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This paper investigates foliation structures of configuration manifolds and develops integrating
algorithms for a class of constraints that contain the time variable, called A-rheonomous affine
constrains. We first present some preliminaries on the A-rheonomous affine constrains. Next,
theoretical analysis on foliation structures of configuration manifolds is done for the respective
three cases where the A-rheonomous affine constrains are completely integrable, partially
integrable, and completely nonintegrable. We then propose two types of integrating algorithms
in order to calculate independent first integrals for completely integrable and partially integrable
A-rheonomous affine constrains. Finally, a physical example is illustrated in order to verify the
availability of our new results.

1. Introduction

Recent years, interest on nonholonomic systems [1–5] has been higher in the various research
fields such as analytical mechanics, control theory, robotics, among others. Nonholonomic
systems are defined as systems which are subject to some nonintegrable constraints and
behaviors of the systems have to satisfy the constraints. Various examples of nonholonomic
systems can be easily found, for example, mobile cars [6, 7], trailers [8, 9], space robots
[10, 11], acrobat robots [12, 13], a rolling ball or coin on a plain [1], underactuated
manipulators [14–16], among others. In a lot of researches on nonholonomic control systems,
linear constraints, which are represented in the form: B(q)q̇ = 0, q ∈ Rn, B(q) ∈ R(n−m)×n, have
been mainly considered so far. The class of the linear constraints contains many examples
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such as mobile cars, a ball or a coin on a plain, hopping robots [14, 15], among others. It is
well known that integrability and nonintegrability of the linear constraints can be determined
by using well-known Frobenius’ theorem [17, 18], and there is a strong relationship between
them and accessibility of nonlinear control systems with the linear constraints [4, 5, 7, 17–21].
Moreover, for kinematic and dynamic systems subject to the linear constraints, the following
results are also well known: (i) their linear approximated systems are uncontrollable, (ii) they
are locally controllable, but not locally asymptotically stabilizable by any nonlinear smooth
state feedback laws from Brockett’s theorem [4, 22]. Hence, a lot of work have been done to
overcome the difficulties until now.

However, the class of the linear constraints does not cover all of the nonholonomic
systems. There exists a larger class of constraints and it is called scleronomous affine constraints,
which are represented as A(q) + B(q)q̇ = 0, q ∈ Rn, A(q) ∈ Rn−m, B(q) ∈ R(n−m)×n. The
terminology “scleronomous” means “time-invariant” and is mainly used for constraints.
A space robots with an initial angular momentum (Figure 1(a)), a boat or a ship on a
running river (Figure 1(b)), a ball or a coin on a rotating table (Figures 1(c) and 1(d))
are typical examples of systems subject to the scleronomous affine constraints. Compared
to researches on the linear constraints, ones on the scleronomous affine constraints are
quite few, but we have focused on the scleronomous affine constraints and derived various
results from the viewpoints of both mathematics and nonlinear control theory [23–32]. In
work on the scleronomous affine constraints, the following new results, which are beyond
the results on the linear constraints mentioned above, have been obtained: (a) complete
nonintegrability (nonholonomicity) of the scleronomous affine constraints is equivalent
to strong accessibility of systems, (b) linear approximated systems of original systems
with scleronomous affine constraints are controllable under some conditions, (c) some
systems with scleronomous affine constraints satisfy Brockett’s condition and hence there
is a possibility of local asymptotic stabilizability by nonlinear smooth state feedback laws.
Furthermore, we can consider a larger class of constraints which contains the time variable,
that is to say, rheonomous constraints, and a boat or a ship on a running river with a
time-varying stream (Figure 1(b)) and a coin or a ball on a rotating table at a time-
varying angular velocity (Figures 1(c) and 1(d)) are expected to be subject to rheonomous
constraints. Since rheonomous constraints contain the time variable explicitly, it is more
difficult to analyze and control systems subject to them in comparison with the scleronomous
constraints case. To make matters worse, the results on scleronomous constraints cannot be
utilized for rheonomous constraints, hence, we need fundamental theory for rheonomous
constraints to consider analysis and control of systems with them. As a matter of course, such
rheonomous constraints have been already treated in [33–37] by using various mathematical
tools, however, fundamental properties for them such as integrability/nonintegrability and
foliation structures of configuration manifolds have not been derived in these work.

This is the second paper of a series of papers that deal with a class of rheonomous
constraints, called A-rheonomous affine constraints defined on configuration manifolds. The
A-rheonomous affine constraints are represented in the form A(t, q) + B(q)q̇ = 0, q ∈
Rn, A(t, q) ∈ Rn−m, B(q) ∈ R(n−m)×n, that is to say, affine constraints whose term A contains
the time variable t. The class of the A-rheonomous affine constraints is larger than the
scleronomous affine constraints and contains some physical and mechanical examples as
shown in Figure 2. In the first paper [38], we show some fundamental properties of the
A-rheonomous affine constraints and derive some necessary and sufficient conditions on
integrability/nonintegrability for them. On the other hand, in this second paper, we will
focus on analysis of foliation structures of configuration manifolds with the A-rheonomous
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(a) Space robot with initial angular momentum (b) Boat on running river

(c) Ball on rotating table (d) Coin on rotating table

Figure 1: Examples of systems subject to affine constraints.

A(q) + B(q)q̇ = 0

B(q)q̇ = 0

A(t, q) + B(q)q̇ = 0

Scleronomous linear constraints

Scleronomous affine constraints

A-rheonomous affine constraints

• Ball/coin on rotating table at time-varying angular velocity

• Ball/coin on rotating table

• Space robot with initial angular momentum

• Hopping robot, snake robot

• Boat/ship on lake without stream

• Mobile car, trailer

• Ball/coin on plain

• Space robot without initial angular momentum

• Boat/ship on running river

• Boat/ship on running river with time-varying stream

Figure 2: Classes of constraints and examples.

affine constraints, and development of integrating algorithms to calculate independent first
integrals for integrable A-rheonomous affine constraints.

The outline of this paper is as follows. First, we give some preliminaries on the A-
rheonomous affine constraints in Section 2. In Section 3, we next investigate the relationships
between the A-rheonomous affine constraints and foliation structures of configuration
manifolds in the respective three cases: complete integrability, partial integrability, and
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complete nonintegrability. Then, in Section 4, we develop two types of integrating algorithms
to calculate independent first integrals for completely integrable and partially integrable A-
rheonomous affine constraints. Moreover, theoretical analysis of the algorithms is also shown.
Finally, we illustrate a physical example, a pendulum with a time-varying elastic string,
in order to verify the availability of our new results in Section 5. Throughout this paper,
manifolds, submanifolds, functions, vector fields, distributions, and differential forms are all
assumed to be smooth.

2. Preliminaries

This section presents some preliminaries on rheonomous affine constraints which we deal
with throughout this paper. See also the first paper [38] for more details. First, we define
rheonomous affine constraints and explain geometric representation of them. We denote the
time variable by t ∈ R and a time interval by I ⊂ R. Let Q be an n-dimensional configuration
manifold and q = [q1 · · · qn]

� ∈ Rn be a local coordinate of Q. Associated with q, we refer
q̇ = [q̇1 · · · q̇n]� ∈ TqQ as a tangent vector field.

Throughout this paper, we deal with A-rheonomous affine constraints:

Ai

(
t, q
)
+ Bi1

(
q
)
q̇1 + · · · + Bin

(
q
)
q̇n = 0, i = 1, . . . , n −m. (2.1)

Note that the coefficients Ai (i = 1, . . . , n − m) in (2.1) depend on the time variable t. We
rewrite (2.1) as

A
(
t, q
)
+ B
(
q
)
q̇ = 0, (2.2)

where a rheonomous affine term A(t, q) ∈ Rn−m is a vector-valued function whose ith entry is
Ai(t, q), and B(q) is a matrix-valued function whose ijth entry is Bij(q). It must be noted
that the class of the A-rheonomous affine constraints contains some important examples
of mechanical systems as mentioned in Section 1. We here assume a sufficient condition on
independency of the A-rheonomous affine constraints (2.2) as follows.

Assumption 2.1. The coefficient matrix B(q) of the A-rheonomous affine constraints (2.2) has
a row full-rank at any point q ∈ Q, that is,

rank B
(
q
)
= n −m, ∀q ∈ Q, (2.3)

holds.

Now, we consider a classification method of all the points in the configuration
manifold Q in terms of the rheonomous affine term A(t, q) in the A-rheonomous affine
constraints (2.2) by the following definition.

Definition 2.2 (see [38]). For the rheonomous affine term A(t, q) of the A-rheonomous affine
constraints (2.2) and a time interval I ⊂ R, a point q ∈ Q such that A(t, q)/= 0, for all t ∈ I,
holds is called a rheonomous affine regular point. On the other hand, a point q ∈ Q such that
A(t, q) = 0, for all t ∈ I, holds is called a rheonomous affine equilibrium point.
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Tq(t)Q
q̇(t)

q̇ −X(t, q(t))

D(q(t))

−X(t, q(t))

q : I −→ Q

Figure 3: Geometric representation of A-rheonomous affine constraints.

