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This paper focuses on modelling and solving the ingredient ratio optimization problem in
cement raw material blending process. A general nonlinear time-varying (G-NLTV) model is
established for cement raw material blending process via considering chemical composition,
feed flow fluctuation, and various craft and production constraints. Different objective functions
are presented to acquire optimal ingredient ratios under various production requirements. The
ingredient ratio optimization problem is transformed into discrete-time single objective ormultiple
objectives rolling nonlinear constraint optimization problem. A framework of grid interior point
method is presented to solve the rolling nonlinear constraint optimization problem. Based on
MATLAB-GUI platform, the corresponding ingredient ratio software is devised to obtain optimal
ingredient ratio. Finally, several numerical examples are presented to study and solve ingredient
ratio optimization problems.

1. Introduction

Cement is a widely used construction material in the world. Cement production will
experience several procedures which include raw materials blending process and burning
process, cement clinker grinding process, and packaging process. Cement raw material and
cement clinkers mainly contain four oxides: calcium oxide or lime (CaO), silica (SiO2),
alumina (Al2O3), and iron oxide (Fe2O3). The cement clinkers quality is evaluated by the
above four oxides. Hence, ingredient ratio of cement raw material will affect the quality and
property of cement clinker significantly. Optimal ingredient ratio will promote and stabilize
cement quality and production craft. Therefore, cement raw materials should be reasonably
mixed. Hence, it is a significant problem to obtain optimal ingredient ratio.
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Many publications have studied various cement processes in cement production. In
[4], under different ball charge filling ratios, ball sizes, and residence time, a continuous ball
mill is studied for optimizing cement raw material grinding process. In [5], an adaptive
control framework is presented for raw material blending process, and corresponding
optimal control structure is discussed too. In [6, 7], control strategies are presented for
cement rawmaterial blending process by the least square methods, neural network methods,
and adaptive neural-fuzzy inference methods. In [8–10], model identification and advanced
control problems have been discussed, through considering chemical composition variations
disturbance, and model predictive controller is used to calculate optimal raw material
feed ratio. In [11], a time-varying Kalman filter is proposed to recursive estimate oxide
composition of cement raw material via X-ray analysis. In [12], a T-S fuzzy controller is
proposed to improve real-time performances in blending process. In [13], the feeder, ball mill,
and homogenizing silo are seen as a whole system, input and output data are used to analyze
blending process. In [1, 14, 15], fuzzy neural network with particle swarm optimization
(FNN-PSO) methods and artificial neural network (ANN) are applied to establish and
optimize cement rawmaterial blending process. In [2, 16–24], algebraic methods, least square
methods, neural network methods, linear programmethods, and empirical methods are used
to compute or obtain optimal ingredient ratios in cement raw material blending process. In
[3, 25–28], new original raw materials and instruments are introduced in blending process.
In [29–33], cement production problems are discussed.

This does not give much attention to modeling and obtaining optimal ingredient
ratio in blending process. In this paper, ingredient ratio optimization problem is analyzed
for cement raw material blending process under various conditions. A G-NLTV model is
established for cement raw material blending process. The ingredient ratio optimization
problem can be equivalently transformed into convex problems. A framework of grid
interior point method is proposed to solve ingredient ratio optimization problem. A software
is developed to solve the ingredient ratio optimization problem through MATLAB-GUI.
This paper is arranged as follows: raw material blending process and critical cement
craft parameters are introduced in Section 2; G-NLTV model of raw material blending
process under various circumstances is established in Section 3; the grid interior point
method framework and cement ingredient software are presented in Section 4; numerical
examples in blending process are presented in Section 5; paper contents are concluded in
Section 6.

2. Raw Material Blending Process and Critical Cement
Craft Parameters

Cement production process could be roughly divided into three stages. The first stage is
to make cement raw material, which contains raw material blending process and grinding
process. The second stage and third stage are to burn the raw material and grind cement
clinkers respectively. The cement raw material blending process is an important link
because the blending process will affect the cement clinker quality and critical cement
craft parameters, thus the blending process finally affects the cement quality. Figure 1
demonstrates cement raw material blending process and its control system. Cement original
materials are usually the limestone, steel slag, shale, sandstone, clay, and correct material. The
original cement materials should be blended in a reasonable proportion, and then original
cement materials are transported into the ball mill which grinds original cement materials
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Figure 1: The cement raw material blending process and its control system.

into certain sizes. The classifier selects suitable size of original cement material which is
transported to the cement kiln for burning.

