
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 342739, 23 pages
doi:10.1155/2012/342739

Research Article
Robust Adaptive Neurocontrol of SISO Nonlinear
Systems Preceded by Unknown Deadzone
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In this study, the problem of controlling an unknown SISO nonlinear system in Brunovsky
canonical form with unknown deadzone input in such a way that the system output follows a
specified bounded reference trajectory is considered. Based on universal approximation property
of the neural networks, two schemes are proposed to handle this problem. The first scheme utilizes
a smooth adaptive inverse of the deadzone. By means of Lyapunov analyses, the exponential
convergence of the tracking error to a bounded zone is proven. The second scheme considers the
deadzone as a combination of a linear term and a disturbance-like term. Thus, the estimation of
the deadzone inverse is not required. By using a Lyapunov-like analyses, the asymptotic converge
of the tracking error to a bounded zone is demonstrated. Since this control strategy requires the
knowledge of a bound for an uncertainty/disturbance term, a procedure to find such bound is
provided. In both schemes, the boundedness of all closed-loop signals is guaranteed. A numerical
experiment shows that a satisfactory performance can be obtained by using any of the two
proposed controllers.

1. Introduction

The deadzone is a nonsmooth nonlinearity commonly found in many practical systems
such as hydraulic positioning systems [1], pneumatic servo systems [2], DC servo motors,
among others. When the deadzone is not considered explicitly during the design process, the
performance of the control system could be degraded by an increase of the steady-state error,
the presence of limit cycles, or inclusive instability [3–6]. A direct way of compensating the
deleterious effect of the deadzone is by calculating its inverse. However, this is not an easy
question because in many practical situations, both the parameters and the output of the
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deadzone are unknown. To overcome this problem, in a pioneer work [3], Tao and Kokotović
proposed to employ an adaptive inverse of the deadzone. This scheme was applied to linear
systems in transfer function form. Cho and Bai [7] extended this work and achieved a perfect
asymptotic adaptive cancellation of the deadzone. However, their work assumed that the
deadzone output was measurable. In [8], the work of Tao and Kokotović was extended to
linear systems in a state space form with nonmeasurable deadzone output. In [9], a new
smooth parameterization of the deadzone was proposed and a class of SISO systems with
completely known nonlinear functions and with linearly parameterized unknown constants
was controlled by using backstepping technique. In order to avoid the construction of the
adaptive inverse, in [10], the same class of nonlinear systems as in [9] was controlled by
means of a robust adaptive approach and by modeling the deadzone as a combination of
a linear term and a disturbance-like term. The controller design in [10] is based on the
assumption that maximum and minimum values for the deadzone parameters are a priori
known. However, a specific procedure to find such bounds is not provided. In order to
extend the class of systems previously considered in [9, 10], in this paper, we propose the
development of two controllers based on universal approximation property of the neural
networks. The first scheme utilizes a smooth adaptive inverse of the deadzone as in [9]. By
means of Lyapunov analyses, the exponential convergence of the tracking error to a bounded
zone is proven. The second scheme considers the deadzone as a combination of a linear term
and a disturbance-like term as in [10]. Thus, the estimation of the deadzone inverse is not
required. By using the Lyapunov-like analyses, the asymptotic converge of the tracking error
to a bounded zone is demonstrated. Since this control strategy requires the knowledge of a
bound for an uncertainty/disturbance term, a procedure to find such bound is provided.
In both schemes, the boundedness of all closed-loop signals is guaranteed. A numerical
experiment with a second-order nonlinear system shows that a satisfactory performance can
be obtained by using any of the two proposed controllers.

2. Preliminaries and Problem Statement

In this study, the systemwhich will be controlled is composed of an unknown nonlinear plant
preceded by an actuator with an unknown deadzone in such a way that the deadzone output
is the input to the plant. Consider that the n-order dynamics of the nonlinear plant can be
represented as follows:

y(n)(t) = f
(
y(t), ẏ(t), . . . , y(n−1)(t)

)
+ bu(t) + ξ(t), (2.1)

where the scalar y(t) is the output of interest, y(i)(t) for i = 1, . . . , n − 1 represents the ith
derivative of y(t)—each one of these derivatives are assumed measurable, u(t) ∈ � is the
deadzone output (and the input to the plant), f : �n → � is an unknown but continuous
nonlinear function, b is an unknown constant, and ξ(t) ∈ � is an unknown but bounded
disturbance. Defining the state variables as x1(t) := y(t), x2(t) := ẏ(t), . . . , xn(t) := y(n−1)(t),
(2.1) can be expressed as follows:

PLANT:

⎧
⎪⎪⎨
⎪⎪⎩

ẋi(t) = xi+1(t), i = 1, . . . , n − 1,
ẋn(t) = f(x(t)) + bu(t) + ξ(t),
y(t) = x1(t),

(2.2)
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where x(t) ∈ �n is the measurable state vector for t ∈ �+ := {t : t ≥ 0}, which is defined
as x(t) := [x1(t), x2(t), . . . , xn(t)]

T = [x1(t), ẋ1(t), . . . , x
(n−1)
1 (t)]T . The nonsymmetric deadzone

can be represented by

DEADZONE: u(t) = DZ(v(t)) =

⎧
⎪⎪⎨
⎪⎪⎩

mr(v(t) − br) v(t) ≥ br,
0 bl < v(t) < br,
ml(v(t) − bl) v(t) ≤ bl,

(2.3)

wheremr andml are the right and left constant slopes for the deadzone characteristic, br and
bl represent the right and left constant breakpoints, u(t) ∈ � and v(t) ∈ � are the output and
the input of the deadzone, respectively. Note that v(t) is the actual control input to the global
system formed by the actuator and the plant. In accordance with [3, 4], the deadzone model
(2.3) is a static simplification of diverse physical phenomena with negligible fast dynamics.
Hereafter, it is considered that the following assumptions are valid.

