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This paper presents a large deflection of variable-arc-length beams, which are made from nonlinear
elastic materials, subjected to its uniform self-weight. The stress-strain relation of materials obeys
the Ludwick constitutive law. The governing equations of this problem, which are the nonlinear
differential equations, are derived by considering the equilibrium of a differential beam element
and geometric relations of a beam segment. The model formulation presented herein can be ap-
plied to several types of nonlinear elastica problems. With presence of geometric and material non-
linearities, the system of nonlinear differential equations becomes complicated. Consequently, the
numerical method plays an important role in finding solutions of the presented problem. In this
study, the shooting optimization technique is employed to compute the numerical solutions. From
the results, it is found that there is a critical self-weight of the beam for each value of a material con-
stant n. Two possible equilibrium configurations (i.e., stable and unstable configurations) can be
found when the uniform self-weight is less than its critical value. The relationship between the mat-
erial constant n and the critical self-weight of the beam is also presented.

1. Introduction

The variable-arc-length (VAL) beam is an elastica problem, which can be applied to a variety
of applications such as marine risers/pipes, marine cables, and also paper feeders. According
to a fast growing in these industries, several new materials are developed for the sake of
safety and economy. Most of these materials possess a nonlinear stress-strain relation. Conse-
quently, the study in effects of material nonlinearity becomes important and interesting
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research topics. In the literature, the material law of VAL beams is limited to the linear rela-
tionship between stress and strain [1–8], where it might not be suitable for the other classes
of materials. In practices, the stress-strain curve for any elastic material exhibits the linear
relationship within a narrow range. Afterwards, the nonlinear relationship can be observed.
Hence, in the large deflection analysis, the material nonlinearity should be taken into account
for more practical results. However, the publications concerning this kind of problem are very
limited. Moreover, most of publications in this area give their attention to only the problem
of large deflection of cantilever beams [9–12]. Therefore, it is very interesting to explore the
effects of material nonlinearity on the large deflection behavior of the proposed VAL beam.

From the authors’ experience, the VAL beam obeying the Hooke’s law subjected to the
uniform self-weight can lose its stability at a critical load [6, 8]. Thus, it is interesting to inves-
tigate the behaviors of the VAL beam (i.e., equilibrium shapes and their stability) made from
the Ludwick’s material under the uniform self-weight. There is a shortcoming to the case of
straight columns made from the Ludwick’s material where the critical load becomes zero or
infinity when the nonlinearity in terms of strain is appeared [13]. This is because, at an infini-
tesimal deflection, the slope of the stress-strain curve of the Ludwick’s material becomes zero
or infinity when the degree of material nonlinearity is presented. However, that is not the case
for this study since the critical load of the VAL beam under the influence of the uniform self-
weight is expected to take place at a finite value of the deflection.

In this paper, the VAL beam made from the Ludwick’s material subjected to the uni-
form self-weight is investigated. One end of the beam is attached to the hinged support, while
the other end is placed on the frictionless roller support. The length of the VAL beam is al-
lowed to increase by sliding on the roller support. The governing differential equations of the
problem are established from the equilibrium of the beam segment, the constitutive equation,
and the geometric relations. The shooting method is employed for evaluating the numerical
results of the problem. From the results, the load-deflection curves are plotted for studying
the behaviors of the VAL beam. The stability of the VAL beam is interpreted from the load-
deflection diagrams (i.e., the slope of equilibrium paths). The positive, zero, and negative
slopes are related to stable, critical, and unstable states, respectively. Furthermore, the critical
self-weight depending on the degree of material nonlinearity is also highlighted herein.

2. Problem Description

The variable arc-length beam of span length L is supported by a pin joint at end A and by
a frictionless roller at end B as shown in Figure 1. According to the uniform self-weight per
unit arc-length of the beam w, the beam can experience a large deflection by sliding over
the frictionless support B. Therefore, a total arc-length st is an unknown variable to be deter-
mined. The beam is made from a nonlinearly elastic material, where the stress-strain relation
is represented by the Ludwick constitutive law [13] as follows:

σ(ε) =

⎧
⎨

⎩

E|ε|1/n; ε ≥ 0,

−E|ε|1/n; ε < 0,
(2.1)

where σ and ε stand for the stress and strain, respectively. The constants E and n, n > 0, are
material properties, where the material nonlinearity can be observed when n/= 1. This stress-
strain relation has been used primarily for work hardening metals [11, 14].
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Figure 1: The variable-arc-length beam subjected to the uniform self-weight.

3. Model Formulation

The model formulation used in this study is developed based on the following assumptions.

(a) An axial movement is unrestrained at the frictionless roller; therefore, the effect of
the axial deformation is not included in this analysis.

(b) The beam material is assumed to be homogeneous and isotropic.

(c) The stress-strain relation of the beam material obeys the Ludwick constitutive law.

(d) A cross-section of the beam still remains plane and perpendicular to the neutral axis
after deformations.