The quality of cement raw material and cement clinkers are evaluated by the cement
lime saturation factor (LSF), silicate ratio (SR), and aluminum-oxide ratio (AOR). LSF, SR,
and AOR are directly determined by the lime, silica, alumina, and iron oxide which are
contained in cement rawmaterial. The LSF, SR, and AOR are critical cement craft parameters,
thus ingredient ratio determines critical cement crafts parameters. Likewise, critical cement
craft parameters are also used to assess the blending process. In cement production, the
LSF, SR, and AOR must be controlled or stabilized in reasonable range. Critical cement craft
parameters are not stabilized, so it cannot produce high qualified cement. The X-ray analyzer
in Figure 1 is used to analyze chemical compositions of the original cement material or raw
material, then X-ray analyzer can feedback LSF, SR, and AOR in fixed sample time. The LSF,
SR, and AOR can be affected by many uncertain factors such as composition fluctuation, and
material feeding flow. Table 1 shows the chemical composition of original cement materials.
Chemical composition is the time-varying function. The symbols μj = μj(t), ηj = ηj(t), . . .,
ωj = ωj(t), and ϕj = ϕj(t) represent chemical composition of original cement material-j. In
Table 1, R2O represents total chemical composition of sodium oxide (Na2O) and potassium
(K2O).

Why chemical composition is the time-varying function? Original cementmaterials are
obtained from naturemine, thus chemical composition is time-varying function. Composition
fluctuation is inevitable and it may contain randomness. With economic development,
resource consumption is expanding and the resources are consuming. Therefore, original
cement materials with stable chemical composition become more and more difficult to find.
From the perspective of protecting environment, cement production needs to use parts
of waste and sludge, therefore original cement materials composition fluctuation will be
enlarged in the long run.

To some extent, modelling and optimization of the cement raw material blending
process becomes more important and challenge. Because of different original cement material
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type, different chemical composition, and different requirements on critical cement craft
parameters, ingredient ratio should be more scientific and reasonable in blending process.
Therefore, ingredient ratio should adapt to the chemical composition fluctuation and
guarantee critical cement craft parameters in permissible scope.

3. General Dynamic Model of Blending Process

The blending process is to produce qualified cement raw material. In cement raw material
blending process, it is a key task to stabilize critical cement craft parameters LSF, SR, and
AOR in permissible scope. In practice, formulas in [26, 34] are used to calculate LSF, SR, and
AOR as follows:

α =

(
Mγ − 1.65Mη − 0.35Mρ

)

(
2.8Mμ

) ,

or: α =
Mγ

(
2.8Mμ + 1.18Mη + 0.65Mρ

) ,

β =
Mμ

(
Mη +Mρ

) , Ω =
Mη

Mρ
,

(3.1)

where α is the LSF, β is the SR, and Ω is the AOR. Without losing generality, it assumes that
there has n-type the original cement materials in blending process. The mass of CaO, SiO2,
Al2O3, and Fe2O3 in cement raw material can be acquired as

Mγ = γ1M1 + · · · + γnMn =
n∑

j=1

γjMj,

Mμ = μ1M1 + · · · + μnMn =
n∑

j=1

μjMj,

Mη = η1M1 + · · · + ηnMn =
n∑

j=1

ηjMj,

Mρ = ρ1M1 + · · · + ρnMn =
n∑

j=1

ρjMj.

(3.2)

LSF, SR, and AOR are affected by the original cement materials mass or mass percentage.
Obviously, LSF, SR, and AOR are affected by composition fluctuation. Equation (3.2) is
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equivalently expressed as

Mγ

M
=

(∑n
j=1 γjMj

)

M
,

Mμ

M
=

(∑n
j=1 μjMj

)

M

Mη

M
=

(∑n
j=1 ηjMj

)

M
,

Mρ

M
=

(∑n
j=1 ρjMj

)

M

M = M1 +M2 + · · · +Mn−1 +Mn =
n∑

j=1

Mj,

(3.3)

where M is total mass of original cement material. Variables are normalized, and (3.3) is
further expressed as

mγ =
n∑

j=1

γjxj =
(
γTx
)
, mμ =

n∑

j=1

μjxj =
(
μTx
)
,

mη =
n∑

j=1

ηjxj =
(
ηTx
)
, mρ =

n∑

j=1

ρjxj =
(
ρTx
)
,

n∑

j=1

xj = 1, xj =
(
Mj

M

)
, x = (x1, . . . , xn)T ,

(3.4)

where xj (j = 1, . . . , n) is the mass percentage of original cement material-j, x = (x1, . . . , xn)
T

is ingredient ratio (mass percentage vector), and γ , μ, η, and ρ are mass percentage vector of
CaO, SiO2, Al2O3, and Fe2O3 for cement raw material, respectively. The ingredient ratio x is
usually expressed by the percentage form, andmγ ,mμ, mη, mργ , μ, η, and ρ are obtained as

mγ =
Mγ

M
, γ =

(
γ1, . . . , γn

)T
,

mμ =
Mμ

M
, μ =

(
μ1, . . . , μn

)T
,

mη =
Mη

M
, η =

(
η1, . . . , ηn

)T
,

mρ =
Mρ

M
, ρ =

(
ρ1, . . . , ρn

)T
.