Assumption 2.1. Without loss of generality, the unknown constant b is assumed positive.

Assumption 2.2. The deadzone output u(t) is not available for measurement.

Assumption 2.3. Although the deadzone parameters br, bl, mr , and ml are unknown
constants, we can assure that br > 0, bl < 0, mr > 0, andml > 0.

The objective that we are trying to achieve is to determine a control signal v(t) such
that the output of the plant (2.2), y(t) = x1(t), follows a specified reference trajectory yr(t),
and, at the same time, all closed-loop signals stay bounded.

2.1. Smooth Parameterization of the Deadzone

A direct way of compensating the deleterious effect of the deadzone is by calculating its
inverse. From (2.3), the deadzone inverse can be obtained as

v(t) = DZ−1(u(t)) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(t) +mrbr
mr

u(t) ≥ 0,

(bl, br) u(t) = 0,
u(t) +mlbl

ml
u(t) ≤ 0.

(2.4)

Notwithstanding, clearly this is a discontinuous function. A smooth approximation of (2.4)
was presented in [9] as

v(t) ≈ u(t) +mrbr
mr

φr(u(t)) +
u(t) +mlbl

ml
φl(u(t)), (2.5)
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where

φr(u(t)) :=
exp(u(t)/εo)

exp(u(t)/εo) + exp(−u(t)/εo) ,

φl(u(t)) :=
exp(−u(t)/εo)

exp(u(t)/εo) + exp(−u(t)/εo)

(2.6)

and εo is a positive constant chosen by the designer. Since both the parameters and the
output of the deadzone are unknown, approximation (2.5) cannot be utilized directly. To
overcome this problem, a smooth parameterization of the deadzone was proposed in [9].
For completeness, this parameterization is explained here. Note that (2.3) can be expressed
alternatively as

u(t) = −θTω(t), (2.7)

where θ = [mr,mrbr,ml,mlbl]
T , ω(t) = [−σr(t)v(t), σr(t),−σl(t)v(t), σl(t)]T :

σr(t) =

{
1 if v(t) ≥ br,
0 otherwise,

σl(t) =

{
1 if v(t) ≤ bl,
0 otherwise.

(2.8)

Given that u(t), θ, and ω(t) are unknown, the deadzone output u(t) is approximated by

ud(t) := −θ̂T (t)ω̂(t), (2.9)

where θ̂(t) := [m̂r , ̂mrbr, m̂l, m̂lbl]
T is an estimation of θ and ω̂(t) :=

[−φr(v(t))v(t), φr(v(t)),−φl(v(t))v(t), φl(v(t))]T . From (2.7) and (2.9), u(t) can be expressed
as

u(t) = ud(t) +
(
θ̂(t) − θ

)T
ω̂(t) + dN(t), (2.10)

where dN(t) := θT (ω̂(t)−ω(t)). Although dN(t) is an unknown term, its boundedness can be
guaranteed [11]. Consider that the positive constant dN is an upper bound for dN(t), that is,
|dN(t)| ≤ dN . From (2.9), v(t) can be expressed in terms of ud(t) as

v(t) =
ud(t) + ̂mrbr

m̂r
φr(ud(t)) +

ud(t) + m̂lbl
m̂l

φl(ud(t)). (2.11)

This expression can be utilized only if vector θ̂(t) is properly determined. To avoid the
singularity problem, note that m̂r and m̂l must always be different from zero.
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2.2. Deadzone Representation as a Linear Term and a Disturbance-Like Term

For the particular case when m := mr = ml, the deadzone model (2.3) can alternatively be
described as [10, 12]

u(t) = mv(t) + d(t), (2.12)

where d(t) is given by

d(t) =

⎧
⎪⎪⎨
⎪⎪⎩

−mbr v(t) ≥ br,
−mv(t) bl < v(t) < br,
−mbl v(t) ≤ bl.

(2.13)

Note that (2.13) is the negative of a saturation function. Thus, although d(t) could not be
exactly known, its boundedness can be assured. Consider that the positive constant d is an
upper bound for d(t), that is, |d(t)| ≤ d.

3. Neurocontroller Design and Stability Analyses

Based on the universal approximation property of the neural networks, two control schemes
are presented in this section to handle the trajectory tracking problem.

Assumption 3.1. The reference trajectory yr(t) and their first n-derivatives are continuous and
bounded. Besides, all these variables are available for the design.

