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The asymptotic parameter estimation is investigated for a class of linear stochastic systems with
unknown parameter θ : dXt = (θα(t) + β(t)Xt)dt + σ(t)dWt. Continuous-time Kalman-Bucy linear
filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis.
Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence
of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison
theorem.

1. Introduction

Stochastic differential equations (SDEs) are a natural choice to model the time evolution
of dynamic systems which are subject to random influences. Such models have been used
with great success in a variety of application areas, including biology, mechanics, economics,
geophysics, oceanography, and finance. For instance, refer to [1–8]. In reality, it is unavoidable
that a stochastic system contains unknown parameters. Since 1962, Arato et al. [10] first
applied parameter estimation to geophysical problem. Parameter estimation for SDEs has
attracted the close attention of many researchers, and many parameter estimation methods
for various advanced models have been studied, such as maximum likelihood estimation
(MLE), Bayes estimation (BE), maximum probability estimation (MPE), minimum distance
estimation (MDE), minimum contrast estimation (MCE), and M-estimation (ME). See [10–
15] for details.

In practice, most stochastic systems cannot be observed completely, but the develop-
ment of filtering theory provides an effective method to solve this problem. Over the past
few decades, a lot of effective approaches have been proposed to overcome the difficulties
in parameter estimation for stochastic models by filtering methods. It turns out to be
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helpful both in computability and asymptotic studies. See [9, 16–26]. In particular, the
parameter estimation has been studied based on filtering observation, and the strong con-
sistency property has also been shown in [27, 28]. In [29], a large deviation inequality has
been obtained which implies the strong consistency, local asymptotic normality, and the
convergence of moments. The asymptotic properties of estimators have been studied for a
class of special Gaussian Itô processes with noisy observations in [30]. It should be pointed
out that, so far, although the parameter estimation problem has been widely investigated for
SDEs, the parameter estimation problem for stock price model has gained much less research
attention due probably to the mathematical complexity.

Stock return volatility process is an important topic in options pricing theory. During
the past decades, many SDEs have been modeled to solve the financial problems. For
instance, refer to [2, 31–35]. Particularly, the so-called Hull-White model has been established
by Hull and White [34] to analyze European call options prices under stochastic volatility
at 1987. Using Taylor series expansion, an accurate formula for call options has been derived
where stock returns and stock volatilities are uncorrelated. In addition, the Hull-White model
readily lends itself to the estimation of underlying stochastic process parameters. Since the
Hull-White formula is an effective options pricing model, it has been widely used to model
the practice stock price problem. Therefore, it is reasonable to study the parameter estimation
problem for Hull-White model with unknown parameter. Unfortunately, to the best of the
authors’ knowledge, the parameter estimation for Hull-White model with unknown para-
meter based on Kalman-Bucy linear filtering theory has not been fully studied despite its
potential in practical application, and this situation motivates our present investigation.

Summarizing the above discussions, in this paper, we aim to investigate the parameter
estimation problem for a general class of linear stochastic systems. The main contributions of
this paper lie in the following aspects. (1) Kalman-Bucy linear filtering is used to solve the para-
meter estimation problem. (2) The asymptotic convergence of the estimator is investigated by analyzing
Riccati equation. (3) The strong consistent property is studied by comparison theorem. The rest of
this paper is organized as follows. In Section 2, we formulate the problem and state the well-
known fact which would be used later. In Section 3, we study the asymptotic convergence
of the estimator. In Section 4, the strong consistent of estimator is given. In Section 5, some
conclusions are drawn.

Notation. The notation used here is fairly standard except where otherwise stated. R =
(−∞,+∞) and R+ = [0,+∞). For a vector x =∈ R, |x| is the Euclidean norm (or L2 norm)
with |x| =

√
x · x. MT and M−1 represent the transpose and inverse of the matrix M.

det(M) denotes the determinant of the matrixM. I denotes the identity matrix of compatible
dimension. Moreover, let (Ω,F,P) be a complete probability space with a natural filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous, and F0 contains all P-null
sets). E[x] stands for the expectation of the stochastic variable x with respect to the given
probability measure P. C(R+) denotes the class of all continuous time on t ∈ R+.