(3.5)

In practice, each type of original cement material will possess a certain proportion, thus mass
percentage xj will yield

εj ≤ xj ≤ 1, 0 ≤ εj ≤ 1
(
j = 1, 2, . . . , n

)
, (3.6)
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where εj (j = 1, 2, . . . , n) is minimum mass percentage of original cement material-j.
Minimum mass percentage εj is decided by cement production crafts. In cement production,
the mass percentage mγ of cement raw material should be limited in permissible scope.
Otherwise, cement will lose its inherent nature property as

mγ− ≤ mγ ≤ mγ+, mγ+ = δr0 + Δr0, mγ− = δr0 −Δr0, (3.7)

where δγ0 is the expected mass percentage of CaO, Δγ0 is the maximum fluctuation scope,
and mγ− and mγ+ are the lower bounded and upper bounded, respectively. δγ0 and Δγ0 are
determined by cement production crafts. In actual cement production, critical cement craft
parameters LSF, SR, and AOR should be stabilized in permissible scope as follows:

α0− ≤ α ≤ α0+, β0− ≤ β ≤ β0+, Ω0− ≤ Ω ≤ Ω0+, (3.8)

where α0−, β0−, and Ω0− are the minimum lower bounded of LSF, SR, and AOR respectively,
and α0+, β0+, and Ω0+ are the maximum upper bounded of LSF, SR, and AOR respectively.
Cement rawmaterial is burned in the kiln, to guarantee the quality of the cement clinker, and
burning loss and impurity ratio should be limited in allowable range. If raw material has too
much impurity, it will affect the clinker quality. So, they can not exceed certain scope and will
yield relationships as

mϕ =
Mϕ

M
, Mϕ = ϕ1M1 + · · · + ϕnMn,

mω =
Mω

M
, Mω = ω1M1 + · · · +ωnMn,

mϕ = ϕ1x1 + · · · + ϕnxn =
n∑

j=1

ϕjxj = ϕTx ≤ δϕ0,

mω = ω1x1 + · · · +ωnxn =
n∑

j=1

ωjxj = ωTx ≤ δω0,

(3.9)

where δϕ0 and δω0 are the maximum permission loss ratio and impurity ratio, respectively,
and ϕ and ω are loss and impurity percentage vector, respectively. To restrict harmful
ingredients and protect environment, harmful ingredients in cement raw material should
be reduced as far as possible. In [29–33], it shows that too much harmful ingredients such
as magnesium oxide, sodium oxide, trioxide, and potassium will affect burning process and
cause cement kiln plug and crust. Harmful ingredients will affect cement clinkers quality and
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property. Therefore, toxic ingredients in cement raw material should be limited as follows:

mτ =
Mτ

M
, Mτ = τ1M1 + · · · + τnMn,

mr =
Mr

M
, Mr = r1M1 + · · · + rnMn,

ms =
Ms

M
, Ms = s1M1 + · · · + snMn,

mλ =
Mλ

M
, Mλ = λ1M1 + · · · + λnMn,

mπ =
Mπ

M
, Mπ = π1M1 + · · · + πnMn,

(3.10)

mτ = τ1x1 + · · · + τnxn =
n∑

j=1

τjxj = τTx ≤ δτ0,

mr = r1x1 + · · · + rnxn =
n∑

j=1

rjxj = rTx ≤ δr0,

ms = s1x1 + · · · + snxn =
n∑

j=1

sjxj = sTx ≤ δs0,

mλ = λ1x1 + · · · + λnxn =
n∑

j=1

λjxj = λTx ≤ δλ0,

mπ = π1x1 + · · · + πnxn =
n∑

j=1

πjxj = πTx ≤ δπ0,

(3.11)

where δτ0, δr0, δs0, δλ0, and δπ0 are the permissible maximummass percentage of MgO, R2O,
SO3, TiO2, and Cl in cement raw material, respectively, and τ , r, s, λ, and π are composition
mass percentage vector of MgO, R2O, SO3, TiO2, and Cl, respectively.