Given the reference trajectory yr(t) and their first (n − 1)-derivatives, the vector xr(t)
can be defined as xr(t) := [xr,1(t), xr,2(t), . . . , xr,n(t)]

T = [yr(t), ẏr(t), . . . , y
(n−1)
r (t)]T . Let us

define the filtered tracking error r(t) as

r(t) :=
(
d

dt
+ λr

)n−1
e1(t), (3.1)

where e1(t) is the first element of the tracking error vector e(t) which is defined simply as
e(t) := x(t) − xr(t) = [e1(t), e2(t), . . . , en(t)]

T = [e1(t), ė1(t), . . . , e
(n−1)
1 (t)]T and λr is a positive

constant chosen by the designer. Note that r(t) can also be expressed as

r(t) = ΛT
r e(t), (3.2)

where Λr ∈ �n is a constant vector given by Λr := [λn−1r , (n − 1)λn−2r , . . . , 1]T .
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Remark 3.2. Note that, from (3.1), r(t) can be considered as the input to a stable linear system
whose output is e1(t). Consequently, if r(t) ∈ L∞, then e1(t), e(t) ∈ L∞. Specifically, e(t) has
the following properties proven in [13]: (i) e(t) converges exponentially to zero, if r(t) = 0,
(ii) if e(0) = 0 and |r(t)| ≤ ς where ς is a positive constant, then e(t) belongs to a compact
set R given by R = {e(t) ∈ �n such that |ei(t)| ≤ 2i−1λi−nr ς, i = 1, . . . , n} for ∀ t ≥ 0, and (iii) if
e(0)/= 0 and |r(t)| ≤ ς, then e(t)will converge to Rwithin a time-constant (n − 1)/λr .

The first derivative of r(t) can be calculated as

ṙ(t) =
(
d

dt
+ λr

)n

e1(t) = ẋn(t) − ẋr,n(t) + Λ
T

r e(t), (3.3)

where Λr := [0, λn−1r , (n − 1)λn−2r , . . . , (n − 1)λr]
T .

Now then, it is well known that any unknown continuous function can be
approximated on a compact set Ω by a neural network as follows [14–16]:

f(x) =W∗σ(x) + η(x), ∀x ∈ Ω ⊂ �n, (3.4)

where σ(·) is the activation vector function with sigmoidal components, that is, σ(·) :=
[σ1(·), . . . , σs(·)]T :

σj(x(t)) :=
aσj

1 + exp
(−∑n

i=1 cσj,ixi(t)
) − dσj for j = 1, . . . , s, (3.5)

where aσj , cσj,i, and dσj are positive constants which can be specified by the designer, η :
�n → � is the approximation error which is bounded by |η(x)| < η for all x ∈ Ω, η is a
positive constant, andW∗ ∈ �1×s is an unknown constant vector. Typically,W∗ is considered
as the optimal weight such that

W∗ = arg min
W∈�1×s

{
sup
x∈Ω

∣∣f(x) −Wσ(x)
∣∣
}
. (3.6)

By substituting (3.4) into (2.2), the following alternative representation for the plant
dynamics can be obtained:

ẋn(t) =W∗σ(x) + bu(t) + η(x) + ξ(t). (3.7)

By substituting (3.7) into (3.3), we get

ṙ(t) =W∗σ(x) + bu(t) − ẋr,n(t) + Λ
T

r e(t) + η(x) + ξ(t). (3.8)

3.1. Scheme I

A control scheme which does not require the specific knowledge of the upper bound for the
term η(x) + ξ(t) + bdN(t) is developed below.
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In order to take into account the effect of the deadzone, the adaptive parameterization
model (2.10) is substituted into (3.8):

ṙ(t) =W∗σ(x) + bud(t) + b
(
θ̂(t) − θ

)T
ω̂(t) − ẋr,n(t) + Λ

T

r e(t) + η(x) + ξ(t) + bdN(t). (3.9)

Consider that ud(t) is chosen as

ud(t) = p̂(t)ud(t), (3.10)

where p̂(t) is an online estimation of p := 1/b and ud(t) is selected as

ud(t) = −W(t)σ(x(t)) − kr(t) + ẋr,n(t) −Λ
T

r e(t), (3.11)

whereW(t) is an online estimation ofW∗ and k is a positive constant. Note that

ud(t) = p̂(t)ud(t) =
(
p̂(t) + p − p)ud(t)

=
(
p − {

p − p̂(t)})ud(t) = pud(t) − p̃(t)ud(t),
(3.12)

where p̃(t) := p − p̂(t). If (3.12) is substituted into (3.9), the following is obtained:

ṙ(t) = W∗σ(x) + b
(
pud(t) − p̃(t)ud(t)

)
+ b

(
θ̂(t) − θ

)T
ω̂(t)

− ẋr,n(t) + Λ
T

r e(t) + η(x) + ξ(t) + bdN(t)

= W∗σ(x) + ud(t) − bp̃(t)ud(t) + b
(
θ̂(t) − θ

)T
ω̂(t)

− ẋr,n(t) + Λ
T

r e(t) + η(x) + ξ(t) + bdN(t).

(3.13)

Now, by substituting (3.11) into (3.13) and reducing like terms, the filtered tracking error
dynamics can be expressed as

ṙ(t) = W∗σ(x(t)) −W(t)σ(x(t)) − kr(t) + ẋr,n(t) −Λ
T

r e(t) − bp̃(t)ud(t)

+ b
(
θ̂(t) − θ

)T
ω̂(t) − ẋr,n(t) + Λ

T

r e(t) + η(x) + ξ(t) + bdN(t)

= W̃(t)σ(x(t)) − kr(t) − bp̃(t)ud(t) + b
(
θ̂(t) − θ

)T
ω̂(t) + δ(t),

(3.14)

where W̃(t) := W∗ −W(t) and δ(t) := η(x) + ξ(t) + bdN(t) is an unknown term but bounded
by the positive constant δ, that is, |δ(t)| ≤ δ.
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Once the filtered tracking error dynamics has been determined, the following
Lyapunov function candidate is suggested:

V (t) =
1
2
r2(t) +

1
2k1

W̃(t)W̃T (t) +
1
2k2

p̃2(t) +
1
2k3

θ̃T (t)θ̃(t), (3.15)

where θ̃(t) := θ − θ̂(t), and k1, k2, and k3 are positive constants. The first derivative of V (t) is