2. Problem Statement

Hull-White model is a continuous-time, real stochastic process as follows:

Xt = X0 +
∫ t

0

(
α(s) + β(s)Xs

)
ds +

∫ t

0
σ(s)dWs (2.1)
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with initial value X0 as a Gaussian random variable, where α, β, σ are deterministic con-
tinuous functions on time t, Wt is a Brownian motion independent of the initial value X0.
Obviously, Hull-White model (2.1) is a general continuous-time linear SDE for Xt, and we
assume that the coefficient α contains an unknown parameter θ ∈ R as follows:

dXt =
(
θα(t) + β(t)Xt

)
dt + σ(t)dWt t ≥ 0, (2.2)

and we observe the process Xt by the following filtering observations:

dYt = μ(t)Xtdt + γ(t)dVt t ≥ 0, (2.3)

where μ, γ are deterministic bounded continuous functions on time t, and Vt is a Brownian
motion independent ofWt.

Now, our aim is to estimate θ in (2.2) based on the observation of (2.3). First, we can
use Bayesian analysis to deal with the unknown parameter θ. We model θ as a random vari-
able and denoted it as θ0. We assume θ0 normally distributed and independent of σ(Wt, Vt, t ≥
0). Then, we can rewrite (2.2) as a two-component system for (Xt, θt) as follows:

(
dXt

dθt

)
=
(
β(t) α(t)
0 0

)(
Xt

θt

)
dt +

(
σ(t)
0

)
dWt t ≥ 0. (2.4)

Similarly, filtering observations system (2.3) can be expressed as follows:

dYt =
(
μ(t) 0

)(Xt

θt

)
dt + γ(t)dVt t ≥ 0. (2.5)

Therefore, we can use the Kalman-Bucy linear filtering theory to estimate θ0 as follows:

θ̂t = E[θ0 | Ys, 0 ≤ s ≤ t], (2.6)

and moreover, we also have X̂t = E[Xt|Ys, 0 ≤ s ≤ t].
For given Gaussian initial conditions X0 and θ0, it is well known from Kalman-Bucy

linear filtering theory that error covariance matrix S(t) satisfies the following Riccati equa-
tion:

Ṡ(t) = AS + SAT − SCT
(
DDT

)−1
CS + BBT , (2.7)

where A =
(

β(t) α(t)
0 0

)
, B =

(
σ(t)
0

)
, C = (μ(t) 0), D = γ(t), and as we all know the error cova-

riance matrix S(t) is defined as follows:

S(t) =
(
Sxx(t) Sxθ(t)
Sθx(t) Sθθ(t)

)
=

⎛
⎜⎜⎝

E

[(
Xt − X̂t

)2]
E

[(
Xt − X̂t

)(
θ0 − θ̂t

)]

E

[(
Xt − X̂t

)(
θ0 − θ̂t

)]
E

[(
θ0 − θ̂t

)2]
⎞
⎟⎟⎠. (2.8)
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Set a = Sxx, b = Sxθ = Sθx, and c = Sθθ. From Riccati equation (2.7), one can get the following
system:

ȧ = 2βa + 2αb + σ2 − μ2

γ2
a2,

ḃ = βb + αc − μ2

γ2
ab,

ċ = − μ2

γ2
b2.

(2.9)

Remark 2.1. Equation (2.9) is a nontrivial nonlinear ordinary differential equation system,
and it is well known from the Kalman-Bucy linear filtering theory that such Riccati equations
have unique solutions for all t ∈ R+.

Remark 2.2. From the equation ċ = −(μ2/γ2)b2, we can see that the error variance E[(θ0 − θ̂t)2]
is monotonically decreasing.