In cement production, the cement kiln can be divided into wet kiln and dry kiln. In
[30–33], it shows that the cement rawmaterial with high sulphur-alkali ratio (SAR)will cause
some problems in dry kiln. Therefore, it is necessary to control the SAR for preventing cement
kiln plug and crust. The cement raw material with small SAR will increase the flammability
and improve the cement clinkers quality. Some formulas are presented to calculate the SAR
for cement raw material. The world famous cement manufacturers such as KHD Humboldt
Company, F.L.Smidth Company, and F.C.B Company in [31] propose their formulas to
calculate SAR; in practice, any of the following formulas can be used to compute SAR:

KHDHumboldt (δθ0 = 0.7∼1.0): θ =
Ms

(0.85Mr1 + 1.29Mr2 − 1.119Mπ)
≤ δθ0,

F.C.B (δθ0 = 0.3∼1.2): θ =
Ms

(0.85Mr1 + 1.29Mr2)
≤ δθ0,

F.L.Smidth (δθ0 = 0.3%): θ = Ms − (0.85Mr1 + 0.645Mr2) ≤ δθ0,

(3.12)
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where θ is the SAR, Mr1 and Mr2 are the mass or mass percentage of K2O and Na2O,
respectively, and δθ0 is the permissible maximum percentage. The Mr1 and Mr2 have the
implicit relationships:Mr = Mr1 +Mr2,Mr1 = ξMr2. ξ is mass ratio between K2O and Na2O.
The SAR is limited in permissible scope, which will reduce the environmental pollution.
Strictly speaking, the blending process does not include the cement ball mill grinding process.
Before cement raw materials are transported into the cement burning kiln, cement raw
material blending process is considered as a whole process, thus the grinding process could
be seen as part of blending process. For integrity and generality, we consider that the cement
raw material blending process includes ball mill grinding process. Then, the mass balance
equation of active ingredients SiO2 in ball mill could be obtained as follows:

d
(
Qmμ

)

dt
= Finput − Foutput ⇐⇒

n∑

j=1

(

μjxj
dQ

dt
+Qμj

dxj

dt
+Qxj

dμj

dt

)

= Qinput ×
n∑

j=1

μjxj −Q ×
n∑

j=1

kμ,jμjxj ,

Finput = Qinput mμ, Foutput = kQmμ +Q ×
n∑

j=1

νμ,jμjxj

mμ =
n∑

j=1

μjxj , kμ,j = k + νμ,j ,
(
j = 1, 2, . . . , n

)
,

(3.13)

whereQ is original cement material output flow in ball mill,Qinput is original cement material
feed flow, Finput is SiO2 mass in feed flow, Foutput is SiO2 mass in output flow, and kμ,j is the
SiO2 ouput mass coefficient of original cement material-j. In (3.13), it assumes that output
mass is proportional to the material flow in ball mill and mass composition percentage.
Likewise, the A12O3, Fe2O3, and CaO mass balance equation of active ingredients in ball
mill will be obtained as follows:

n∑

j=1

(

ηjxj
dQ

dt
+Qηj

dxj

dt
+Qxj

dηj

dt

)

= Qinput ×
n∑

j=1

ηjxj −Q ×
n∑

j=1

kη,jηjxj ,
{
kη,j = k + νη,j ,

(
j = 1, 2, . . . , n

)}
,

n∑

j=1

(

ρjxj
dQ

dt
+Qρj

dxj

dt
+Qxj

dρj

dt

)

= Qinput ×
n∑

j=1

ρjxj −Q ×
n∑

j=1

kρ,jρjxj ,
{
kρ,j = k + νρ,j ,

(
j = 1, 2, . . . , n

)}
,
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n∑

j=1

(

γjxj
dQ

dt
+Qγj

dxj

dt
+Qxj

dγj

dt

)

= Qinput ×
n∑

j=1

γjxj −Q ×
n∑

j=1

kγ,jγjxj ,
{
kη,j = k + νγ,j ,

(
j = 1, 2, . . . , n

)}
.