(e) The shear deformation is small in comparison with the axial deformation and can be
neglected.

3.1. Moment-Curvature Relation

According to the nonlinear stress-strain relation, the bending moment can be expressed in
terms of the normal stress as follows:

M =
∫

σy dA. (3.1)

The normal strain-curvature relation is

ε = −y
ρ
= −κy. (3.2)

Substituting (2.1) and (3.2) into (3.1), one obtains the moment-curvature relation as follows:

M(s) = −
∫

Eκ1/ny(n+1)/ndA = −EInκ1/n = −EIn
(
dθ

ds

)1/n

, (3.3)
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Figure 2: Free-body diagram of the differential beam element.

where In represents a cross-sectional property of a beam made from the Ludwick type of mat-
erial, κ = dθ/ds represents the curvature, and θ is an angle measured from the horizontal axis
to the neutral axis of the beam. For a special case of a rectangular beam of width b and depth
h, the cross-sectional property In can be expressed as follows [13]:

In =
∫

y(n+1)/ndA =
(

1
2

)(n+1)/n( n

2n + 1

)

bh((2n+1)/n). (3.4)

One can find that if a linear elastic material (n = 1) is used, In is equal to the moment of inertia
of the rectangular beam (In=1 = bh3/12).

3.2. Governing Equations and Boundary Conditions

Considering a system of forces acting on a beam segment (Figure 2), the internal forces in n̂,
and t̂ directions are in equilibrium. The equilibrium of moments is taken about the point P ,
one obtains the internal forces and moment equations as follows:

dM

ds
= Q,

dQ

ds
= −Ndθ

ds
−w cos θ,

dN

ds
= Q

dθ

ds
−w sin θ, (3.5)

where Q and N denote the shear force and the axial force, respectively. The geometric rela-
tions between the Cartesian coordinates (x, y) and the intrinsic coordinates (s, θ) are

dx

ds
= cos θ,

dy

ds
= sin θ. (3.6)
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The nonlinear governing differential equations of this problem are described by (3.3), (3.5),
and (3.6). For the sake of generality and numerical calculation, the following nondimensional
quantities are introduced.

s∗ =
s

st
, x̂ =

x

L
, ŷ =

y

L
, ŝ =

s

L
,

M̂ =
ML1/n

EIn
, Q̂ =

QL(n+1)/n

EIn
, N̂ =

NL(n+1)/n

EIn
, ŵ =

wL(2n+1)/n

EIn
.

(3.7)

By utilizing (3.7), the governing equations ((3.3), (3.5), and (3.6)) can be rearranged in the fol-
lowing nondimensional forms:

dθ

ds∗
= −ŝtM̂n,

dM̂

ds∗
= ŝtQ̂,

dQ̂

ds∗
= −N̂ dθ

ds∗
− ŝtŵ cos θ,

dN̂

ds∗
= Q̂

dθ

ds∗
− ŝtŵ sin θ,

dx̂

ds∗
= ŝt cos θ,

dŷ

ds∗
= ŝt sin θ.

(3.8)

The boundary conditions of the variable-arc-length beam at the support A are

s∗ = 0, x̂ = 0, ŷ = 0, M̂ = 0, θ = θA, Q̂ = Q̂A, N̂ = N̂A,
(3.9)

and those at the support B are

s∗ = 1, x̂ = 1, ŷ = 0, M̂ = 0, θ = θB, Q̂ = Q̂B, N̂ = 0.
(3.10)

4. Solution Method

In this paper, the shooting method is employed to obtain the numerical solutions. The nume-
rical procedure can be summarized in the following steps.

Step 1. Set the initial step size of integration and the initial values of x̂(s∗), ŷ(s∗), θ(s∗), M̂(s∗),
Q̂(s∗), and N̂(s∗) at s∗ = 1.

Step 2. Assign θ(1) = θB and estimate the values of s∗t , Q̂B, and ŵ for the first iteration from the
small displacement theory.

Step 3. Integrate (3.8) from s∗= 1 to 0 by using the fourth-order Runge-Kutta method.

Step 4. Minimize the error norm according to end conditions at support A, with respect to s∗t ,
Q̂B, and ŵ. Therefore, the objective function Φ for the minimization process is

Min
ŝt,Q̂B,ŵ

Φ = |x̂(0)| + ∣
∣ŷ(0)

∣
∣ +

∣
∣
∣M̂(0)

∣
∣
∣. (4.1)

The Newton-Raphson iterative scheme is utilized to minimize the objective function Φ.
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Table 1: Numerical values of θA, ŵ, ŷmax, ŝt, and M̂max for n = 1, 2, 3, and 4.

n θA (radian) ŵ ŷmax ŝt M̂max

1

0.00 0.0000 0.0000 1.0000 0.0000
0.25 5.4504 0.0790 1.0154 0.7432
0.50 8.1451 0.1632 1.0645 1.4417
0.75 7.4046 0.2589 1.1565 2.0358
1.00 4.6549 0.3751 1.3108 2.4518
1.25 1.8750 0.5277 1.5658 2.6186
1.50 0.2313 0.7499 2.0062 2.4891