V̇ (t) = r(t)ṙ(t) +
d

dt

(
1
2k1

W̃(t)W̃T (t)
)
+
d

dt

(
1
2k2

p̃2(t)
)
+
d

dt

(
1
2k3

θ̃T (t)θ̃(t)
)
. (3.16)

The first derivative of (1/2k1)W̃(t)W̃T(t) can be calculated as follows.

d

dt

(
1
2k1

W̃(t)W̃T (t)
)

=
1
2k1

˙̃W(t)W̃T (t) +
1
2k1

W̃(t) ˙̃W
T
(t). (3.17)

Since ˙̃W(t)W̃T(t) is a scalar and the transpose of a scalar is the same scalar, then

d

dt

(
1
2k1

W̃(t)W̃T (t)
)

=
1
2k1

W̃(t) ˙̃W
T
(t) +

1
2k1

W̃(t) ˙̃W
T
(t) =

1
k1
W̃(t) ˙̃W

T
(t). (3.18)

Proceeding in a similar way for (d/dt)((1/2k3)θ̃T (t)θ̃(t)), it can be determined that

d

dt

(
1
2k3

θ̃T (t)θ̃(t)
)

=
1
k3
θ̃T (t) ˙̃θ(t). (3.19)

Substituting (3.14), (3.18), and (3.19) into (3.16) yields

V̇ (t) = r(t)W̃(t)σ(x(t)) − kr2(t) − bp̃(t)ud(t)r(t) + b
(
θ̂(t) − θ

)T
ω̂(t)r(t)

+ δ(t)r(t) +
1
k1
W̃(t) ˙̃W

T
(t) +

b

k2
p̃(t) ˙̃p(t) +

b

k3
θ̃T (t) ˙̃θ(t).

(3.20)

Consider that the learning laws forW(t), p̂(t), and θ̂(t) are chosen as

Ẇ(t) = k1r(t)σT (x(t)) − �1
(
W(t) −W0

)
, (3.21)

˙̂p(t) = −k2ud(t)r(t) − �2
(
p̂(t) − p0

)
, (3.22)

˙̂θ(t) = Proj
{
−k3r(t)ω̂(t) − �3

(
θ̂(t) − θ0

)}
, (3.23)

where �1, �2, and �3 are positive constants, W0, p0, and θ0 are ideally (but not necessarily)
good estimations of W∗, p, and θ, respectively, and Proj represents a smooth projection
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operation as in [17] or [18] in order to avoid that m̂r and m̂l can be equal to zero. In
accordance with (3.21), (3.22), and (3.23) and taking into account that ˙̃W(t) = −Ẇ(t),
˙̃p(t) = − ˙̂p(t), and ˙̃θ(t) = − ˙̂θ(t), (3.20) can be expressed as

V̇ (t) = − kr2(t) + δ(t)r(t) + b
(
θ̂(t) − θ

)T
ω̂(t)r(t) +

�1
k1
W̃(t)

(
W(t) −W0

)T

+
�2b

k2
p̃(t)

(
p̂(t) − p0

)
− b

k3
θ̃T (t)Proj

{
−k3r(t)ω̂(t) − �3

(
θ̂(t) − θ0

)}
.

(3.24)

In [11], it is mentioned that the projection operation has the following property:

−
(
θ − θ̂(t)

)T
Proj

{
ψ(t)

} ≤ −
(
θ − θ̂(t)

)T
ψ(t). (3.25)

On the other hand, the truthfulness of the following inequalities was proven in [9]

�2b

k2
p̃(t)

(
p̂(t) − p0

)
≤ − �2

2k2
bp̃2(t) +

�2
2k2

b
(
p − p0

)2
,

�3
k3

(
θ − θ̂(t)

)T(
θ̂(t) − θ0

)
≤ − �3

2k3
θ̃T (t)θ̃(t) +

�3
2k3

(
θ − θ0

)T(
θ − θ0

)
.

(3.26)

Likewise, it can be demonstrated that

�1
k1
W̃(t)

(
Wt −W0

)T ≤ − �1
2k1

W̃(t)W̃T (t) +
�1
2k1

(
W∗ −W0

)(
W∗ −W0

)T
,

δ(t)r(t) ≤ 1
2
r2(t) +

1
2
δ2(t) ≤ 1

2
r2(t) +

1
2
δ
2
.

(3.27)

If the inequalities (3.25), (3.26), (3.27) are substituted into (3.24), we obtain

V̇ (t) ≤ − (2k − 1)
2

r2(t) − �1
2k1

W̃(t)W̃T(t) − �2
2k2

bp̃2(t) − �3
2k3

θ̃T (t)θ̃(t)

+
�1
2k1

(
W∗ −W0

)(
W∗ −W0

)T
+
�2
2k2

b
(
p − p0

)2
+
�3
2k3

(
θ − θ0

)T(
θ − θ0

)
+
1
2
δ
2
.