3. Asymptotic Convergence Analysis

Assume that the initial conditions X0 and θ0 are independent and have nonvariances, so that
b(0) = 0 and a(0) = E[X2

0] > 0, c(0) = E[θ2
0] > 0; thus, S(0) is a regular matrix. For the

property of continuity of S(t), S−1(t) exists at least for small times. In order to obtain the rate
of convergence of the estimator, S(t) should satisfy the regularity conditions. The following
Theorem certifies the regularity of S(t).

Theorem 3.1. (a1) Assume the initial conditions X0 and θ0 for system (2.2) are independent and
have nonvanishing variances.

(a2) Let α(t), β(t), σ(t), μ(t), γ(t) ∈ C(R+).
Then, the error covariance matrix S(t) satisfies det(S(t)) > 0 for all t ≥ 0, and

Sxx(t) > 0, Sθθ(t) > 0 ∀t ≥ 0. (3.1)

Proof. By Kalman-Bucy linear filtering theory, we know that det(S(t)) > 0 for all t ≥ 0. Fur-
thermore, it is not difficult to show that (3.1) holds for all t ≥ 0.

Since det(S(t)) > 0, it follows that S−1(t) exists. Set

R(t) = S−1(t) =
(
e(t) f(t)
f(t) g(t)

)
. (3.2)

As we know that R = 1/S implies that Ṙ = −(1/S2)Ṡ, one can easily have that

Ṙ = −RṠR. (3.3)
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It follows readily form (2.9) and (3.3) that

Ṙ = −RA −ATR + CT
(
DDT

)−1
C − RBBTR. (3.4)

Using a similar computation as (2.9), we can get

ė =
μ2

γ2
− 2βe − σ2e2,

ḟ = − αe − βf − σ2ef,

ġ = − 2αf − σ2f2.

(3.5)

The condition (a1) shows that a(0) > 0, b(0) = 0, and c(0) > 0, which implies that e(0) > 0,
f(0) = 0, and g(0) > 0. Since the Riccati equations (2.9) have unique solutions on R+, thus
the nonlinear system (3.5) has a unique solution on R+. Furthermore, the first equation ė =
μ2/γ2 − 2βe − σ2e2 with initial condition e(0) > 0 has a unique solution on a maximal time
interval [0, T), where T ∈ R+. Assume that there exists a smallest time t ∈ (0, T) such that
e(t) = 0. By the property of continuity of e(t), we have e(t) > 0, for 0 ≤ t < t. Thus,

ė(t) = lim
Δt→ 0

e
(
t
)
− e
(
t −Δt

)
Δt

< 0, (3.6)

this contradicts with ė(t) = μ2(t)/γ2(t) − 2β(t)e(t) − σ2(t)e2(t) ≤ μ2(t)/γ2(t) for all t ∈ [0, T).
Therefore, e(t) > 0, for t ∈ [0, T).

As long as ė(t) = μ2(t)/γ2(t) − 2β(t)e(t) − σ2(t)e2(t) ≤ μ2(t)/γ2(t) for all t ∈ [0, T) and
μ(t), γ(t) are bounded, we have ė(t) ≤ C, where C is a constant. So that e(t) is bounded from
below by 0 and from above by e(0) + t, which implies that e(t) cannot explode in finite time,
thus T = +∞. This shows that system (3.5) has a unique solution on R+ because the second
equation is a linear equation for f which can be solved analytically on R+, and g can get by
integration.

Define h(t) := det(R(t)) = e(t)g(t) − f2(t). Since det(S(t)) > 0 for all t ≥ 0, thus h(t) =
det(R(t)) = 1/det(S(t)) > 0 for all t ≥ 0, moreover, Sθθ > 0 for all t ≥ 0. Finally, we assume that
there exists t0 such that, Sxx(t0) = 0, then g(t0) = Sxx(t0)h(t0) = 0, so that h(t0) = e(t0)g(t0) −
f2(t0) ≤ 0, and this contradicts h(t0) > 0. Hence, Sxx > 0 for all t ≥ 0.