Note that from Definition 2.2, each point in Q is classified into either a rheonomous
affine regular point or a rheonomous affine equilibrium point. Next, we explain geometric
representation and some fundamental properties for the A-rheonomous affine constraints,
which are originally obtained in the first paper [38]. From (2.3) in Assumption 2.1, the n −m
row vectors of B(q) in the A-rheonomous affine constraints (2.2) are independent of each
other at any point q ∈ Q. So, we considerm vectors which are independent of each other and
annihilators of the n −m row vectors of B(q), and denote them by Y1, . . . , Ym as vector fields
onQ. Moreover, we also denote a space spanned by Y1, . . . , Ym, that is, a distribution onQ by

D := span{Y1, . . . , Ym}. (2.4)

Since the basial vectors of D: Y1, . . . , Ym are independent of each other at any point q ∈ Q, D
is a nonsingular distribution, that is,

dimD
(
q
)
= m, ∀q ∈ Q, (2.5)

holds. A curve q : I → Q is said to be satisfied the A-rheonomous affine constraints (2.2) if
for a vector field on Q: X and the generalized velocity of q: q̇ ∈ Tq(t)Q:

q̇(t) −X
(
t, q(t)

) ∈ D
(
q(t)

)
, ∀t ∈ I, (2.6)

holds as shown in Figure 3. We call this a rheonomous affine vector field.
We then show an important characteristic of the rheonomous affine vector field X as

the next proposition.

Proposition 2.3 (see [38]). For the A-rheonomous affine constraints (2.2), the component of the
rheonomous affine vector field X, and a time interval I ⊂ R:

A
(
t, q
)
+ B
(
q
)
X
(
t, q
)
= 0, ∀q ∈ Q, ∀t ∈ I, (2.7)

holds.
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Under the preliminaries shown above, we define the geometric representation method
for the A-rheonomous affine constraints as the following definition.

Definition 2.4 (see [38]). The A-rheonomous affine constraints (2.2) are geometrically
represented by a pair (D,X), where D is an m-dimensional distribution defined by (2.4) and
X is called a rheonomous affine vector field and satisfies (2.7).

In order to derive some theoretical analysis on A-rheonomous affine constraints (2.2),
the geometric representation of them is quite important. For the geometric representation
of the A-rheonomous affine constraints shown in Definition 2.4, the next proposition can be
derived.

Proposition 2.5 (see [38]). For the geometric representation of theA-rheonomous affine constraints
(2.2): (D,X) and a time interval I ⊂ R, a point q ∈ Q is a rheonomous equilibrium point if and only
if

X
(
t, q(t)

) ∈ D
(
q(t)

)
, ∀t ∈ I (2.8)

holds. On the other hand, a point q ∈ Q is a rheonomous regular point if and only if

X
(
t, q(t)

)
/∈ D

(
q(t)

)
, ∀t ∈ I (2.9)

holds.

Finally, we explain the rheonomous bracket which is a new operator and originally
introduced in the first paper [38]. Similar to the first paper [38], the rheonomous bracket
also plays important roles in this second paper. The Lie bracket of two vector fields Z,W is
defined as an operator defined on TQ:

[Z,W] :=
∂W

∂q
Z − ∂Z

∂q
W. (2.10)

Based on the Lie bracket above, the rheonomous bracket is defined as follows.

Definition 2.6 (see [38]). For the vector fields defined on Q of the geometric representation of
theA-rheonomous affine constraints (2.2):X,Y1, . . . , Ym, the rheonomous bracket is an operator:
〈·, ·〉: TQ × TQ → TQ that satisfies the next three properties.

(a) For a rheonomous affine vector field X,

〈X,X〉 = 0 (2.11)

holds.
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(b) D0 is defined as a set of vector fields that consists of Y1, . . . , Ym and iterated
rheonomous brackets of X,Y1, . . . , Ym and does not contain X. For a rheonomous
affine vector field X and a vector field Z ∈ D0,

〈X,Z〉 =
∂Z

∂t
+ [X,Z], Z ∈ D0,

〈Z,X〉 = −∂Z
∂t

+ [Z,X], Z ∈ D0

(2.12)

hold.

(c) For two vector fields Z,W ∈ D0,

〈Z,Z〉 := 0, Z ∈ D0,

〈Z,W〉 := [Z,W], Z,W ∈ D0

(2.13)

hold.

Note that, in Definition 2.6, the rheonomous affine vector field X is perceived as
special, and this yields an additional term for time differential of a vector field as shown
in the property (b). It is also noted that the rheonomous bracket is equivalent to the normal
Lie bracket for scleronomous affine constraints, that is, constraints that do not contain the
time variable explicitly. Moreover, the following proposition indicates that the rheonomous
bracket has the important characteristics in common with the normal Lie bracket.

Proposition 2.7 (see [38]). For the vector fields on the geometric representation of theA-rheonomous
affine constraints (2.2): X,Y1, . . . , Ym and the set of iterated vector fields of them: D0, the following
properties (a), (b), and (c) hold.

(a) Bilinearlity:

〈X, aZ + bW〉 = a〈X,Z〉 + b〈X,W〉,
〈aZ + bW,X〉 = a〈Z,X〉 + b〈W,X〉, Z,W ∈ D0.

(2.14)

(b) Skew-symmetry:

〈X,Z〉 = −〈Z,X〉, Z,W ∈ D0. (2.15)

(c) Jacobi’s identity:

〈〈X,Z〉,W〉 + 〈〈Z,W〉, X〉 + 〈〈W,X〉, Z〉 = 0, Z,W ∈ D0. (2.16)
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3. Foliation Structures of Configuration Manifolds

3.1. Completely Integrable Case

In this section, we investigate foliation structures of configuration manifolds for the
respective three cases where the A-rheonomous affine constraints are completely integrable,
partially integrable, and completely nonintegrable. It is quite essential to comprehend
foliation structures of configuration manifolds in terms of model reduction theory,
accessibility analysis of nonholonomic control systems, and so on.

First, we consider the complete integrability case. We now define a smallest
and involutive time-varying distribution C0(t, q) which contains Y1, . . . , Ym and iterated
rheonomous brackets of them, and satisfies 〈X,W〉 ∈ C0, for all W ∈ C0, that is to say,
C0 is spanned by all the rheonomous brackets of X,Y1, . . . , Ym with the exception of X. In
addition, we also define a smallest and involutive time-varying distribution C(t, q) which
contains all the iterated rheonomous brackets of X,Y1, . . . , Ym. We here show necessary and
sufficient conditions on complete integrability for the A-rheonomous affine constraints (2.2),
which are originally derived in the first paper [38].

Theorem 3.1 (see [38]). For theA-rheonomous affine constraints (2.2) defined on an n-dimensional
manifold Q and a time interval I ⊂ R, the following statements (a)–(c) are equivalent to each other. If
they hold, theA-rheonomous affine constraints (2.2) are said to be completely integrable or completely
holonomic.

(a) There exist n −m independent first integrals of the A-rheonomous affine constraints (2.2):
h1(t, q), . . . , hn−m(t, q) such that

∂hi

(
t, q
)

∂t
+X

(
t, q
)
hi

(
t, q
)
= 0, i = 1, . . . , n −m, ∀q ∈ Q, ∀t ∈ I,

Z
(
t, q
)
hi

(
t, q
)
= 0, ∀Z ∈ D, i = 1, . . . , n −m, ∀q ∈ Q, ∀t ∈ I,

dh1 ∧ · · · ∧ dhn−m
(
t, q
)
/= 0, ∀q ∈ Q, ∀t ∈ I,

(3.1)

hold, where d is the exterior differential operator defined on Q.

(b) There exists an m-dimensional time-varying integral manifold Sm(t, q0) of the A-
rheonomous affine constraints (2.2) determined by an initial point q0 ∈ Q such that

TqS
m
(
t, q0

)
= D

(
t, q
)
, ∀q ∈ Sm

(
t, q0

)
, ∀t ∈ I, (3.2)

holds.

(c) For a smallest and involutive time-varying distribution C0,

dimC0
(
t, q
)
= m, ∀q ∈ Q, ∀t ∈ I, (3.3)

holds.

From the statement (b) in Theorem 3.1, we can see that there exists an m-dimensional
time-varying integral manifold in the n-dimensional configuration manifoldQ. It is expected
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that this time-varying integral manifold creates a foliation structure in Q. Hence, we
investigate the foliation structure with much circumstance. Now, we show the following
lemma, which is useful for the proof of the main theorem.

Lemma 3.2. Assume that the A-rheonomous affine constraints (2.2) are completely integrable.
Onedenotes a set of rheonomous affine regular points by

Um
a :=

{
q ∈ Q | A(t, q)/= 0, ∀t ∈ I

}
, (3.4)

and a set of rheonomous affine equilibrium points by

Um
b :=

{
q ∈ Q | A(t, q) = 0, ∀t ∈ I

}
, (3.5)

where I ⊂ R is a time interval. Then, the following statements (a) and (b) hold.

