
(
1 +

n − 1
2

We2
·
γ
2)∂u

∂x
,

Sxy =
(
1 +

n − 1
2

We2
·
γ
2)∂u

∂y
,

Sxz =
(
1 +

n − 1
2

We2
·
γ
2)(

∂u

∂z
+ δ2 ∂w

∂x

)
,

Syy = 0,

Syz = δ

(
1 +

n − 1
2

We2
·
γ
2)∂w

∂y
,

Szz = 2
(
1 +

n − 1
2

We2
·
γ
2)∂w

∂z
,

·
γ
2
= 2δ2

(
∂u

∂x

)2

+ β2
(
∂u

∂y

)2

+ δ2β2
(
∂w

∂y

)2

+ δ2
(
∂w

∂z

)2

+
(
δ2 ∂w

∂x
+
∂u

∂z

)2

.

(2.11)

Under the assumption of long wavelength δ ≤ 1 and low Reynolds number Re → 0, (2.10),
take the form

dp

dx
= β2

∂2u

∂y2
+
∂2u

∂z2
+
n − 1
2

We2β4
∂

∂y

(
∂u

∂y

)3

+
n − 1
2

We2
∂

∂z

(
∂u

∂z

)3

+
n − 1
2

We2β2

∂

∂y

(
∂u

∂y

(
∂u

∂z

)2
)

+
n − 1
2

We2β2
∂

∂z

(
∂u

∂z

(
∂u

∂y

)2
)

− 1
k
(u + 1).

(2.12)

The corresponding boundary conditions are

u = −1 at y = ±1,
u = −1 at z = ±h(x) = ±1 ± φ cos 2πx,

(2.13)

where 0 ≤ φ ≤ 1.

3. Solution of the Problem

The solution of the previously mentioned nonlinear partial differential equation has been
calculated by homotopy perturbation method (HPM), which is defined as [28–44]

H
(
v, q

)
= L(v) − L(u0) + qL(u0) + q

(
n − 1
2

We2β4
∂

∂y

(
∂v

∂y

)3

+
n − 1
2

We2
∂

∂z

(
∂v

∂z

)3

+
n − 1
2

We2β2
∂

∂y

(
∂v

∂y

(
∂v

∂z

)2
)

+
n − 1
2

We2β2
∂

∂z

(
∂v

∂z

(
∂v

∂y

)2
)

− dp

dx
− 1
k

)
,

(3.1)
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Table 1: Velocity for various values of z for fixed φ = 0.6, Q = 0.5.

For Newtonian fluid, when n = 0,We = 0 For Carreau fluid when n = 0.9, We = 0
z u(x, y, z) for β = 0.5 u(x, y, z) for β = 0.5

Exact solution [26] Analytical solution Analytical solution
−1.6 −1.0000 −1.0000 −1.0000
−1.2 0.2108 0.2115 −0.0938
−0.8 1.1161 1.1173 0.1677
−0.4 1.6746 1.6758 0.2445
0.0 1.8633 1.8645 0.2613
0.4 1.6746 1.6758 0.2445
0.8 1.1161 1.1173 0.1677
1.2 0.2108 0.2115 −0.0938
1.6 −1.0000 −1.0000 −1.0000

Table 2: Pressure rise for various values of Q.

For Newtonian fluid, when n = 0, We = 0 For Carreau fluid when n = 0.9, We = 0.9
Q Δp for β = 2, φ = 0.6 Δp for β = 2, φ = 0.6

Exact solution [26] Analytical solution Analytical solution
−0.1 12.514 12.7087 12.8287
0.0 9.4799 9.4399 9.8599
0.1 6.4457 6.4712 6.8912
0.2 3.4115 3.4025 3.9225
0.3 0.3773 0.3338 0.9538
0.4 −2.6569 −2.6350 −2.0149
0.5 −5.6911 −5.6037 −4.9837
0.6 −8.7254 −8.7724 −7.9524
0.7 −11.7596 −11.7412 −10.9211
0.8 −14.7938 −14.7099 −13.8899

in which q is embedding parameter which has the range 0 ≤ q ≤ 1. For our convenience we
have taken L = β2(∂2/∂y2) + (∂2/∂z2) − 1/k as the linear operator. We choose the following
initial guess:

u0
(
y, z

)
= − cosh

y

β
√
2k

sech
1

β
√
2k

cosh
z√
2k

sech
h√
2k

. (3.2)

Define

v
(
x, y, z, q

)
= v0 + qv1 + q2v2 + · · · . (3.3)

Substituting (3.3) into (3.1) and then comparing the like powers of q, one obtains the
following problems with the corresponding boundary conditions:

L(v0) − L(u0) = 0, (3.4)

v0 = −1 at y = ±1,
v0 = −1 at z = ±h(x),

(3.5)
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Figure 1: Schematic diagram for peristaltic flow in a rectangular duct.
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Figure 4: Velocity profile for different values ofQ for fixed k = 1, n = 0.9, We = 0.03, β = 0.1, φ = 0.5, x =
0.5. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 5: Velocity profile for different values of β for fixed k = 0.1, n = 0.9, We = 0.03, φ = 0.5, Q = 2, x =
0.5. (a) For 2-dimensional and (b) For 3-dimensional.