The proof is complete.

In order to obtain the convergence rate, the Riccati equation must be solved, and we
just need the solution of (3.5). Now, we solve the equation ė = μ2/γ2 − 2βe − σ2e2 when
β, σ, μ, γ are equal to constants.

In the case e(0)/= l2, we get

e(t) =
l1 + l2L exp

[
(l1 + l2)σ2t

]
L exp[(l1 + l2)σ2t] − 1

, (3.7)
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where L = (e(0) + l1)/(e(0) − l2), l1 = (2β/σ2 +
√
4β2/σ4 + 4μ2/σ2γ2 )/2, l2 = (−(2β/σ2) +√

4β2/σ4 + 4μ2/σ2γ2 )/2.
In the other case e(0) = l2, the solution shows that e(t) = l2 for all t ≥ 0.
Thus, for each α > 0, β > 0, σ > 0, μ > 0, γ > 0, the solution e(t) obviously satisfies

e(t) −→ l2 as t −→ +∞. (3.8)

The convergence rate of the estimator is given by following theorem.

Theorem 3.2. Assume that α, β, σ, μ, γ ∈ C(R+), are all bounded, and there are constants α1, α2, β1,
β2, σ1, σ2, μ1, μ2, γ1, γ2, and t0, such that

(b1) : 0 < α1 ≤ |α(t)| ≤ α2 for all t ≥ t0;

(b2) : 0 < β1 ≤ |β(t)| ≤ β2 for all t ≥ t0;

(b3) : 0 < σ1 ≤ |σ(t)| ≤ σ2 for all t ≥ t0;

(b4) : 0 < μ2 ≤ |μ(t)| ≤ μ1 for all t ≥ t0;

(b5) : 0 < γ1 ≤ |γ(t)| ≤ γ2 for all t ≥ t0;

(b6) : 2α1(β1 + σ2
1 l22) > σ2

2 l21 where l2i = (−2βi/σ2
i +
√
(4β2i )/(σ

4
i ) + (4μ2

i )/(σ
2
i γ2i ))/2, i =

1, 2.

Then, for arbitrary ε > 0 and T > 0, we have

P
(∣∣∣θ0 − θ̂t

∣∣∣ > ε
)
≤ 1

ε2
CT−1, (3.9)

where C is a positive constant independent of ε and T .

Proof. Let ei be the solution to ėi = μ2
i /γ

2
i − 2βiei − σ2

i e
2
i , i = 1, 2, and ei(t0) = e(t0).

Since μ2
2/γ

2
2 − 2β2e − σ2

2e
2 ≤ ė = μ2/γ2 − 2βe − σ2e2 ≤ μ2

1/γ
2
1 − 2β1e − σ2

1e
2 for all t ≥ t0,

by the comparison theorem [2, 36], we obtain that

e2(t) ≤ e(t) ≤ e1(t) ∀t ≥ t0. (3.10)

It follows from (3.7) that e is bounded, and for any given δ ∈ (0, 1), there is a t1 ≥ t0 such that

0 < l22(1 − δ) ≤ e(r) ≤ l21(1 + δ) ∀r ≥ t1. (3.11)
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For t ≥ t1, we can obtain from (3.5) and f(0) = 0 that

f(t) = −
∫ t

0
exp

[
−
∫ t

s

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds

= − exp

[
−
∫ t

0

(
β(r) + σ2(r)e(r)

)
dr

]∫ t1

0
exp

[∫s

0

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds

−
∫ t

t1

exp

[
−
∫ t

s

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds.