(a) For Um
a and Um

b ,

Um
a ∩Um

b = φ, Um
a ∪Um

b = Q (3.6)

hold, where φ denotes the empty set.

(b) For a neighborhood Vm
b ⊂ Um

b of a rheonomous affine equilibrium point qe ∈ Um
b ,

dim Vm
b ≥ m (3.7)

holds.

Proof. Since each point in Q is classified into either a rheonomous affine regular point or a
rheonomous affine equilibrium point from Definition 2.2, the statement (a) is determinately
satisfied. Next, since a rheonomous affine equilibrium point qe ∈ Um

b satisfies from
Proposition 2.5, we can represent X(t, qe) as

X
(
t, qe

)
= β1

(
t, qe

)
Y1
(
qe
)
+ · · · + βm

(
t, qe

)
Ym

(
qe
)
, (3.8)

with m functions β1(t, q), . . . , βm(t, q). Consider n − m vector fields Ym+1, . . . , Yn which are
independent of each other and are orthogonal to Y1, . . . , Ym. Calculating inner products of
X(t, qe) and Ym+1, . . . , Yn, we have

〈〈
Ym+1

(
qe
)
, X
(
t, qe

)〉〉
= · · · = 〈〈Yn

(
qe
)
, X
(
t, qe

)〉〉
= 0, (3.9)

where 〈〈·, ·〉〉 is the inner product operator of two vector fields. Therefore, since (3.9) means
n −m equations for the point qe, it can be confirmed that the dimension of a neighborhood of
qe: Vm

b is greater than or equal tom from the implicit function theorem [39, 40]. Consequently,
the proof of this lemma is completed.

Now, we derive the main results on a foliation structure of the configuration manifold
Q for the completely integrable A-rheonomous affine constraints.
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Theorem 3.3. Assume that the A-rheonomous affine constraints (2.2) are completely integrable.
Then, the following statements (a) and (b) hold for a time interval I ⊂ R.

(a) For a neighborhood of a rheonomous regular point q0 ∈ Um
a : V

m
a ⊂ Um

a , there exist a local
coordinate (U;x1, . . . , xn) and an m-dimensional time-varying foliation structure in Vm

a

which is constructed by an m-dimensional time-varying integral manifold determined by
the time variable t and the point q0:

Sm
(
t, q0

)
:=
{
q ∈ Vm

a | xm+1
(
q
)
= xm+1

(
φX

t

(
q0
))

, . . . , xn

(
q
)
= xn

(
φX

t

(
q0
))}

, (3.10)

where φX
t : Q → Q is a flow (one-parameter local transformation group) of X. In addition,

C0
(
t, q
)
= D

(
q
)
, C

(
t, q
)
= D

(
q
)
+ span{X}(t, q), ∀q ∈ Um

a , ∀t ∈ I, (3.11)

dim C0
(
t, q
)
= m, dim C

(
t, q
)
= m + 1, ∀q ∈ Um

a , ∀t ∈ I, (3.12)

hold.

(b) For a neighborhood of a rheonomous equilibrium point q0 ∈ Um
a : V

m
b

⊂ Um
b
, there exist a

local coordinate (U;x1, . . . , xn) and anm-dimensional time-invariant foliation structure in
Vm
b which is constructed by anm-dimensional time-invariant integral manifold determined

by the point q0:

S m
(
q0
)
:=
{
q ∈ Vm

b | xm+1
(
q
)
= xm+1

(
q0
)
, . . . , xn

(
q
)
= xn

(
q0
)}

. (3.13)

In addition,

C0
(
t, q
)
= C

(
t, q
)
= D

(
q
)
, ∀q ∈ Um

b , ∀t ∈ I, (3.14)

dim C0
(
t, q
)
= dim C

(
t, q
)
= dimD

(
q
)
, ∀q ∈ Um

b , ∀t ∈ I, (3.15)

hold.

Proof. First, we prove the statement (a). See also the illustration depicted in Figure 4 and the
proof of Theorem 3.1 in the first paper [38] for understanding the proof. Let us denote the
(n + 1)-dimensional expanded configuration manifold which is constructed by the product
manifold of the space of the time variable R and the configuration manifoldQ byQ := R×Q
with the coordinate q := [t q�]�. The A-rheonomous affine constraints (2.2) defined on Q can
be represented by an expanded Pfaffian equation on Q:

Ω
(
q
)
= 0 (3.16)

with n −m expanded differential forms:

Ω
(
q
)
:= A

(
t, q
)
dt + B

(
q
)
dq. (3.17)
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Q

X(t, q)

Section at time t

TqQ

D(q)

Sm(t, q0)

Y (q)q

TqQ

X(q) Y (q)

D(q)

q

φX
t (q

0)

S
m+1

(q0)

q0, q0

Q = Q ×R
R

Figure 4: An illustration of Q and Q (n = 2,m = 1).

We can see that m + 1 annihilators of the n −m expanded differential forms (3.17) as

X =
∂

∂t
⊕X, Y i = 0 ⊕ Yi, i = 1, . . . m. (3.18)

We also consider a diffeomorphismwhich is a projection fromQ toQ at the time t:πt : (t, q) �→
q(t), and its derivation: dπt : Tq(t)Q → TqQ. Since dπt(X(q)) = X(q) holds from the definition

of X in(3.18), we obtain πt(φ
X

t (q
0)) = φX

t (q
0). In addition, from φ

X

t (q
0) ∈ S

m+1
(q0), it turns

out that φX
t (q

0) ∈ Sm(t, q0). Thus, by using a local coordinate (U;x1, . . . , xn), we can represent
the m-dimensional time-varying integral manifold for the A-rheonomous affine constraints
(2.2): Sm(t, q0) as (3.10). Furthermore, from the definitions of C0 and C, it can be confirmed
that (3.11) and (3.12) holds.

Next, we consider the proof of the statement (b). Since dπt(X(q)) = X(q) ∈ D(q) holds
for a rheonomous affine equilibrium point q ∈ Vm

b
, we can show φX

t (q
0) ∈ Sm(q0) by setting

π0(S
m+1

(q0)) =: Sm(q0). Hence, πt(S
m+1

(q0)) = Sm(q0) holds and this yields q0 ∈ Sm(q0).
Since the dimension of Vm

b
is greater than or equal to m from Lemma 3.2, the m-dimensional

time-invariant integral manifold for theA-rheonomous affine constraints (2.2): Sm(q0) can be
represented as (3.13). Moreover, X(t, q) ∈ D(q) for all t ∈ I holds in this case, and hence we
obtain (3.14) and (3.15) from (3.11) and (3.12), respectively.
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Sm(t, q0)Q

Vm
a

φX
t (q

0)

q0

(a) Foliation structure

X(t, q)

TqQ

Y (q)

D(q)

〈X,Y〉(t, q)

(b) Tangent space

Figure 5: An illustration for Theorem 3.3(a) (n = 3,m = 1).

Sm(q0)

Vm
b

Q

φX
t (q

0)

q0

(a) Foliation structure

X(t, q)

Y (q)

TqQ

D(q)

〈X,Y〉(t, q)

(b) Tangent space

Figure 6: An illustration for Theorem 3.3(b) (n = 3,m = 1).

The illustrations for Theorem 3.3(a) and (b) are shown in Figures 5 and 6 for the case
of n = 3, m = 1, respectively. As shown in Figure 5(a), Vm

a is divided into a 1-dimensional
time-varying foliation structure, and a trajectory starting from an initial point q0 at the time
t is constrained in the foliation Sm(t, q0). However, since the foliation Sm(t, q0) slides as time
goes by, the trajectory can move as a 2-dimensional behavior in Vm

a . In addition, just like the
illustration of the tangent space TqQ shown in Figure 5(b), 〈X,Y〉(t, q) lies onD(q), however,
X(t, q) does not belong to D(q). This fact also causes the time-varying foliation structure.

On the other hand, Vm
b

is divided into a 1-dimensional time-invariant foliation
structure as shown in Figure 6(a). Hence, a trajectory that starts from an initial point q0 at the
time t is constrained in the foliation Sm(q0) and cannot move to another foliation. Moreover,
as the illustration of the tangent space TqQ shown in Figure 6(b), not only 〈X,Y〉(t, q) but
also X(t, q) lies on D(q), and hence the time-invariant foliation structure occurs.

From the statement (a) in Theorem 3.3, we can confirm the existence of time-varying
foliation structures in configuration manifolds for the completely integrable A-rheonomous
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affine constraints as is the case in the scleronomous affine constraints [23, 24]. Now, let us
consider a simple example in order for graphic understanding of Theorem 3.3 as follows.