L(v1) + L(u0) +

(
n − 1
2

We2β4
∂

∂y

(
∂v0

∂y

)3

+
n − 1
2

We2
∂

∂z

(
∂v0

∂z

)3

+
n − 1
2

We2β2

× ∂

∂y

(
∂v0

∂y

(
∂v0

∂z

)2
)

+
n − 1
2

We2β2
∂

∂z

(
∂v0

∂z

(
∂v0

∂y

)2
)

−dp
dx

− 1
k

)
= 0, (3.6)

v1 = 0 at y = ±1,
v1 = 0, at z = ±h(x).

(3.7)
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Figure 6: Velocity profile for different values of φ for fixed k = 0.5, n = 0.9, We = 0.03, β = 0.5, Q = 2, x =
0.5. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 7: Velocity profile for different values of k for fixedQ = 2, n = 0.9, We = 0.03, β = 0.5, φ = 0.5, x =
0.5. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 9: Velocity profile for different values of n for fixed k = 0.1, Q = 2, We = 0.5, β = 2, φ = 0.95, x =
0.5. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 10: Variation of dp/dx with x for different values of Q at k = 0.15, n = 0.9, We = 0.03, β =
0.05, φ = 0.6.

From (3.4)we have

v0 = u0 = − cosh
y

β
√
2k

sech
1

β
√
2k

cosh
z√
2k

sech
h√
2k

. (3.8)

With the help of (3.8), (3) can be written as

β2
∂2v1

∂y2
+
∂2v1

∂z2
− v1

k
=

n − 1
2

We2
A3

k2
sinh2 y

β
√
2k

cosh3 z√
2k

cosh
y

β
√
2k

+ sinh2 y

β
√
2k

sinh2 z√
2k

cosh
z√
2k

cosh
y

β
√
2k

+ cosh3 z√
2k

cosh3 y

β
√
2k

+
dp

dx
+
1
k
,

(3.9)
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0.05, Q = 0.3.

in which

A = sech
1

β
√
2k

sech
h√
2k

. (3.10)

The solution of (3.9) is calculated by eigenfunction expansion method and is defined as

v1 =
∞∑

m=1

bm cos(2m − 1)
π

2
z, (3.11)
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where bm and other constants are defined in the appendix section. The HPM solution up to
first iteration is finally defined as (when q → 1)

u
(
x, y, z

)
= v0 + v1, (3.12)
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where v0 and v1 are defined in (3.8) and (3.11). The volumetric flow rate f is calculated as

f =
∫1

0

∫h(x)

0
u
(
x, y, z

)
dy dz. (3.13)

The instantaneous flux is given by

Q =
∫1

0

∫h(x)

0
(u + 1)dy dz = f + h(x). (3.14)
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Figure 17: Stream lines for different values of β. (a) For β = 0.2, (b) for β = 0.3, (c) for β = 0.4, and (d) for
β = 0.5. The other parameters are k = 0.55, φ = 0.7, Q = 1, n = 0.9, We = 0.03.

The average volume flow rate over one period (T = λ/c) of the peristaltic wave is
defined as

Q =
1
T

∫T

0
Qdt = f + 1. (3.15)

The pressure gradient dp/dx is obtained after solving (3.13) and (3.15). The pressure
rise Δp is evaluated by using the following expression:

Δp =
∫1

0

dp

dx
dx. (3.16)
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Figure 18: Stream lines for different values of φ. (a) For φ = 0.4, (b) for φ = 0.5, (c) for φ = 0.6, and (d) for
φ = 0.7. The other parameters are k = 1, β = 0.5, Q = 1, n = 0.9, We = 0.03.

4. Results and Discussions

In this section, we have discussed the homotopy perturbation solution given in (3.12)
through plotting the graphs for velocity, pressure gradient, pressure rise, and stream lines. In
Figures 4(a) and 4(b), the velocity field is plotted for different values of flow rate Q, both
for two dimensional and three-dimensional flows, respectively. It is observed that with the
increase of flow rateQ, the velocity field decreases. The variation of velocity field for different
values of β is displayed in Figures 5(a) and 5(b). It is seen that with the increase in β, the
velocity field decreases, and the maximum velocity is at the centre of the channel for small
values of β. In Figures 6(a) and 6(b), the velocity field increases with the increase in φ. How-
ever, with the increase in k, the velocity field decreases near the channel wall and increases
in the middle (see Figures 7(a) and 7(b)). The velocity field distributions for different
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Figure 19: Stream lines for different values of k. (a) for k = 0.55, (b) for k = 0.6, (c) for k = 0.65, and (d) for
k = 0.7. The other parameters are β = 0.5, φ = 0.7, Q = 1, n = 0.9, We = 0.03.