(3.12)

As β(r) + σ2(r)e(r) ≥ β1 + σ2
1 l22(1 − δ) holds for all t ≥ t1, thus, the first term in (3.12) goes to

0 as t → ∞. For the second term in (3.12), we have

∣∣∣∣∣
∫ t

t1

exp

[
−
∫ t

s

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds

∣∣∣∣∣

≤
∫ t

0
exp
[
−
(
β1 + σ2

1 l22(1 − δ)
)
(t − s)

]
l21(1 + δ)ds

=
l21(1 + δ)

β1 + σ2
1 l22(1 − δ)

∫ t

0
exp
[
−
(
β1 + σ2

1 l22(1 − δ)
)
(t − s)

]
d
(
β1 + σ2

1 l22(1 − δ)
)
s

=
l21(1 + δ)

β1 + σ2
1 l22(1 − δ)

(
1 − exp

[
−
(
β1 + σ2

1 l22(1 − δ)
)
t
])

≤ l21(1 + δ)
β1 + σ2

1 l22(1 − δ)
.

(3.13)

By similar arguments, we obtain that

∣∣∣∣∣
∫ t

t1

exp

[
−
∫ t

s

(
β(r) + σ2(r)e(r)

)
dr

]
α(s)e(s)ds

∣∣∣∣∣ ≥
l22(1 − δ)

β2 + σ2
2 l21(1 + δ)

. (3.14)

Therefore, for any ξ > 0, there exists t(ξ) > 0 such that

l22(1 − δ)
β2 + σ2

2 l21(1 + δ)
≤ ∣∣f(t)∣∣ ≤ l21(1 + δ)

β1 + σ2
1 l22(1 − δ)

∀t ≥ t(ξ). (3.15)
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For all t ≥ t(ξ), we can get from (3.5) that

ġ =
(
2|α| − σ2∣∣f∣∣)∣∣f∣∣

≥
(
2α1 − σ2

2
l21(1 + δ)

β1 + σ2
1 l22(1 − δ)

)
l22(1 − δ)

β2 + σ2
2 l21(1 + δ)

=

(
2α1
(
β1 + σ2

1 l22
) − σ2

2(l21(1 + δ))

β1 + σ2
1 l22(1 − δ)

)
l22(1 − δ)

β2 + σ2
2 l21(1 + δ)

.

(3.16)

By assumption (b6), we get ġ > 0 for a sufficiently small ξ > 0. This implies that g(t) goes to
infinity at least as a linear function. Thus, there exists a constant C > 0, such that

E

(
θ0 − θ̂t

)2
= Sθθ =

e

h
≤ Ct−1. (3.17)

Hence, for arbitrary ε > 0 and all T > 0, it follows from Chebyshev’s inequality that

P
(∣∣∣θ0 − θ̂t

∣∣∣ > ε
)
≤ 1

ε2
CT−1. (3.18)

The proof is complete.

Remark 3.3. From the proof of Theorem 3.2, we can see that θ0 − θ̂t goes to 0 in L2-sense under
the given conditions. In other words, θ̂t is asymptotically unbiased.

Remark 3.4. It is well known that Kalman-Bucy linear filtering theory remains valid if one
replaces the Brownian motion (Wt, Vt) in systems (2.2) and (2.3) by an arbitrary centered
orthogonal increment process of the same covariance structure. Thus, Theorem 3.2 remains
valid under this replacement.

4. Strong Consistency

In last section, we give the conditions for the convergence rate of the estimator. Furthermore,
we use the comparison theorem to proof the strong consistency in this section. As we all
know, if the parameter θ is, a genuine Gaussian random variable, then we can have a clear
statistical interpretation for the convergence rate. Firstly, we pick θ0 at random; secondly, let
system (2.2) run up to time t and simultaneously observe Y by system (2.3); finally, compute
θ̂t as the following form.
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The Kalman-Bucy linear filtering theory shows us

(
dXt

dθt

)
=

(
A(t) − CT (t)C(t)

D2(t)
S(t)

)(
Xt

θt

)
dt +

C(t)
D2(t)

S(t)dYt

=

⎛
⎜⎜⎜⎝

β(t) − μ2(t)
γ2(t)