Example 3.4. We deal with the same example which is shown in the first paper [38, Example
1]. Consider a configuration manifold:

Q =

⎧
⎨

⎩
q =

⎡

⎣
q1
q2
q3

⎤

⎦ ∈ R3 | q2 > 0, q3 > 0

⎫
⎬

⎭
(3.19)

with n = 3, and A-rheonomous affine constraints on Q:

[
tq1q2q3

0

]

︸ ︷︷ ︸
A(t,q)

+
[
q2q3 q1q3 q1q2
0 1 0

]

︸ ︷︷ ︸
B(q)

⎡

⎣
q̇1
q̇2
q̇3

⎤

⎦ = 0 (3.20)

with m = 1. It turns out that Assumption 2.1 holds for (3.20). One of the geometric
representation for (3.20) can be obtained as follows:

X
(
t, q
)
=

⎡

⎣
−tq1
0
0

⎤

⎦, Y
(
q
)
=

⎡

⎣
−q1
0
q3

⎤

⎦. (3.21)

Calculating an iterated rheonomous brackets for X and Y above, we obtain

〈X,Y〉 =
∂Y

∂t
+ [X,Y ] = 0 +

∂Y

∂q
X − ∂X

∂q
Y =

⎡

⎣
tq1 − tq1

0
0

⎤

⎦ = 0. (3.22)

Hence, it turns out that all the iterated rheonomous bracket of X, Y are 0. Therefore, we have

C0 = span{Y}, (3.23)

and it turns out that

dim C0 = 1, ∀q ∈ Q, t ∈ R, (3.24)

holds. From Theorem 3.1, we can see that the A-rheonomous affine constraints (3.20) are
completely integrable. By using the integrating algorithm introduced in Section 4, we can
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Sm(t, q0)Q

Vm
a

q0

q2 = q0
2

φX
t (q

0)

q1

q2

q3

(a) Vm
a

Q

Vm
b

Sm(q0)

q0 = φX
t (q

0)

q1

q2

q3

(b) Vm
b

Figure 7: Foliation structures of Example 3.4.

calculate two independent first integrals of (3.20) as

h1
(
t, q
)
= q2 − q02, h2

(
t, q
)
=

q1q3e
(1/2)t2

q03
− q01, (3.25)

where q0 = [q01 q02 q03]
� ∈ Q is an initial point at the initial time (for the derivation of it, see

Example 4.3 in Section 4).
From Theorem 3.3, the set of the rheonomous affine regular points is given by Um

a =
Vm
a = {q ∈ Q | t > 0, q1 /= 0}, and the set of the rheonomous affine regular points is

represented byUm
b = Vm

b = {q ∈ Q | t > 0, q1 = 0}. That is to say, the q2-q3 plane is coincident
with Vm

b
and the total space ofQ except the q2-q3 plane is Vm

a . The illustrations of the foliation
structures for these cases are depicted in Figure 7. As shown in Figure 7(a), a trajectory
starting from a rheonomous affine regular point q0 ∈ Vm

a is included in the 1-dimensional
time-varying integral manifold Sm(t, q0) at the time t, and moves in the 2-dimensional
space determined by q2 = q02. Therefore, V

m
a has a 1-dimensional time-varying foliation

structure. Meanwhile, as shown in Figure 7(b), a trajectory starting from a rheonomous affine
equilibrium point q0 ∈ Vm

b
is included in the 1-dimensional time-invariant integral manifold

Sm(q0) and moves only in Sm(q0). Consequently, Vm
b

has a 1-dimensional time-invariant
foliation structure.

3.2. Partially Integrable Case

Next, we investigate foliation structures of a configuration manifold for the partially
integrable A-rheonomous affine constraints case in this subsection. Now, necessary and
sufficient conditions on partial integrability for the A-rheonomous affine constraints (2.2),
which are also originally derived in the first paper [38], are shown as the follows.

Theorem 3.5 (see [38]). For theA-rheonomous affine constraints (2.2) defined on an n-dimensional
manifold Q and a time interval I ⊂ R, the following statements (a)–(c) are equivalent to each other.
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If they hold, the A-rheonomous affine constraints (2.2) are said to be kth-order partially integrable or
kth-order partially holonomic, wherem < k < n.

(a) There exist n − k independent first integrals of the A-rheonomous affine constraints (2.2):
h1(t, q), . . . , hn−k(t, q) such that

∂hi

(
t, q
)

∂t
+X

(
t, q
)
hi

(
t, q
)
= 0, i = 1, . . . , n − k, ∀q ∈ Q, ∀t ∈ I,

Z
(
t, q
)
hi

(
t, q
)
= 0, ∀Z ∈ C0, i = 1, . . . , n − k, ∀q ∈ Q, ∀t ∈ I,

dh1 ∧ · · · ∧ dhn−k
(
t, q
)
/= 0, ∀q ∈ Q, ∀t ∈ I,

(3.26)

hold

(b) There exists a k-dimensional time-varying integral manifold Sk(t, q0) of theA-rheonomous
affine constraints (2.2) determined by an initial point q0 ∈ Q such that

TqS
k
(
t, q0

)
= C0

(
t, q
)
, ∀q ∈ Sk

(
t, q0

)
, ∀t ∈ I, (3.27)

holds.

(c) For a smallest and involutive time-varying distribution C0,

dimC0
(
t, q
)
= k, ∀q ∈ Q, ∀t ∈ I, (3.28)

holds.

From the statement (b) in Theorem 3.5, it turns out that there exists a k (m < k < n)-
dimensional time-varying integral manifold in the n-dimensional configuration manifold Q.
Similar to the results in the previous section, we can expect that this time-varying integral
manifold creates a foliation structure in Q. So, we investigate the foliation structure with
much circumstance. We now derive the next lemma that helps to prove the main theorem.

Lemma 3.6. Assume that the A-rheonomous affine constraints (2.2) are kth-order completely
integrable. One calls a point q ∈ Q such that X(t, q) /∈ C0(t, q), for all t ∈ I a kth order rheonomous
affine regular point, and denotes a set of kth-order rheonomous affine regular points by

Uk
a :=

{
q ∈ Q | X(t, q) /∈ C0

(
t, q
)
, ∀t ∈ I

}
, (3.29)

Where I ⊂ R is a time interval. On the other hand, one call a point q ∈ Q such that X(t, q) ∈
C0(t, q), for all t ∈ I a kth-order rheonomous affine equilibrium point, and denotes a set of kth-order
rheonomous affine equilibrium points by

Uk
b :=

{
q ∈ Q | X(t, q) /∈ C0

(
t, q
) ∀t ∈ I

}
. (3.30)
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Then, the following statements (a) and (b) hold.

(a) For Uk
a and Uk

b ,

Uk
a ∩Uk

b = φ, Uk
a ∪Uk

b = Q (3.31)

hold.

(b) For a neighborhood V k
b
⊂ Uk

b
of a rheonomous affine equilibrium point qe ∈ Um

b
,

dimV k
b ≥ k (3.32)

holds.

Proof. Similar to the proof of Lemma 3.2, since each point in Q is classified into either a kth-
order rheonomous affine regular point or a kth-order rheonomous affine equilibrium point
from the definition of these points, the statement (a) obviously holds. Now, consider vector
fields Ym+1, . . . , Yk which are independent of Y1, . . . , Ym and satisfy

C0 = span{Y1, . . . , Ym, Ym+1, . . . , Yk}. (3.33)

Since a kth-order rheonomous affine equilibrium point qe ∈ Um
b

satisfies X(qe) ∈ C0(qe),
X(t, qe) can be represented as

X
(
t, qe

)
= β1

(
t, qe

)
Y1
(
qe
)
+ · · · + βk

(
t, qe

)
Yk

(
qe
)
, (3.34)

with k functions β1(t, q), . . . , βk(t, q). We here consider n − k vector fields Yk+1, . . . , Yn which
are independent of each other and are orthogonal to Y1, . . . , Yk. Calculating inner products of
X(t, qe) and Yk+1, . . . , Yn, we have

〈〈
Yk+1

(
qe
)
, X
(
t, qe

)〉〉
= · · · = 〈〈Yn

(
qe
)
, X
(
t, qe

)〉〉
= 0. (3.35)

So, since (3.35) can be considered as n − k equations for the point qe, we can see that the
dimension of a neighborhood of qe: V k

b
is greater than or equal to k from the implicit function

theorem [39, 40]. Hence, we have completed the proof.

Hence, we now derive the main results on a foliation structure of the configuration
manifold Q for the partially integrable A-rheonomous affine constraints as follows.

Theorem 3.7. Assume that the A-rheonomous affine constraints (2.2) are kth order partially
integrable. Then, the following statements (a) and (b) hold for a time interval I ⊂ R.

(a) For a neighborhood of a kth-order rheonomous regular point q0 ∈ Uk
a: V

k
a ⊂ Uk

a, there exist
a local coordinate (U;x1, . . . , xn) and a k-dimensional time-varying foliation structure in
V k
a which is constructed by a k-dimensional time-varying integral manifold determined by

the time variable t and the point q0:

Sk
(
t, q0

)
:=
{
q ∈ V k

a | xk+1
(
q
)
= xk+1

(
φX

t

(
q0
))

, . . . , xn

(
q
)
= xn

(
φX

t

(
q0
))}

. (3.36)
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V k
a

Sk(t, q0)Q
φX
t (q

0)

q0

(a) Foliation structure

X(t, q)

Y (q)

TqQ

C0(t, q)

〈X,Y〉(t, q)

(b) Tangent space

Figure 8: An illustration for Theorem 3.7(a) (n = 3,m = 1, k = 2).