values of We and n are shown in Figures 8 and 9. It is seen that the magnitude of
velocity increases for different values of We, while decreasing for n. The pressure gradient
graphs for various values of Q, β, φ, and k are plotted in Figures 10, 11, 12, and 13.
It is observed that with the increase in Q and k, the pressure gradient decreases but
increases with β and φ, and the maximum pressure gradient occurs in the middle of the
channel for small values of the parameters. It means that flow can easily pass in the
centre of the channel. The plots for pressure rise Δp for different values of β, φ, and k
are portrayed in Figures 14, 15, and 16. It is seen that pressure rise increases with the
increase in β in the peristaltic pumping region; that is, when Δp > 0, Q < 0 (Q ∈
[−2, 0]) and in the augmented pumping region Q ∈ [0, 2], the pressure rise decreases
(see Figure 14). The pressure rise increases with the increase in φ in the region Q ∈
[−3, 0.6] and gives opposite behavior in the region [0.6,3] (see Figure 15). In Figure 16, it
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is depicted that with the increase in k, pressure rise decreases for small Q and increases
for large Q. The trapping phenomenon is presented by plotting stream lines and is shown
in Figures 17, 18, and 19. The stream lines for various values of β are shown in Figure 17.
It is seen that the trapping bolus decreases with the increase in β, while size of the bolus is
reduced with β. The stream lines for different values of φ and k are sketched in Figures 18
and 19. It is depicted that with the increase in both parameters, the numbers of trapping bolus
increase. It is also noted that bolus becomes small in size for φ but enlarges for the parameter
k.

Tables 1 and 2 are placed to compare the present work with [26]. Figures 2 and 3 are
drawn according to the data given in Tables 1 and 2. From these figures it is clear to see
that the analytical solution is in good agreement with the exact solution. Also, it is observed
that velocity is reduced in the case of non-Newtonian (Carreau) fluid (see Figure 1). From
Figure 2, it is seen that pressure rise is increased for the present fluid model.

Appendix

Consider

bm =
(
e−3hl−6cy−yγn/β

×
(
e−3hl+6cyh(−1 + 2m)π

(
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)(
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×
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)
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while the other constants are defined as
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4l2+(1−2m)2π2

)
We2 +A3e2c+6hl(1−2m)2π2

(
4l2+(1−2m)2π2

)

×We2 +A3e4c+6hl(1 − 2m)2(−1 + n)π2
(
4l2 + (1 − 2m)2π2

)
We2 + 5A3e2hl

× (1−2m)2(−1 + n)π2
(
36l2+(1 − 2m)2π2

)
We2+5A3e4hl(1 − 2m)2(−1 + n)π2

×
(
36l2 + (1 − 2m)2π2

)
We2 + 7A3e2(c+hl)(1 − 2m)2(−1 + n)π2

×
(
36l2+(1−2m)2π2

)
We2+7A3e4(c+hl)(1−2m)2(−1+n)π2

(
36l2+(1−2m)2π2

)

×We2+7A3e4c+2hl(1 − 2m)2(−1 + n)π2
(
36l2 + (1 − 2m)2π2

)
We2+5A3e6c+2hl

× (1 − 2m)2(−1 + n)π2
(
36l2 + (1 − 2m)2π2

)
We2 + 7A3e2c+4hl(1 − 2m)2

× (−1 + n)π2
(
36l2 + (1 − 2m)2π2

)
We2 + 5A3e6c+4hl(1 − 2m)2(−1 + n)π2

×
(
36l2 + (1 − 2m)2π2

)
We2

)
γ4m

)
sin

(
1
2
h(−1 + 2m)π

)

/
((

1 + e2(γm/β)
)(

h(−1 + 2m)π
(
144l4 + 40l2(1 − 2m)2π2 + (1 − 2m)4π4

)
γ2n

×
(
9c4β4 − 10c2β2γ2n + γ4n

)))
+A3e4c+6hl(1 − 2m)2

× (−1 + n)π2
(
4l2 + (1 − 2m)2π2

)
We2 + 5A3e2hl(1 − 2m)2(−1 + n)π2

×
(
36l2+(1 − 2m)2π2

)
We2 + 5A3e4hl(1 − 2m)2(−1 + n)π2

(
36l2+(1 − 2m)2π2

)
We2

+ 7A3e2(c+hl)(1 − 2m)2(−1 + n)π2
(
36l2 + (1 − 2m)2π2

)
We2 + 7A3e4(c+hl)(1 − 2m)2

× (−1 + n)π2
(
36l2 + (1 − 2m)2π2

)
We2 + 7A3e4c+2hl(1 − 2m)2(−1 + n)π2
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×
(
36l2+(1 − 2m)2π2

)
We2+5A3e6c+2hl(1 − 2m)2(−1 + n)π2

(
36l2+(1−2m)2π2

)
We2

+ 7A3e2c+4hl(1 − 2m)2(−1 + n)π2
(
36l2 + (1 − 2m)2π2

)
We2 + 5A3e6c+4hl(1 − 2m)2

×(−1 + n)π2
(
36l2 + (1 − 2m)2π2

)
We2

)
γ4m

)
sin

(
1
2
h(−1 + 2m)π

)

/
(
1 + e2(γm/β)

)
h(−1 + 2m)π

(
144l4 + 40l2(1 − 2m)2π2 + (1 − 2m)4π4

)
γ2n

×
(
9c4β4 − 10c2β2γ2n + γ4n

)
.
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