Sxx(t) α(t)

−μ
2(t)

γ2(t)
Sθx(t) 0

⎞
⎟⎟⎟⎠
(
Xt

θt

)
dt +

μ2(t)
γ2(t)

(
Sxx(t)
Sθx(t)

)
dYt

(4.1)

with initial conditions X̂0 = E[X0] and θ̂0 = E[θ0]. If we denote that Φ(t) is the matrix funda-
mental solution of the deterministic linear system

(
ẋt

ẏt

)
=

⎛
⎜⎜⎜⎝

β(t) − μ2(t)
γ2(t)

Sxx(t) α(t)

−μ
2(t)

γ2(t)
Sθx(t) 0

⎞
⎟⎟⎟⎠
(
x(t)
y(t)

)
, (4.2)

then the solution to (4.1) is given by

(
X̂t

θ̂t

)
= Φ(t)Φ−1(0)

(
E[X0]
E[θ0]

)
+
∫ t

0
Φ(t)Φ−1(s)

(
Sxx(t)
Sθx(t)

)
dYs. (4.3)

And for every particular experiment ω, the quantity (θ0(ω) − θ̂t(ω))2 would be the squared
estimation error.

But in this paper θ is a fixed parameter, so we can only choose θ0(ω) = θ, and then
the statistical mean over different values of θ0(ω) has no experimental meaning. The true
estimation error is given by θ − θ̂t, not θ0 − θ̂t. It is therefore desirable that estimator θ̂t con-
verges to θ0 for “all fixed values υ = θ0” a.s. To establish such an assertion we work with a
product space (R × Ω,B(R) ⊗ F, η ⊗ P), where η denotes the law of θ0, and (Ω,F, P) is the
underlying probability space for Brownian motion (Wt, Vt)t≥0. This space is most appropriate
because one can make P a.s. statements for fixed υ ∈ R. Notice that in this representation we
have θ0(υ,ω) = υ for all (υ,ω) ∈ R ×Ω. Assuming this underlying probability space, we use
the comparison theorem to get the following consistency result.

In the proof of Theorem 3.2, we know that e, f is bonded and g is monotonically
increasing, moreover, Sxx(t) = a = g/h = g/(eg − f2) = (g − f2/e + f2/e)/(eg − f2) =
1/e + f2/e(eg − f2) and Sθx(t) = b = f/h = f/(eg − f2). Thus, there exist positive constants
a1, a2, b1, and b2 such that a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2.

Theorem 4.1. Assume that the following two conditions are satisfied:

(c1) : θ̂t converges to θ0 in L2(η ⊗ P);

(c2) : β2 − μ2
2/γ

2
2 < 0;

(c3) : (β2 − (μ2
2/γ

2
2 )a2)

2 − 4α2(μ2
2/γ

2
2 )b2 < 0.
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Then, for all fixed υ ∈ R, we have

θ̂t(υ, ·) −→ υ, P -a.s., as t −→ ∞. (4.4)

Proof. We will show that (4.4) holds for all υ ∈ Nc, where η(N) = 0.
By Kalman-Bucy linear filtering theory, we know

(
dXt

dθt

)
=

(
A(t) − CT (t)C(t)

D2(t)
S(t)

)(
Xt

θt

)
dt +

C(t)
D2(t)

S(t)dYt

=

⎛
⎜⎜⎜⎝

β(t) − μ2(t)
γ2(t)

Sxx(t) α(t)

−μ
2(t)

γ2(t)
Sθx(t) 0

⎞
⎟⎟⎟⎠
(
Xt

θt

)
dt +

μ2(t)
γ2(t)

(
Sxx(t)
Sθx(t)

)
dYt

(4.5)

with initial conditions X̂0 = E[X0] and θ̂0 = E[θ0] = E[υ] = υ.
Since the following linear equations:

(
ẋt

ẏt

)
=

⎛
⎜⎜⎜⎝

β(t) − μ2(t)
γ2(t)