(3.28)
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If k > 0.5 and defining α := min{(2k − 1), �1, �2, �3} and

β :=
(
�1
2k1

)(
W∗ −W0

)(
W∗ −W0

)T
+
�2
2k2

b
(
p − p0

)2

+
�3
2k3

(
θ − θ0

)T(
θ − θ0

)
+
1
2
δ
2
,

(3.29)

the following bound as a function of V (t) can finally be determined for V̇ (t):

V̇ (t) ≤ −αV (t) + β (3.30)

(3.30) can be rewritten in the following form:

V̇ (t) + αV (t) ≤ β. (3.31)

Multiplying both sides of the last inequality by exp(αt), it is possible to obtain

exp(αt)V̇ (t) + α exp(αt)V (t) ≤ β exp(αt). (3.32)

The left-hand side of (3.32) can be rewritten as

d

dt

(
exp(αt)V (t)

) ≤ β exp(αt) (3.33)

or, equivalently, as

d
(
exp(αt)V (t)

) ≤ β exp(αt)dt. (3.34)

Integrating both sides of the last inequality from 0 to t yields

exp(αt)V (t) − V (0) ≤
∫ t

0
β exp(ατ)dτ. (3.35)

Adding V (0) to both sides of the last inequality, we obtain

exp(αt)V (t) ≤ V (0) +
∫ t

0
β exp(ατ)dτ. (3.36)
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Multiplying both sides of the inequality (3.36) by exp(−αt) yields

V (t) ≤ exp(−αt)V (0) + exp(−αt)
∫ t

0
β exp(ατ)dτ, (3.37)

and, consequently

V (t) ≤ V (0) exp(−αt) + β

α

(
1 − exp(−αt)). (3.38)

As α and β are positive constants, the right-hand side of the last inequality can be bounded
by V (0) + β/α. Thus, V (t) ∈ L∞ and since by construction V (t) is a nonnegative function,
the boundedness of r(t), W̃(t), p̃(t), and θ̃(t) can be guaranteed. Because W∗, p, and θ are
bounded, W(t) = W∗ − W̃(t), p̂(t) = p − p̃(t), and θ̂(t) = θ − θ̃(t) must be bounded too. If
r(t) ∈ L∞, from Remark 3.2, we can assure that e(t) ∈ L∞ and converges to R. From (3.11), it
can be seen that ud(t) is formed by bounded terms and consequently ud(t) ∈ L∞. From (3.10),
it can be seen that ud(t) is the product of two bounded variables. Therefore, ud(t) ∈ L∞. As
ud(t), θ̂(t) ∈ L∞, and m̂r and m̂l are always different from zero, from (2.11), the boundedness
of v(t) can be concluded. Now, note that the following is true: (1/2)r2(t) ≤ V (t). Taking into
account this fact and from (3.38), we get

|r(t)| ≤
√
2V (0) exp(−αt) + 2β

α

(
1 − exp(−αt)). (3.39)

By taking the limit as t → ∞ of the last inequality, we can guarantee that |r(t)| converges
exponentially fast to a zone bounded by the term

√
2β/α. Based on this fact together with

Remark 3.2, we can conclude that e1(t) = y(t) − yr(t) converges exponentially fast to a region
around zero bounded by the term (1/λn−1r )

√
2β/α. Thus, the following theorem has been

proven.

Theorem 3.3. If Assumptions 2.1–3.1 are satisfied, k > 0.5, and the control law (2.11), (3.10), (3.11)
with the learning laws (3.21), (3.22), and (3.23) are applied to the system formed by (2.2)-(2.3), then
the following hold:

(a) the filtered tracking error, tracking error, the weights, the estimations of the control gain
reciprocal and the deadzone parameters, and the control signal are bounded:

r(t), e(t),W(t), p̂(t), θ̂(t), v(t) ∈ L∞, (3.40)

(b) the actual tracking error y(t) − yr(t) converges exponentially fast to a region around zero
bounded by the term:

1
λn−1r

√
2β
α
. (3.41)
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3.2. Scheme II

A simpler scheme can be obtained by using the model (2.12) and the tuning error rε(t)
instead of the model (2.10) and the filtered tracking error r(t), respectively. However, the
implementation of this scheme requires necessarily the a priori knowledge of a good bound
for the term η(x) + ξ(t) + bd(t). The development of this scheme is explained below.

If the deadzone model (2.12) is substituted into (3.8), we have

ṙ(t) =W∗σ(x(t)) + bmv(t) − ẋr,n(t) + Λ
T

r e(t) + η(x) + ξ(t) + bd(t). (3.42)

Note that, by using the model (2.12), the actual control input v(t) appears now directly into
the error dynamics (3.42) only multiplied by a constant gain bm.

Consider that v(t) is chosen as

v(t) = q̂(t)v(t), (3.43)

where q̂(t) is an online estimation of q := 1/bm and v(t) is selected as

v(t) = −W(t)σ(x(t)) − kr(t) − k∗ sat
(
r(t)
ε

)
+ ẋr,n(t) −Λ

T

r e(t), (3.44)

where W(t) is an online estimation of W∗; k, k∗, and ε are positive constants, and sat(·)
represents a saturation function given by

sat(z) =

⎧
⎪⎪⎨
⎪⎪⎩

1 for z ≥ 1,
z for − 1 < z < 1,
−1 for z ≤ −1.