In addition,

C
(
t, q
)
= C0

(
t, q
)
+ span{X}(t, q), ∀q ∈ Uk

a, ∀t ∈ I,

dim C0
(
t, q
)
= k, dimC

(
t, q
)
= k + 1, ∀q ∈ Uk

a, ∀t ∈ I,
(3.37)

hold.

(b) For a neighborhood of a kth-order rheonomous equilibrium point q0 ∈ Uk
a: V

m
b

⊂ Uk
b
,

there exist a local coordinate (U;x1, . . . , xn) and a k-dimensional time-invariant foliation
structure in V k

b which is constructed by a k-dimensional time-invariant integral manifold
determined by the point q0:

Sk
(
q0
)
:=
{
q ∈ Vm

b | xk+1
(
q
)
= xk+1

(
q0
)
, . . . , xn

(
q
)
= xn

(
q0
)}

. (3.38)

In addition,

C0
(
t, q
)
= C

(
t, q
)
, ∀q ∈ Uk

b , ∀t ∈ I,

dimC0
(
t, q
)
= dimC

(
t, q
)
= k, ∀q ∈ Uk

b , ∀t ∈ I,
(3.39)

hold.

Proof. This theorem can be proven by similar procedure to the proof of Theorem 3.1 and the
results in Lemma 3.6. The details are omitted.

Figures 8 and 9 show the illustrations for Theorem 3.7(a) and (b) for the case of n = 3,
m = 1, k = 2, respectively. As shown in Figure 8(a), V k

a is divided into a 2-dimensional time-
varying foliation structure, and a trajectory that starts from an initial point q0 at the time t is
included in the foliation Sk(t, q0). However, since the foliation Sk(t, q0) slides as time goes by,
the trajectory can move as a 3-dimensional behavior in Vm

a . In addition, like the illustration of
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V k
b

Q

Sk(q0)

q0

φX
t (q

0)

(a) Foliation structure

X(t, q)

Y (q)

C0(t, q)

〈X,Y〉(t, q)

TqQ

(b) Tangent space

Figure 9: An illustration for Theorem 3.7(b) (n = 3,m = 1, k = 2).

the tangent space TqQ shown in Figure 8(b), 〈X,Y〉(t, q) lies on C(t, q), however, X(t, q) does
not belong to C(t, q). This result also causes the time-varying foliation structure.

In contrast, V k
b is divided into a 2-dimensional time-invariant foliation structure as

shown in Figure 9(a), Therefore, a trajectory starting from an initial point q0 at the time t is
constrained in the foliation Sm(q0) and cannot move to another foliation. Moreover, as the
illustration of the tangent space TqQ shown in Figure 9(b), X(t, q) as well as 〈X,Y〉(t, q) lies
on C(t, q), and hence we can find the time-invariant foliation structure in this case.

Similar to the statement (a) in Theorem 3.3, from the statement (a) in Theorem 3.7,
it can be also confirmed that there exist time-varying foliation structures in configuration
manifolds for the partially integrableA-rheonomous affine constraints, which are in common
with the case of the scleronomous affine constraints [23, 24]. We here consider a simple
example in order to understand Theorem 3.7 as follows.

Example 3.8. We here consider the same example which is shown in the first paper [38,
Example 2]. Let us consider a 3-dimensional configuration manifold:

Q =

⎧
⎨

⎩
q =

⎡

⎣
q1
q2
q3

⎤

⎦ ∈ R3 | q2 > 0, q3 > 0

⎫
⎬

⎭
(3.40)

with n = 3 and A-rheonomous affine constraints on Q:

[
tq1q2q3
q2q3

]

︸ ︷︷ ︸
A(t,q)

+
[
q2q3 q1q3 q1q2
0 1 q2

]

︸ ︷︷ ︸
B(q)

⎡

⎣
q̇1
q̇2
q̇3

⎤

⎦ = 0 (3.41)

with m = 1. We can see that Assumption 2.1 holds for (3.41). One of the geometric
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representation for (3.41) can be obtained as follows:

X
(
t, q
)
=

⎡

⎣
−tq1 + q1q3

−q2q3
0

⎤

⎦, Y
(
q
)
=

⎡

⎣
−q1 + q1q3
−q2q3
q3

⎤

⎦. (3.42)

By calculating iterated rheonomous brackets for X and Y above, we have

〈X,Y〉 =
∂Y

∂t
+ [X,Y ] = 0 +

∂Y

∂q
X − ∂X

∂q
Y =

⎡

⎣
−q1q3
q2q3
0

⎤

⎦,

〈X, 〈X,Y〉〉 =
∂〈X,Y〉

∂t
+ [X, 〈X,Y〉] =

⎡

⎣
tq1q3 − q1q

2
3

−q2q23
0

⎤

⎦ −
⎡

⎣
tq1q3 − q1q

2
3

−q2q23
0

⎤

⎦ = 0,

〈Y, 〈X,Y〉〉 = [Y, 〈X,Y〉] =
⎡

⎣
−q1q23

−q2q23 + q2q3
0

⎤

⎦ −
⎡

⎣
q1q3 − q1q

2
3

−q2q23
0

⎤

⎦ =

⎡

⎣
−q1q3
q2q3
0

⎤

⎦,

...
(3.43)

Therefore, we have

C0 = span{Y, 〈X,Y〉}, (3.44)

and we can see that

dimC0 = 2, ∀q ∈ Q, ∀t ∈ R (3.45)

holds. From Theorem 3.3, we can find that the A-rheonomous affine constraints (3.41) are
2nd-order partial nonintegrable. By using the integrating algorithm introduced in Section 4,
we can obtain two independent first integrals of (3.41) as

h1
(
t, q
)
=

q1q2q3e
(1/2)t2

q02q
0
3

− q01, (3.46)

where q0 = [q01 q02 q03]
� ∈ Q is an initial point at the initial time (for the derivation of it, see

Example 4.6 in Section 4).

From Theorem 3.7, the set of the 2nd-order rheonomous affine regular points is
represented by Uk

a = V k
a = {q ∈ Q | t > 0, q1 /= 0}, and the set of the 2nd-order rheonomous

affine regular points is given by Um
b = Vm

b = {q ∈ Q | t > 0, q1 = 0}. Hence, the q2-q3
plane corresponds to V k

b
and the total space of Q except the q2-q3 plane is V k

a . Figure 10
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V k
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q2

q3

φX
t (q

0)

q0

(b) V k
b

Figure 10: Foliation structures of Example 3.8.

depicts the illustrations of the foliation structures for these cases. As shown in Figure 10(a),
a trajectory starting from a 2nd-order rheonomous affine regular point q0 ∈ V k

a is included in
the 2-dimensional time-varying integral manifold Sk(t, q0) at the time t, and it moves in the
3-dimensional space determined by q2 = q02. Therefore, V

k
a has a 2-dimensional time-varying

foliation structure. On the other hand, as shown in Figure 10(b), a trajectory that starts from a
2nd rheonomous affine equilibrium point q0 ∈ Vm

b is included in the 2-dimensional time-
invariant integral manifold Sk(q0) and moves only in Sk(q0). Consequently, V k

b has a 2-
dimensional time-invariant foliation structure.

3.3. Completely Nonintegrable Case

In this subsection, we finally deal with the case where the A-rheonomous affine constraints
are completely nonintegrable. Now, we present necessary and sufficient conditions on
complete nonintegrability for theA-rheonomous affine constraints (2.2), which are originally
obtained in the first paper [38] as follow.

Theorem 3.9 (see [38]). For theA-rheonomous affine constraints (2.2) defined on an n-dimensional
manifold Q and a time interval I ⊂ R, the following statements (a), (b) are equivalent to each other.
If they hold, the A-rheonomous affine constraints (2.2) are said to be completely nonintegrable or
completely nonholonomic.

(a) There do not exist independent first integrals of the A-rheonomous affine constraints (2.2).

(b) For a smallest and involutive time-varying distribution C0,

dimC0
(
t, q
)
= n, ∀q ∈ Q, ∀t ∈ I, (3.47)

holds.

From the statement (a) in Theorem 3.9, it can be easily expected that there exist no
foliation structure in Q. We summarize this fact as the following theorem.
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Q

φX
t (q

0)

q0

(a) Foliation structure

X(t, q)
Y (q)

C0(t, q)

〈X, 〈X,Y〉〉(t, q)

〈X,Y〉(t, q)

TqQ

(b) Tangent space

Figure 11: An illustration for Theorem 3.10 (n = 3,m = 1).