2

0.00 0.0000 0.0000 1.0000 0.0000
0.25 7.0095 0.0872 1.0181 0.9656
0.50 7.3203 0.1820 1.0766 1.3503
0.75 5.3230 0.2940 1.1905 1.6084
1.00 2.8044 0.4384 1.3917 1.7576
1.25 0.9533 0.6468 1.7535 1.7859
1.50 0.0948 1.0026 2.4752 1.6714

3

0.00 0.0000 0.0000 1.0000 0.0000
0.25 7.4265 0.0923 1.0198 1.0299
0.50 6.8181 0.1941 1.0847 1.2921
0.75 4.5282 0.3174 1.2137 1.4557
1.00 2.1940 0.4830 1.4499 1.5431
1.25 0.6760 0.7383 1.9005 1.5473
1.50 0.0570 1.2343 2.9128 1.4463

4

0.00 0.0000 0.0000 1.0000 0.0000
0.25 7.5641 0.0960 1.0210 1.0540
0.50 6.4826 0.2028 1.0905 1.2526
0.75 4.0844 0.3345 1.2308 1.3729
1.00 1.8775 0.5164 1.4941 1.4343
1.25 0.5418 0.8109 2.0185 1.4309
1.50 0.0396 1.4464 3.3162 1.3400

5. Results and Discussion

In this section, the large deflection of the variable-arc-length beam made from nonlinear mate-
rial subjected to the uniform self-weight is presented. According to the experimental data
[14, 15], the stress-strain relation of some metals or hardening materials can be represented
by the Ludwick constitutive law with the constant n > 1. Therefore, the numerical examples
are focused on the case of n > 1 only.

Some numerical solutions of ŵ, ŷmax, ŝt, and M̂max for different values of θA with var-
ious values of the material constant n (i.e., n = 1, 2, 3, and 4) are presented in Table 1. Figure 3
shows the load-deflection curves between the uniform self-weight ŵ and the end rotation θA
for n = 1, 1.5, 2, 3, and 4. As can be observed from Figure 3, the load-deflection curves are not
monotonic but they have a turning point (or a critical point), where the stability can be ex-
changed at that point. The equilibrium path always emanates from the origin point, where
the uniform self-weight ŵ equals zero. The uniform self-weight is developed as the deflection
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Figure 3: Variations of the dimensionless uniform self-weight ŵ with respect to the end rotation θA for n =
1, 1.5, 2, 3, and 4.

is increased, where the stable behavior can be captured (i.e., positive slope of load-deflection
curves). The increase of the uniform self-weight is limited at the critical point, where the slope
of load-deflection curves becomes zero. Afterwards, the deflection is increased while the
uniform self-weight is decreased. This indicates the unstable behavior of the VAL beam (i.e.,
negative slope of load-deflection curves). Hence, we can state that, for a given value of ŵ,
there are two possible equilibrium configurations if the uniform self-weight is less than the
critical value. Figure 4 illustrates two equilibrium configurations, which are the stable and
unstable equilibrium configurations, for ŵ = 5 and n = 1, 2, 3, and 4. It is also found that the
flexibility of the beam decreases, while the value of n increases as shown in Figures 3 and 4.

Figure 3 also shows that there is a critical value of ŵ corresponding with each value
of n. These critical values are referred to the critical uniform self-weight ŵcr of the beam with
a specific value of the material constant n. For the case of the linear elastic material (n = 1),
the critical uniform self-weight of the variable-arc-length beam is equal to 8.2529, which is
identical to the value presented in [8]. Figure 5 illustrates the relationship between the critical
uniform self-weight and the material constant n. It is found that the critical uniform self-
weight ŵcr approaches to the minimum value of 7.5402 when the material constant n is equal
to 2.75.

6. Conclusions

The large deflection of the variable-arc-length beam made from nonlinear material subjected
to its uniform self-weight is presented. The nonlinearities of this problem can be arisen from
both material and geometry of the VAL beam. The Ludwick constitutive law is utilized to rep-
resent the stress-strain relation of the beam material. The shooting method is employed to
evaluate the numerical results. The numerical solutions indicate that there is a maximum
value of ŵ for each value of n, which is referred to the critical uniform self-weight ŵcr of
the beam with a specific value of the material constant n. For ŵ < ŵcr, there are two possible
equilibrium configurations. The smaller displacement configuration is stable, while the larger
one is unstable. The increase in value of n reduces the flexibility of the beam. An interesting
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Figure 4: Equilibrium configurations of the variable-arc-length beams for n = 1, 2, 3, and 4 subjected to the
dimensionless uniform self-weight ŵ equal to 5.
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result also found in this study is that the critical uniform self-weight ŵcr approaches the mini-
mum value when the material constant n is equal to 2.75, which is an important information
for the practical engineers who work in offshore engineering and in the design of marine
risers or cables.
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