Sxx(t) α(t)

−μ
2(t)

γ2(t)
Sθx(t) 0

⎞
⎟⎟⎟⎠
(
x(t)
y(t)

)
(4.6)

equal to

ẋt =

[
β(t) − μ2(t)

γ2(t)
Sxx(t)

]
x(t) + α(t)Y (t),

ẏt = − μ2(t)
γ2(t)

Sθx(t)x(t),

(4.7)

it follows from (c1)–(c3) that

β1 −
μ2
1

γ21
a1 ≤ β(t) − μ2(t)

γ2(t)
Sxx(t) ≤ β2 −

μ2
2

γ22
a2 < 0,

α1 ≤ α(t) ≤ α2,

−μ
2
1

γ21
b1 ≤ −μ

2(t)
γ2(t)

Sθx(t) ≤ −μ
2
2

γ22
b2.

(4.8)
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For linear equations:

(
ẋt

ẏt

)
=

⎛
⎜⎜⎜⎜⎜⎝

β1 −
μ2
1

γ21
a1 α1

−μ
2
1

γ21
b1 0

⎞
⎟⎟⎟⎟⎟⎠
(
x(t)
y(t)

)
,

(
ẋt

ẏt

)
=

⎛
⎜⎜⎜⎜⎜⎝

β2 −
μ2
2

γ22
a2 α2

−μ
2
2

γ22
b2 0

⎞
⎟⎟⎟⎟⎟⎠
(
x(t)
y(t)

)
,

(4.9)

if we setΦ1(t) andΦ2(t) that are the matrix fundamental solution of (4.9), we can obtain from
the comparison theorem that

Φ1(t) ≤ Φ(t) ≤ Φ2(t). (4.10)

It is not difficult to explore (4.9), and get

Φ1(t) =

⎛
⎜⎜⎜⎝

− λ′1
N21

eλ
′
1t − λ′2

N21
eλ

′
2t

eλ
′
1t eλ

′
2t

⎞
⎟⎟⎟⎠, Φ2(t) =

⎛
⎜⎜⎝

− λ1
M21

eλ1t − λ2
M21

eλ2t

eλ1t eλ2t

⎞
⎟⎟⎠,

Φ−1
1 (t) =

⎛
⎜⎜⎜⎜⎜⎝

− N21

λ′1 − λ2
e−λ

′
1t − λ′2

λ′1 − λ′2
e−λ

′
1t

N21

λ′1 − λ′2
e−λ

′
2t

λ′1
λ′1 − λ′2

e−λ
′
2t

⎞
⎟⎟⎟⎟⎟⎠

, Φ−1
2 (t)

⎛
⎜⎜⎜⎜⎝

− M21

λ1 − λ2
e−λ1t − λ2

λ1 − λ2
e−λ1t

M21

λ1 − λ2
e−λ2t

λ1
λ1 − λ2

e−λ2t

⎞
⎟⎟⎟⎟⎠,

(4.11)

whereN11 = β1−(μ2
1/γ

2
1 )a1, N12 = α1, N21 = (μ2

1/γ
2
1 )b1, λ

′
1 = (N11+

√
N2

11 − 4N12N21)/2, λ′2 =

(N11 −
√
N2

11 − 4N12N21)/2, M11 = β2 − (μ2
2/γ

2
2 )a2, M12 = α2, M21 = (μ2

2/γ
2
2 )b2, λ1 = (M11 +√

M2
11 − 4M12M21)/2,λ2 = (M11 −

√
M2

11 − 4M12M21)/2.
By assumption (c2) and (c3), we know that λ′1 < 0, λ′2 < 0, λ1 < 0, and λ2 < 0.
By the ODE theory [37, 38] and above discussion, we know that the solution of (4.1) is

given by

(
X̂t

θ̂t

)
= Φ(t)Φ−1(0)

(
E[X0]
E[θ0]