Theorem 3.10. Assume that theA-rheonomous affine constraints (2.2) are completely nonintegrable.
Then, for a time interval I ⊂ R,

X
(
t, q0

)
∈ C0

(
q0
)
, q0 ∈ Q, t ∈ I, (3.48)

holds and there is no foliation structure in Q. In addition,

C0
(
t, q
)
= C

(
t, q
)
= TqQ, ∀q ∈ Q, ∀t ∈ I,

dim C0
(
t, q
)
= dim C

(
t, q
)
= n, ∀q ∈ Q, ∀t ∈ I,

(3.49)

hold.

Proof. We can prove this theorem by considering the case of k = n in the results in
Theorem 3.7. The details are omitted.

For Theorem 3.10, the illustration is depicted for the case of n = 3, m = 1, k = 2
in Figure 11. As shown in Figure 11(a), a trajectory starting from an initial point q0 ∈ Q
can move in Q without constraints by integral manifolds. Therefore, Q is not divided into
a foliation structure. In addition, as the illustration of the tangent space TqQ shown in
Figure 11(b), neither 〈X,Y〉(t, q) nor 〈X, 〈X,Y〉〉(t, q) do not belong to D(q) and three vector
fields Y (q), 〈X,Y〉(t, q), 〈X, 〈X,Y〉〉(t, q) span a 3-dimensional space. This result also causes
no foliation structure in Q.

Now, let us deal with a simple example in order to verify the results in Theorem 3.10
as follows.
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Example 3.11. Now, we treat the same example which is shown in the first paper [38, Example
3]. Consider a 3-dimensional configuration manifold:

Q =

⎧
⎨

⎩
q =

⎡

⎣
q1
q2
q3

⎤

⎦ ∈ R3

⎫
⎬

⎭
(3.50)

with n = 3, and A-rheonomous affine constraints defined on Q:

[
tq2
−q1

]

︸︷︷︸
A(t,q)

+
[
1 0 −1
0 1 1

]

︸ ︷︷ ︸
B(q)

⎡

⎣
q̇1
q̇2
q̇3

⎤

⎦ = 0 (3.51)

with m = 1. We can see that Assumption 2.1 holds for (3.51). One of the geometric
representation for (3.51) can be obtained:

X
(
t, q
)
=

⎡

⎣
−tq2
q1
0

⎤

⎦, Y
(
q
)
=

⎡

⎣
1
−1
1

⎤

⎦. (3.52)

Calculating iterated rheonomous brackets for X and Y above, we have

〈X,Y〉 =
∂Y

∂t
+ [X,Y ] = 0 +

∂Y

∂q
X − ∂X

∂q
Y =

⎡

⎣
−t
0
0

⎤

⎦,

〈X, 〈X,Y〉〉 =
∂〈X,Y〉

∂t
+ [X, 〈X,Y〉] =

⎡

⎣
−1
0
0

⎤

⎦ +

⎡

⎣
0
t
0

⎤

⎦ =

⎡

⎣
−1
t
0

⎤

⎦,

〈〈X,Y〉, X〉 = − ∂〈X,Y〉
∂t

+ [〈X,Y〉, X] =

⎡

⎣
1
t
0

⎤

⎦,

〈Y, 〈X,Y〉〉 = [Y, 〈X,Y〉] = 0,

〈〈X,Y〉, Y〉 = [〈X,Y〉, Y ] = 0,

...

(3.53)

Therefore, we have

C0 = span{Y, 〈X,Y〉, 〈X, 〈X,Y〉〉}, (3.54)
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and it can be confirmed that

dimC0 = 3, ∀q ∈ Q, ∀t /= 0 (3.55)

holds. From Theorem 3.9, we can see that the A-rheonomous affine constraints (3.51) are
completely nonintegrable. Therefore, from Theorem 3.10, it can be confirmed that there exists
no foliation structure in Q.

4. Integrating Algorithm for Integrable A-Rheonomous
Affine Constraints

4.1. Completely Integrable Case

As seen in the first paper [38] and Section 3 in this second paper, if the A-rheonomous
affine constraints (2.2) are completely integrable or partially integrable, there exist some
independent first integrals of them, and they form time-varying and time-invariant foliation
structures in a configuration manifold Q. If we consider reduction of the dimension of a
given configuration manifold with theA-rheonomous affine constraints, we need the explicit
forms of independent first integrals. For scleronomous linear constraints, that is, B(q)q̇ = 0,
a method on calculation of independent first integrals of them has been well known [17, 18],
and for scleronomous affine constraints, that is, A(q) + B(q)q̇ = 0, we have developed
algorithms to calculate independent first integrals of them in [25]. However, a method to
calculate independent first integrals of given A-rheonomous affine constraints has not been
proposed. Thus, in this section, we will derive two types of integrating algorithms which can
explicitly derive independent first integrals of the A-rheonomous affine constraints (2.2).

In this subsection, we first consider the case where the A-rheonomous affine
constraints (2.2) are completely integrable and derive an integrating algorithm for them.
Theorem 3.1 in Section 3 guarantees the existence of n −m independent first integrals of the
A-rheonomous affine constraints (2.2). Now, we derive an algorithm to calculate the n − m
independent first integrals. First of all, we can find n −m vector fields Ym+1, . . . , Yn such that

span{Y1, . . . , Ym, Ym+1, . . . , Yn} = Rn (4.1)

holds for the vector fields of the geometric representation for the A-rheonomous affine
constraints (2.2): Y1, . . . , Ym. Then, let us denote flows (1-parameter local transformation
groups) of X and Yi by φX

t and ϕYi
τi with parameters t and τi, respectively. We set an initial

point at the initial time t = 0 as q0 ∈ Q. We also consider m + 1 vector fields defined on the
expanded configuration manifold Q = R ×Q (3.18), and then their flows on Q are obtained
as

φ
X

t :=
[
t
φX
t

]
, ϕYi

τi
:=

[
0
ϕYi
τi

]

, i = 1, . . . , m. (4.2)
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Calculating the composite mapping of (n + 1) flows (4.15) yields

Φ := φ
X

t ◦ ϕY 1
τ1

◦ · · · ◦ ϕYn

τn
=

[
t

φX
t ◦ ϕY1

τ1 ◦ · · · ◦ ϕYn
τn

]

=
[
t
Φt

]
, (4.3)

where

Φt := φX
t ◦ ϕY1

τ1 ◦ · · · ◦ ϕ
Yn
τn (4.4)

is the composite mapping of n + 1 flows φX
t , ϕ

Yi
τi . From (4.16), it turns out that the projection

of Φ onto Q is equivalent to Φt. Hence, by applying the idea of the integrating algorithm for
scleronomous linear constraints defined on Q [17, 18] to R ×Q and considering projection of
it ontoQ, we can derive the following algorithm to calculate n−m independent first integrals
of completely integrable A-rheonomous affine constraints.

Algorithm 4.1. For the case where the A-rheonomous affine constraints (2.2) are completely
integrable, we can obtain n−m independent first integrals of them by the following procedure.

Step 1. Setm+1 vector fieldsX,Y1, . . . , Ym of geometric representation for theA-rheonomous
affine constraints (2.2).

Step 2. For X,Y1, . . . , Ym, derive linearly independent vector fields Ym+1, . . . , Yn that satisfy
(4.14).

Step 3. Calculate flows of X,Y1, . . . , Yn: φX
t , ϕ

Y1
τi , . . . , ϕ

Yn
τi .

Step 4. Combine n + 1 flows φX
t , ϕ

Y1
τi , . . . , ϕ

Yn
τi derived in Step 4 as (4.17).

Step 5. Set q = Φt(τ) and calculate the inverse function τ = Φ−1
t (q), where τ = [τ1 · · · τn]

� ∈
Rn. Then, the last n −m components of Φ−1

t are independent first integrals of (2.2).

It must be noted that Algorithm 4.1 is similar to the one for the scleronomous affine
constraints case [25] despite the explicit existence of the time variable in the A-rheonomous
affine constraints (2.2). Moreover, the existence of the inverse mapping Φ−1

t which appears at
Step 5 in Algorithm 4.1 is guaranteed by the following proposition.

Proposition 4.2. Assume that the A-rheonomous affine constraints (2.2) are completely integrable.
Then, there exists a time interval I ⊂ R and Φt(τ) is a diffeomorphism at any time t ∈ I. That is to
say, there exists its inverse mapping Φ−1

t .

Proof. First, we set τ := [t τ�]�. Calculating the partial differential of (4.16) with the chain
rule of differential calculation, we have

∂Φ
∂t

=
∂

∂t

{
φ
X

t ◦ ϕY 1
τ1

◦ · · · ◦ ϕYn

τn

}

= X

(
φ
X

t ◦ ϕY 1
τ1

◦ · · · ◦ ϕYn

τn

)
,
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∂Φ
∂τi

=
∂φ

X

t

∂τ

∂ϕY 1
τ1

∂τ
· · ·

∂ϕYi−1
τi−1

∂τ

∂

∂τi

(
ϕYi

τi
◦ · · · ◦ ϕYn

τn

)

=
∂φ

X

t

∂τ

∂ϕY 1
τ1

∂τ
· · ·

∂ϕYi−1
τi−1

∂τ
Y i

(
ϕYi

τi
◦ · · · ◦ ϕYn

τn

)
.