(3.45)

Note that

v(t) = q̂(t)v(t) =
(
q̂(t) + q − q)v(t) = qv(t) − q̃(t)v(t), (3.46)

where q̃(t) := q − q̂(t).
Substituting (3.46) into (3.42) yields

ṙ(t) = W∗σ(x) + bm
(
qv(t) − q̃(t)v(t)) − ẋr,n(t) + Λ

T

r e(t) + η(x) + ξ(t) + bd(t)

= W∗σ(x) + v(t) − bmq̃(t)v(t) − ẋr,n(t) + Λ
T

r e(t) + η(x) + ξ(t) + bd(t).
(3.47)
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If (3.44) is substituted into (3.47) and reducing like terms, the filtered tracking error dynamics
can be expressed as

ṙ(t) = W∗σ(x(t)) −W(t)σ(x(t)) − kr(t) − k∗ sat
(
r(t)
ε

)

+ ẋr,n(t) −Λ
T

r e(t) − bmq̃(t)v(t) − ẋr,n(t) + Λ
T

r e(t) + η(x) + ξ(t) + bd(t)

= W̃(t)σ(x(t)) − kr(t) − k∗ sat
(
r(t)
ε

)
− bmq̃(t)v(t) + ζ(t),

(3.48)

where W̃(t) :=W∗ −W(t) and ζ(t) := η(x) + ξ(t) + bd(t) is an unknown term bounded by the
positive constant ζ, that is, |ζ(t)| ≤ ζ. Consider the following Lyapunov function candidate:

V (t) =
1
2
r2ε (t) +

1
2k1

W̃(t)W̃T (t) +
bm

2k2
q̃2(t), (3.49)

where k1 and k2 are positive constants and rε(t) is the tuning error defined as [10]

rε(t) = r(t) − ε sat
(
r(t)
ε

)
. (3.50)

Taking into account (3.18), the first derivative of V (t) can be calculated as

V̇ (t) = rε(t)ṙε(t) +
1
k1
W̃(t) ˙̃W

T
(t) +

bm

k2
q̃(t) ˙̃q(t). (3.51)

It can be demonstrated that rε(t)ṙε(t) = rε(t)ṙ(t). By substituting (3.48) into the last equality
and the resulting expression into (3.51), we get

V̇ (t) = W̃(t)σ(x(t))rε(t) − kr(t)rε(t) − k∗rε(t) sat
(
r(t)
ε

)

− bmq̃(t)v(t)rε(t) + rε(t)ζ(t) + 1
k1
W̃(t) ˙̃W

T
(t) +

bm

k2
q̃(t) ˙̃q(t).

(3.52)

Consider that ˙̃W(t) and ˙̃q(t) are chosen as

˙̃W(t) = −k1σT (x(t))rε(t), (3.53)

˙̃q(t) = k2v(t)rε(t). (3.54)

If (3.53) and (3.54) are substituted into (3.52), we obtain

V̇ (t) = −kr(t)rε(t) − k∗rε(t) sat
(
r(t)
ε

)
+ rε(t)ζ(t). (3.55)
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Now, from (3.50),

r(t) = rε(t) + ε sat
(
r(t)
ε

)
. (3.56)

Besides,

rε(t)ζ(t) ≤ |rε(t)ζ(t)| = |rε(t)||ζ(t)| ≤ |rε(t)|ζ. (3.57)

Substituting (3.56) and (3.57) into (3.55) yields

V̇ (t) = −k
(
rε(t) + ε sat

(
r(t)
ε

))
rε(t) − k∗rε(t) sat

(
r(t)
ε

)
+ rε(t)ζ(t)

≤ −kr2ε (t) − kεrε(t) sat
(
r(t)
ε

)
− k∗rε(t) sat

(
r(t)
ε

)
+ |rε(t)|ζ.

(3.58)

Considering that rε(t) sat(r(t)/ε) = |rε(t)|, (3.58) can be expressed as

V̇ (t) ≤ −kr2ε (t) − kε|rε(t)| − k∗|rε(t)| + |rε(t)|ζ. (3.59)

Note that, if k∗ and k are selected in such a way that k∗ + kε > ζ, then

V̇ (t) ≤ −kr2ε (t) −
(
k∗ + kε − ζ

)
|rε(t)| ≤ −kr2ε (t). (3.60)

Because k is a positive constant, the last inequality implies that V̇ (t) ≤ 0. Based on this fact, it
is possible to establish that V (t) ≤ V (0) and, therefore, V (t) ∈ L∞. Since V (t) is a nonnegative
function, rε(t), W̃(t) and q̃(t) belongs to L∞. BecauseW(t) = W∗ − W̃(t), and q̂(t) = q − q̃(t),
and as W∗ and q are constants, the boundedness of W(t) and q̂(t) can be guaranteed. From
the definition of tuning error (3.50) and as ε sat(r(t)/ε) is a bounded term, if rε(t) ∈ L∞, then
r(t) ∈ L∞. Keeping in view the above fact, and on the basis of Remark 3.2, the boundedness
of e(t) can be assured. Now, it can be seen from (3.44) that v(t) is formed by bounded terms.
Thus, v(t) ∈ L∞. Likewise, it can be seen from (3.43) that v(t) is the product of two bounded
variables and consequently v(t) is also bounded. On the other hand, an inspection of (3.48)
reveals that ṙ(t) ∈ L∞. From (3.50), this means that ṙε(t) is bounded too. Integrating both
sides of (3.60) from 0 to t yields

V (t) − V (0) ≤ −k
∫ t

0
r2ε (τ)dτ. (3.61)

Note that the last inequality can be expressed as

∫ t

0
r2ε (τ)dτ ≤ V (0) − V (t)

k
. (3.62)
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Since V (t) is a nonnegative function, the following is true:

V (t) ≥ 0 =⇒ V (t) − V (0) ≥ −V (0) =⇒ V (0) − V (t) ≤ V (0). (3.63)

Substituting (3.63) into (3.62) yields

∫ t

0
r2ε (τ)dτ ≤ V (0)

k
(3.64)

taking the limit as t → ∞ of both sides of the last inequality, finally, we obtain

∫∞

0
r2ε (τ)dτ ≤ V (0)

k
. (3.65)

This means that rε(t) ∈ L2. As rε(t) ∈ L2 ∩ L∞ and ṙε(t) ∈ L∞, from Barbalat’s Lemma, we can
conclude that rε(t) converges asymptotically to zero. From definition (3.50), this implies that
r(t) asymptotically converges to a region around zero bounded by ε. In view of the above
and from Remark 3.2, we can conclude that e1(t) = y(t) − yr(t) converges asymptotically
to a region around zero bounded by the term ε/λn−1r . Thus, the following theorem has been
proven.