)
+
∫ t

0
Φ(t)Φ−1(s)

(
Sxx(t)
Sθx(t)

)
dYs. (4.12)
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Using the similar method, we can also obtain the solutions for the following two equations:

(
dX̂t

dθ̂t

)
=

⎛
⎜⎜⎜⎜⎜⎝

β1 −
μ2
1

γ21
a1 α1

−μ
2
1

γ21
b1 0

⎞
⎟⎟⎟⎟⎟⎠
(
X̂t

θ̂t

)
dt +

μ1

γ1

(
a1

b1

)
dYt, (4.13)

(
dX̂t

dθ̂t

)
=

⎛
⎜⎜⎜⎜⎜⎝

β2 −
μ2
2

γ22
a2 α2

−μ
2
2

γ22
b2 0

⎞
⎟⎟⎟⎟⎟⎠
(
X̂t

θ̂t

)
dt +

μ2

γ2

(
a2

b2

)
dYt, (4.14)

where X̂0 = E[X0] and θ̂0 = E[θ0] = E[υ] = υ.
The solutions of the two equations are explored as the following form:

(
X̂t

θ̂t

)
= Φ1(t)Φ−1

1 (0)
(

E[X0]
E[θ0]

)
+
∫ t

0
Φ1(t)Φ−1

1 (s)
(
a1

b1

)
dYs,

(
X̂t

θ̂t

)
= Φ2(t)Φ−1

2 (0)
(

E[X0]
E[θ0]

)
+
∫ t

0
Φ2(t)Φ−1

2 (s)
(
a2

b2

)
dYs.

(4.15)

For (4.14), we have that

(
X̂t

θ̂t

)
= Φ2(t)Φ−1

2 (0)
(

E[X0]
E[θ0]

)
+
∫ t

0
Φ2(t)Φ−1

2 (s)
(
a2

b2

)
dYs (4.16)

yields that

θ̂t =
∫ t

0

[
a2

(
M21

λ1 − λ2
e−λ2(t−s) − M21

λ1 − λ2
e−λ2(t−s)

)
+ b2

(
λ1

λ1 − λ2
e−λ2(t−s) − λ2

λ1 − λ2
e−λ2(t−s)

)]
dYs

+
(

M21

λ1 − λ2
e−λ2t − M21

λ1 − λ2
e−λ2t

)
X0 +

(
λ1

λ1 − λ2
e−λ2t − λ2

λ1 − λ2
e−λ2t

)
θ0.

(4.17)

Since λ1 < 0 and λ2 < 0, it is easy to get

θ̂t(υ, ·) −→ υ, P -a.s., as t −→ ∞. (4.18)

For (4.13), we can also get

θ̂t(υ, ·) −→ υ, P -a.s., as t −→ ∞. (4.19)
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Hence, for (4.1), we can get the following result:

θ̂t(υ, ·) −→ υ, P -a.s., as t −→ ∞. (4.20)

The proof is complete.

Remark 4.2. Under the probability space used in this paper, we can see that Theorem 3.2 is the
particular form of Theorem 4.1 if we use Chebyshev’s inequality on the result of Theorem 4.1.

Remark 4.3. The strong consistency in Deck [30] requires that θ̂t is a martingale, while, in our
result, θ̂t can be not a martingale. Furthermore, when θ̂t is a martingale, our result is more
strong than Deck’s, so in that case we can relax the conditions as Deck.

5. Conclusions

In this paper, we have investigated the parameter estimation problem for a class of linear
stochastic systems called Hull-White stochastic differential equations which are important
models in finance. Firstly, Bayesian viewpoint is first chosen to analyze the parameter
estimation problem based on Kalman-Bucy linear filtering theory. Secondly, some sufficient
conditions on coefficients are given to study the asymptotic convergence problem. Finally, the
strong consistent property of estimator is discussed by Kalman-Bucy linear filtering theory
and comparison theorem.
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