(4.5)

Substituting τ = 0 into (4.5), we obtain

∂Φ
∂t

∣
∣
∣
∣
∣
τ=0

= X
(
q0
)
,

∂Φ
∂τi

∣
∣
∣
∣
∣
τ=0

= Y i

(
q0
)
, (4.6)

that is to say,

∂Φ
∂t

∣∣∣∣∣
τ=0

=
[
X
(
q0
)
Y 1

(
q0
)
· · · Yn

(
q0
)]

. (4.7)

Since X,Y 1, . . . , Yn are linearly independent of each other,

rank
∂Φ
∂τ

∣∣∣∣∣
τ=0

= n + 1 (4.8)

holds. Hence it can be confirmed that Φ(τ) is a diffeomorphism by the implicit function
theorem. Since the projection of Φ(τ) onto Q is equivalent to Φt(τ), Φt(τ) is also a
diffeomorphism. Consequently, the proof of the proposition is completed.

Now, we deal with a simple example in order to check the effectiveness of
Algorithm 4.1 and Proposition 2.7 as follows.

Example 4.3. We here consider the A-rheonomous affine constraints (3.50) on the 3-
dimensional configuration manifold (3.20), which are the same ones in Example 3.4. As
seen in Example 3.4, we can confirm that (3.50) are completely integrable with m = 1, and
hence there exist two independent first integrals of (3.50). So, let us calculate them by using
Algorithm 4.1. One of the geometric representation for (3.50) is given by (3.21) and we here
set Y1 := Y . We can easily find two vector fields Y2, Y3 satisfying (4.14) as

Y2 =

⎡

⎣
0
1
0

⎤

⎦, Y3 =

⎡

⎣
1
0
0

⎤

⎦, (4.9)



26 Mathematical Problems in Engineering

and then flows of X, Y1,Y2,Y3 can be obtained as

φX
t =

⎡

⎢
⎣

q01e
−(1/2)t2

q02

q03

⎤

⎥
⎦, ϕY1

τ1 =

⎡

⎢
⎣

q01e
−τ1

q02

q03e
τ1

⎤

⎥
⎦,

ϕY2
τ2 =

⎡

⎢
⎣

q01
τ2 + q02

q03

⎤

⎥
⎦, ϕY3

τ3 =

⎡

⎢
⎣

τ3 + q01
q02

q03

⎤

⎥
⎦,

(4.10)

where q0 = [q01 q02 q03]
� ∈ Q is an initial point of the flows at the initial time. Combining the

flows (4.10) as (4.17), we have

Φt(τ) = φX
t ◦ ϕY1

τ1 ◦ ϕY2
τ2 ◦ ϕ

Y3
τ3 =

⎡

⎢⎢
⎣

(
τ3 + q01

)
e−τ1e−(1/2)t

2

τ2 + q02

q03e
τ1

⎤

⎥⎥
⎦, (4.11)

and from the equation q = Φt(τ), we can calculate the inverse mapping of Φt as follows:

Φ−1
t

(
q
)
=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

log
q03
q3

q2 − q02

q1q3e
(1/2)t2

q03
− q01

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (4.12)

Consequently, we have two independent first integrals of (3.50):

h1
(
t, q
)
= q2 − q02, h2

(
t, q
)
=

q1q3e
(1/2)t2

q03
− q01 (4.13)

as the last two components of (4.12). It can be also confirmed that these two first integrals
(4.13) satisfy (3.1) and hence (4.13) are independent of each other.

4.2. Partially Integrable Case

As seen in the first paper [38] and Section 3 in this second paper, if the A-rheonomous
affine constraints (2.2) are completely integrable or partially integrable, there exist some
independent first integrals of them, and they form time-varying and time-invariant foliation
structures in a configuration manifold Q. If we consider reduction of the dimension of a
given configuration manifold with theA-rheonomous affine constraints, we need the explicit
forms of independent first integrals. For scleronomous linear constraints, that is, B(q)q̇ = 0,
a method on calculation of independent first integrals of them has been well known [17, 18],
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and for scleronomous affine constraints, that is, A(q) + B(q)q̇ = 0, we have developed
algorithms to calculate independent first integrals of them in [25]. However, a method to
calculate independent first integrals of given A-rheonomous affine constraints has not been
proposed. Thus, in this section, we will derive two types of integrating algorithms which can
explicitly derive independent first integrals of the A-rheonomous affine constraints (2.2).

In this subsection, we first consider the case where the A-rheonomous affine
constraints (2.2) are completely integrable and derive an integrating algorithm for them.
Theorem 3.1 in Section 3 guarantees the existence of n −m independent first integrals of the
A-rheonomous affine constraints (2.2). Now, we derive an algorithm to calculate the n − m
independent first integrals. First of all, we can find n −m vector fields Ym+1, . . . , Yn such that

span{Y1, . . . , Ym, Ym+1, . . . , Yn} = Rn (4.14)

holds for the vector fields of the geometric representation for the A-rheonomous affine
constraints (2.2): Y1, . . . , Ym. Then, let us denote flows (1-parameter local transformation
groups) of X and Yi by φX

t and ϕYi
τi with parameters t and τi, respectively. We set an initial

point at the initial time t = 0 as q0 ∈ Q. We also consider m + 1 vector fields defined on the
expanded configuration manifold Q = R ×Q (3.18), and then their flows on Q are obtained
as

φ
X

t :=
[
t
φX
t

]
, ϕYi

τi
:=

[
0
ϕYi
τi

]

, i = 1, . . . , m. (4.15)

Calculating the composite mapping of (n + 1) flows (4.15) yields

Φ := φ
X

t ◦ ϕY 1
τ1

◦ · · · ◦ ϕYn

τn
=

[
t

φX
t ◦ ϕY1

τ1 ◦ · · · ◦ ϕYn
τn

]

=
[
t
Φt

]
, (4.16)

where

Φt := φX
t ◦ ϕY1

τ1 ◦ · · · ◦ ϕ
Yn
τn (4.17)

is the composite mapping of n + 1 flows φX
t , ϕ

Yi
τi . From (4.16), it turns out that the projection

of Φ onto Q is equivalent to Φt. Hence, by applying the idea of the integrating algorithm for
scleronomous linear constraints defined on Q [17, 18] to R ×Q and considering projection of
it ontoQ, we can derive the following algorithm to calculate n−m independent first integrals
of completely integrable A-rheonomous affine constraints.

Algorithm 4.4. For the case where the A-rheonomous affine constraints (2.2) are k (m < k <
n)th-order partially integrable, we can obtain n− k independent first integrals of them by the
following procedure.

Step 1. Setm+1 vector fieldsX,Y1, . . . , Ym of geometric representation for theA-rheonomous
affine constraints (2.2).
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Step 2. By calculating iterated Lie brackets of X,Y1, . . . , Ym, derive k−m linearly independent
vector fields Ym+1, . . . , Yk that satisfy

C0 = span{Y1, . . . , Ym, Ym+1, . . . , Yk}. (4.18)

Step 3. For X,Y1, . . . , Yk, derive linearly independent vector fields Yk+1, . . . , Yn that satisfy

span{Y1, . . . , Yk, Yk+1, . . . , Yn} = Rn. (4.19)

Step 4. Calculate flows of X,Y1, . . . , Yn: φX
t , ϕ

Y1
τi , . . . , ϕ

Yn
τi .

Step 5. Combine n + 1 flows derived in Step 4 as (4.17).

Step 6. Set q = Φt(τ) and calculate the inverse function τ = Φ−1
t (q). Then, the last n − k

components of Φ−1
t are first integrals of (2.2).

It is noteworthy that the differences between Algorithms 4.1 and 4.4 appear in Steps
2 and 6 in Algorithm 4.4, that is, we have to set k − m vector fields that satisfies (4.18) and
the number of independent first integrals obtained by Algorithm 4.4 is smaller than the ones
obtained by Algorithm 4.1. Similar to Proposition 2.3, the existence of the inverse mapping
Φ−1

t at Step 5 in Algorithm 4.4 is guaranteed by the following proposition.

Proposition 4.5. Assume that theA-rheonomous affine constraints (2.2) are k (m < k < n)th-order
partially integrable. Then, there exists a time interval I ⊂ R and Φt(τ) is a diffeomorphism at any
time t ∈ I. That is, there exists its inverse mapping Φ−1

t .

Proof. This proposition can be proven by similar procedure to the proof of Proposition 2.7.
The details are omitted.

Now, let us consider another simple example to check the availability of Algorithm 4.4
and Proposition 4.2 as follows.