Theorem 3.4. If Assumptions 2.1–3.1 are satisfied, k∗ + kε > ζ, and the control input (3.43), (3.44)
with the learning laws Ẇ(t) = k1σ

T (x(t))rε(t), ˙̂q(t) = −k2v(t)rε(t) are applied to the system (2.2)-
(2.3), then

(a) the tuning error, the filtered tracking error, tracking error, the weights, the bm reciprocal
estimation, and the control signal are bounded:

rε(t), r(t), e(t),W(t), q̂(t), v(t) ∈ L∞, (3.66)

(b) the actual tracking error y(t) − yr(t) converges asymptotically to a region around zero
bounded by the term

ε

λn−1r

, (3.67)

where ε and λr are positive constants chosen by the designer.

3.2.1. Estimation of a Bound for ζ(t)

Certainly, compared with the scheme I, the structure of the scheme II is simpler. Nevertheless,
the implementation of this last scheme requires a good estimation of ζ in order to guarantee
the theoretical performance provided by Theorem 3.4. Here, we propose an offline practical
procedure to achieve this goal.
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Consider that some experimental data (xti , v(ti))i=1,...,N are available (see Remark 3.5).
By substituting (2.12) into (3.7), we obtain

ẋn(t) =W∗σ(x(t)) + bmv(t) + ζ(t). (3.68)

Certainly, if ẋn(t), W∗, and bm could be known, ζ(t) can be completely determined. By
hypothesis, xn(t) is known. However, because of the noise, ẋn(t) must not be calculated
directly from xn(t). Instead, a robust differentiation strategy should be used such as sliding
modes [19], high-order sliding modes [20, 21], or smoothing by least squares, among others.
Hereafter, the estimation of ẋn(t) is denoted by ẋn(t). Once ẋn(t) is obtained, let us consider
the following regression model:

W∗σ(x(ti)) + bmv(ti) = ẋn(ti) + χ(ti), (3.69)

where χ(ti) is simply an error term. By defining Xti := [σT (x(ti)), v(ti)], and Φ := [W∗, bm],
(3.69) can be expressed as

ΦXT
ti
= ẋn(ti) + χ(ti). (3.70)

By using least-squares method, Φ can be estimated as

Φ =
[
W∗, bm

]
= argmin

Φ

N∑
i=1

χ2(ti) =
((

XTX
)−1

XTY

)T

, (3.71)

where X := [Xt1 , . . . , XtN ]
T and Y = [ẋn(t1), . . . , ẋn(tN)]

T
. Once Φ is determined, ζ(t) can be

approximated as

ζ(t) ≈ ẋn(t) −W∗σ(x(t)) − bmv(t). (3.72)

Next, ζ can be estimated from (3.72).

Remark 3.5. These experimental data can be generated by trying to use the neurocontroller II
with relatively large values for the constant parameters. A first attempt could be to let k = 100
and k∗ = 50. If the tracking is not satisfactory, then larger values could be tried.

Remark 3.6. Alternatively, in [22], the determination of an error term δ(t) is achieved by using
of sliding modes.



Mathematical Problems in Engineering 17

4. Numerical Example

In this section, the proposed neurocontrollers are tested by simulation on the following
second order nonlinear system:

ẋ1(t) = x2(t),

ẋ2(t) = − 2.3
(
1 − exp(−x1(t))
1 + exp(−x2(t))

)
+ 3.7

x2(t) sin(x1(t)x2(t)) cos(x2(t))
x2
1(t) + x

2
2(t) + 1

+ 1.5x1(t)x2(t) + 0.7x1(t)x3
2(t) sin(2x1(t)) + 0.4x2

1(t)x2(t) + 3.5u(t) + ξ(t).

(4.1)

The initial condition for system (4.1) is x1(0) = 1, x2(0) = −1; u(t) is the deadzone output
whose parameters aremr = ml = 1.5, br = 2.5, bl = −2; ξ(t), the disturbance term is selected as
ξ(t) = sin(10t). The following reference trajectory is proposed yr(t) = − cos(t)+1.5 cos(2t)−0.5.
The first and second derivative of yr(t) can be calculated analytically. In another case,
a robust differentiation method must be used. It is very important to mention that the
nonlinear system (4.1), the exact values for deadzone parameters, and the disturbance term
are assumed completely unknown for the neurocontrollers during the design and simulation
process. That is, the system (4.1) is only used as a data generator.

With respect to the tuning process, we must recognize that, similarly to many
techniques of adaptive control, we do not have a systematic procedure in order to find the
proper values for the controller parameters. Instead, an approach by trial and error is used.
Thus, through various iterative simulations, the following values for the parameters of the
neurocontroller I were found:

k = 100, ε0 = 0.2, k1 = 400, l1 = 2, k2 = 10, l2 = 1,

k3 = 100, l3 = 1, λr = 1, W0 = [1, 0, 1, 0.5],

W(0) =W0, θ0 = [1, 1, 1,−1]T , θ(0) = θ0, p0 = 1, p(0) = p0,

σj(x(t)) =
2(

1 + exp
(
−∑2

i=1 cσj,ixi(t)
)) − 1 for j = 1, 2, 3, 4,

cσ1,1 = 1, cσ1,2 = 1, cσ2,1 = 0.5, cσ2,2 = 0.5,

cσ3,1 = 2, cσ3,2 = 2, cσ4,1 = 0.4, cσ4,2 = 0.8.