Example 4.6. We now deal with the A-rheonomous affine constraints (3.41) on the 3-
dimensional configuration manifold (3.40), which are the same ones in Example 3.8. As
seen in Example 3.8, we can find that (3.41) are 2nd-order partially integrable with k = 2,
there exists one independent first integrals, and hence we now calculate them by using
Algorithm 4.4. One of the geometric representation for (3.41) is given by (3.42) and we set
Y1 := Y . Calculating iterated rheonomous brackets for (3.42), we have C0 = span{Y1, 〈X,Y1〉},
where

〈X,Y1〉 =

⎡

⎣
−q1q3
q2q3
0

⎤

⎦. (4.20)
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Next, we set Y2 := 〈X,Y1〉 and calculate Y3 satisfying (4.19) as

Y3 =

⎡

⎣
1
0
0

⎤

⎦ (4.21)

and the flows of X, Y1, Y2, Y3 can be obtained as

φX
t =

⎡

⎢
⎣
q01e

−(1/2)t2+q03t

q02e
−q03t

q03

⎤

⎥
⎦, ϕY1

τ1 =

⎡

⎢
⎣
q01e

q03(e
τ1−1)−τ1

q02e
−q03(eτ1−1)

q03e
τ1

⎤

⎥
⎦,

ϕY2
τ2 =

⎡

⎢
⎢
⎣

q01e
−q03τ2

q02e
q03τ2

q03

⎤

⎥
⎥
⎦, ϕY3

τ3 =

⎡

⎢
⎣

τ3 + q01
q02

q03

⎤

⎥
⎦,

(4.22)

where q0 = [q01 q02 q03]
� ∈ Q is an initial point of the flows at the initial time. Combining (4.22)

as (4.17), we have

Φt(τ) = φX
t ◦ ϕY1

τ1 ◦ ϕY2
τ2 ◦ ϕ

Y3
τ3 =

⎡

⎢
⎣

(
τ3 + q01

)
e−q

0
3τ2eq

0
3(e

τ1−1)e−(1/2)t
2+q03e

τ1 t

q02e
q03τ2e−q

0
3(e

τ1 t)

q03e
τ1

⎤

⎥
⎦, (4.23)

and from the equation q = Φt(τ), we can calculate its inverse mapping:

Φ−1
t

(
q
)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

log
q03
q3

q3(t + 1)

q03
+

1
q03

log
q2

q02
− 1

q1q2q3e
(1/2)t2

q02q
0
3

− q01

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (4.24)

Consequently, we can obtain one independent first integral of (3.41):

h1
(
t, q
)
=

q1q2q3e
(1/2)t2

q02q
0
3

− q01 (4.25)

as the last component of (4.24).

5. Physical Example: Pendulum with Time-Varying Elastic String

In this section, we consider a physical example in order to verify the results obtained in the
previous sections. We treat a pendulum with an elastic string, which is shown in Figure 12 and
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x
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L(t)

(x, y)

Figure 12: A single pendulum with a time-varying elastic string.

has already been dealt with in the first paper [38]. This system is composed of a weight and
an elastic string. One end of the string is fixed to the ceiling and can swing around the fixed
point. The weight is installed at the other end of the string. As depicted in Figure 12, we set
the x-axis and the y-axis to the horizontal and vertical directions, respectively. We also set
the origin of the coordinate system so that it corresponds to the fixed point of the string.
Therefore, we consider the 2-dimensional configuration manifold as follows:

Q =
{
q =

[
x
y

]
∈ R2 | y ≥ 0

}
, (5.1)

where n = 2. The position of the weight in Q is represented by (x, y). In addition, the angle
of the string in the clockwise direction measured from the y-axis is denoted by θ. Now, we
assume that the length of the string is changed as time goes by, that is, a time-varying elastic
string, and we denote it by L(t).

This system is undoubtedly subject to a constraint on the configuration variables as

√
x2 + y2 = L(t). (5.2)

We can easily see that since (5.2) does not contain any derivatives of the configuration
variables, (5.2) is a rheonomous holonomic constraint. So, we can reduce the number of
the configuration variables by replacing (x, y) by θ. However, we consider this system
as a physical example which is subject to an integrable A-rheonomous affine constraint.
Calculating time derivative of (5.2), we have

xẋ + yẏ = L̇(t)L(t). (5.3)

Now, for the sake of simplicity, we set N(t) := L̇(t)L(t). Then, (5.3) can be represented as an
A-rheonomous affine constraint defined on Q:

−N(t)
︸︷︷︸
A(t)

+
[
x y

]

︸︷︷︸
B(q)

[
ẋ
ẏ

]
= 0, (5.4)
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where m = 1. Let us start with the above A-rheonomous affine constraint (5.4). One of
geometric representation for the A-rheonomous affine constraints (5.4) can be derived as

X =

⎡

⎣
0

N(t)
y

⎤

⎦, Y =

⎡

⎣
1

−x
y

⎤

⎦. (5.5)

For the vector fields X,Y , we calculate a rheonomous bracket as

〈X,Y〉 =
∂Y

∂t
+ [X,Y ] =

⎡

⎣
0

N(t)x
y3

⎤

⎦ −
⎡

⎣
0

N(t)x
y3

⎤

⎦ =
[
0
0

]
, (5.6)

and so we can see that all the iterated rheonomous brackets of X,Y are 0. Consequently, we
obtain

C0 = span{Y}, (5.7)

and hence

dim C0 = 1, ∀q ∈ Q, ∀t ∈ I := R (5.8)

holds. From the condition (c) in Theorem 3.1, it turns out that the A-rheonomous affine
constraint (5.4) is completely integrable, and this fact coincides with the problem setting of
this system. Furthermore, the condition (a) in Theorem 3.1, we can see that there exist one
first integral of theA-rheonomous affine constraint (5.4). So, we next calculate it by using the
integrating algorithm introduced in Section 4.1 (Algorithm 4.1). We set Y1 := Y and a vector
field Y2 that satisfies span {Y1, Y2} = R2 as

Y2 =
[
1
0

]
. (5.9)

Next, the flows of X,Y1, Y2 can be calculated as

φX
t =

[
x0

√(
y0
)2 + L(t)2 − L(0)2

]

, ϕY1
τ1 =

[
τ1 + x0

√
τ21 +

(
y0
)2

]

, ϕY2
τ2 =

[
τ2 + x0

y0

]
, (5.10)

where q0 = [x0 y0 ]� is an initial point of the flows. Now, combining the flows (5.10) as (4.16),
we then obtain

Φt = φX
t ◦ ϕY1

τ1 ◦ ϕY2
τ2 =

[
τ1 + x0

√
τ21 + L(t)2 − L(0)2 +

(
τ2 + y0

)2

]

. (5.11)
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From (5.11), we can calculate the inverse mapping of Φt as

Φ−1
t

(
q
)
=

[
x − x0

√
(x − x0)2 + y2 − L(t)2 + L(0)2 − y0

]

. (5.12)

Therefore, the first integral can be obtained as the last component of (5.12):

√
(x − x0)2 + y2 − L(t)2 + L(0)2 − y0 = 0. (5.13)

For the sake of simplicity, we set the initial values of x, y, L(t) as x0 = y0 = 0, L(0) = 0. Thus,
from (5.13), we can obtain

x2 + y2 = L(t)2, (5.14)

and we can confirm that (5.14) corresponds to the rheonomous holonomic constraint (5.2).

6. Conclusions

In this paper, we have treated the A-rheonomous affine constraints from the aspects of
foliation structures and integrating algorithms. We first investigate foliation structures of
configuration manifolds with the A-rheonomous affine constraints for the three cases:
complete integrability, partial integrability, and complete nonintegrability. Next, we have
developed two kinds of integrating algorithms that can calculate independent first integrals
of the A-rheonomous affine constraints in the complete integrability and partial integrability
cases. Then, a pendulum with a time-varying elastic string as a physical example has been
presented in order to show the effectiveness of the new results obtained in this paper.

It has turned out from the results that (a) for the completely and partially integrable
A-rheonomous affine constraints, there exist not only time-invariant foliation structures but
also time-varying ones in configuration manifolds, and this fact is similar to the ones for the
scleronomous affine constraints [23], (b) for the completely nonintegrable A-rheonomous
affine constraints, there do not exist any foliation structures, (c) independent first integrals of
givenA-rheonomous affine constraints can be calculated by using the integrating algorithms,
(d) the rheonomous bracket plays important roles in analysis of foliation structures and
derivation of integrating algorithms. These results obtained in this paper seem to be very
useful for various research fields such as general mathematics and physics as well as control
theory.

Throughout the first paper [38] and this second paper, we have considered a
new class of constraints, the A-rheonomous affine constraints, which have been hardly
researched so far, and we have developed some fundamental mathematical tools to
analyze integrability/nonintegrability and geometric structures for theA-rheonomous affine
constraints. Our future work on the A-rheonomous affine constraints are as follows: (i)
theoretical analysis and control synthesis of nonholonomic kinematic/dynamic systems
subject to A-rheonomous affine constraints, (ii) applications to the model reduction theory
and constrained mechanical system theory, (iii) extensions to more general constraints, for
example, fully rheonomous affine constraints of the form: A(t, q) + B(t, q)q̇ = 0. In particular,
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(iii) seems to be quite difficult to solve because not only the rheonomous vector field X but
also the distribution D contain the time variable t, that is, we have to deal with the time-
varying distribution D(t, q).
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