(4.2)

Notice that a great freedom is allowed in order to selectW0, θ0, and p0. However, the designer
should be aware of that as these parameters take values increasingly different from the
optimal ones, the parameter β in Theorem 3.3 becomes larger. On the other hand, we have
seen that by setting W(0) = W0, θ(0) = θ0, and p(0) = p0, a more regular behavior of the
closed-loop system can be obtained [23, 24].
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Figure 1: Simulink block diagram for the neurocontroller I.
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Figure 2: Tracking process for the neurocontroller I.

The simulation is carried out by means of Simulink with ode45 method, relative
tolerance equal to 1e−6, and absolute tolerance equal to 1e−8. A Simulink block diagram for
the neurocontroller based on scheme I is shown in Figure 1. The results of the tracking process
are presented in Figures 2–4 for the first 20 seconds of the simulation. In Figure 2, the output
of nonlinear system (4.1), y(t) = x1(t), is represented by dashed line whereas the reference
trajectory yr(t) is represented by solid line. In spite of the difference between y(0) and yr(0),
the tracking process shows a satisfactory behavior. This can be verified more specifically in
Figure 3 where the actual tracking error, y(t)−yr(t), is illustrated. In order to appreciate better
the quality of the tracking process, a zoom of Figure 3 is presented in Figure 4. From Figures
3 and 4, we can appreciate that the actual tracking error converges fast to a zone bounded by
0.02. Finally, the control signal v(t) acting as the input of deadzone is shown in Figure 5.
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Figure 3: Tracking error evolution for the neurocontroller I.
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Figure 4: Tracking error evolution for the neurocontroller I (zoom of Figure 3).

For the case of the neurocontroller II, its parameters are selected very similarly to
the neurocontroller I parameters in order to provide a proper reference for comparison. The
parameters of the neurocontroller II are

k = 100, k∗ = 30, ε = 0.1, k1 = 400, k2 = 10, λr = 1,

W0 = [1, 0, 1, 0.5], W(0) =W0, q0 = 1, q(0) = q0,

σj(x(t)) =
2(

1 + exp
(
−∑2

i=1 cσj,ixi(t)
)) − 1 for j = 1, 2, 3, 4,

cσ1,1 = 1, cσ1,2 = 1, cσ2,1 = 0.5, cσ2,2 = 0.5,

cσ3,1 = 2, cσ3,2 = 2, cσ4,1 = 0.4, cσ4,2 = 0.8.

(4.3)

A Simulink block diagram for the neurocontroller based on scheme II is shown in Figure 6.
Since a very similar performance is obtained, the signals of the actual tracking error for the
two neurocontrollers are presented together in Figure 7. In Figure 8, a zoom of Figure 7 is
presented. As can be seen from Figures 7 and 8, the actual tracking error for the controller II
converges fast to a zone bounded by 0.02. This is a remarkable behavior since Theorem 3.4
only guarantees the asymptotical convergence to a zone bounded by 0.2. Finally, the control
signals of the two neurocontrollers are displayed in Figure 9.
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Figure 5: Control signal of the scheme I.
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Figure 9: Control signals of the two schemes.

So far, the neurocontroller II has been used in a nonrigorous way. In order to guarantee
its stability, a bound for ζ(t) must be first determined. By using the procedure presented
in Section 3, W∗, bm can be estimated as W∗ = [10.7869,−29.0274,−7.4315, 19.3033], bm =
0.2453. With these parameters, the maximum value for ζ(t) is estimated as 7.5819 and
a very conservative bound for ζ(t) can be established as ζ = 16. In view of the above
and in accordance with the selected values for the neurocontroller II parameters and from
Theorem 3.4, the stability of the closed-loop system can be guaranteed.

As the comparison between two empirically tuned techniques is necessarily limited,
the main objective of this numerical example was rather to show that by using any of the
two proposed controllers, a good performance can be obtained. Notwithstanding, it must be
mentioned that the tuning process was easier for the case of Scheme II.

5. Conclusions

In this paper, two adaptive schemes based on universal approximation property of the neural
networks are proposed in order to control an unknown SISO nonlinear system in Brunovsky
canonical form with unknown deadzone input. The objective is to determine a control signal
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such that the output of the unknown plant follows a specified reference trajectory, and, at
the same time, all closed-loop signals stay bounded in spite of the presence of unknown but
bounded disturbances. The first scheme utilizes a smooth adaptive inverse of the deadzone
while the second scheme considers the deadzone as a combination of a linear term and a
disturbance-like term. For the first case, the exponential convergence of the tracking error
is guaranteed by using a Lyapunov analyses. For the second case, only the asymptotical
convergence can be guaranteed theoretically. However, a numerical example shows that
a similarly satisfactory performance can be obtained by using any of the two proposed
controllers. The designer should select between these two schemes in accordance with the
particular features of his application and considering the following:

(i) Scheme I does not need the specific knowledge of a bound for the unknown
dynamics and/or the disturbance term.

(ii) Scheme I can handle the case whenmr /=ml.

(iii) The tuning and implementation process is easier for Scheme II.

Finally, it must be mentioned that a compromise should be established between the accuracy
of the tracking process and the smoothness of the control signal.
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