(3.14)

Therefore, the MgO, R2O, SO3, TiO2, and Cl mass balance equation of harmful
ingredients in ball mill could be obtained as follows:

n∑

j=1

(

τjxj
dQ

dt
+Qτj

dxj

dt
+Qxj

dτj

dt

)

= Qinput ×
n∑

j=1

τjxj −Q ×
n∑

j=1

kτ,jτjxj ,
{
kτ,j = k + ντ,j ,

(
j = 1, 2, . . . , n

)}
,

n∑

j=1

(

rjxj
dQ

dt
+Qrj

dxj

dt
+Qxj

drj

dt

)

= Qinput ×
n∑

j=1

rjxj −Q ×
n∑

j=1

kr,jrjxj ,
{
kr,j = k + νr,j ,

(
j = 1, 2, . . . , n

)}
,

n∑

j=1

(

sjxj
dQ

dt
+Qsj

dxj

dt
+Qxj

dsj

dt

)

= Qinput ×
n∑

j=1

sjxj −Q ×
n∑

j=1

ks,jsjxj ,
{
ks,j = k + νs,j ,

(
j = 1, 2, . . . , n

)}
,

n∑

j=1

(

λjxj
dQ

dt
+Qλj

dxj

dt
+Qxj

dλj

dt

)

= Qinput ×
n∑

j=1

λjxj −Q ×
n∑

j=1

kλ,jλjxj ,
{
kλ,j = k + νλ,j ,

(
j = 1, 2, . . . , n

)}
,

n∑

j=1

(

πjxj
dQ

dt
+Qπj

dxj

dt
+Qxj

dπj

dt

)

= Qinput ×
n∑

j=1

πjxj −Q ×
n∑

j=1

kπ,jπjxj ,
{
kπ,j = k + νπ,j ,

(
j = 1, 2, . . . , n

)}
.

(3.15)
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The impurity and loss mass balance equation of ball mill in blending process could be also
obtained as follows:

n∑

j=1

(

ωjxj
dQ

dt
+Qωj

dxj

dt
+Qxj

dωj

dt

)

= Qinput ×
n∑

j=1

ωjxj −Q ×
n∑

j=1

kω,jωjxj ,
{
kω,j = k + νω,j ,

(
j = 1, 2, . . . , n

)}
,

(3.16)

n∑

j=1

(

ϕjxj
dQ

dt
+Qϕj

dxj

dt
+Qxj

dϕj

dt

)

= Qinput ×
n∑

j=1

ϕjxj −Q ×
n∑

j=1

kϕ,jϕjxj ,
{
kϕ,j = k + νϕ,j ,

(
j = 1, 2, . . . , n

)}
.

(3.17)

In order to obtain the general nonlinear time-varying dynamic optimization model,
we needs to select suitable optimization objective function. In practice, many factors should
be considered such as original cement material cost, grind ability, and the error between the
actual critical craft and desired critical craft. To reduce the cement cost, an optimal ingredient
ratio should be pursued to reduce the original cement material cost. Thus, original cement
material cost function is acquired as

min J1 = min

⎛

⎝
n∑

j=1

xjCj

⎞

⎠ = min
(
CTx

)
, (3.18)

where Cj (�/ton) is the cost of original cement material-j, and J1 is the cost function. To
improve the grind-ability, it can pursue an optimal ingredient ratio to reduce the electrical
power consumption. Thus, the power consumption function is acquired as

min J2 = min

⎛

⎝
n∑

j=1

xjPj

⎞

⎠ = min
(
PTx
)
, (3.19)

where Pj (Kwh/ton) is bond grinding power index of original cement material-j, and J2 is
power consumption function. Pj represents the grind ability of original cement material-j
and also can reflect the ball mill power consumption. To reduce critical cement craft error, it
can pursue an optimal ingredient ratio to reduce LSF, SR, and AOR error. Hence, the critical
cement craft error function J3 is obtained as follows:

min J3 = min
{
w1(Δα)2 +w2

(
Δβ
)2 +w3(ΔΩ)2

}
,

Δα = α − αd0, Δβ = β − βd0, ΔΩ = Ω −Ωd0,

(3.20)

wherewj (j = 1, 2, 3) is the weight of LSF error, SR error, and AOR error, Δα, Δβ, and ΔΩ are
the error of LSF, SR, andAOR, and αd0, βd0, andΩd0 are the expected LSF, SR, and AOR. Based
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Table 2: G-NLTV dynamic optimization models of the cement raw material blending process.

Optimization models Optimization objective functions Constraints

Single-
objective
optimization

Model.1 min J1 = min(CTx) (3.1)–(3.12), (3.13)–(3.17)
Model.2 min J2 = min(PTx) (3.1)–(3.12), (3.13)–(3.17)

Model.3 min J3 = min
{
w1(Δα)2 +w2

(
Δβ
)2 +w3(ΔΩ)2

}

(3.1)–(3.12), (3.13)–(3.17)
(Notes: Δα = α − αd0,Δβ = β − βd0,ΔΩ = Ω −Ωd0)

Multiple-
objective
optimization

Model.4 min(J1, J2) =min{Ψ1J1 + Ψ2J2} (3.1)–(3.12), (3.13)–(3.17)
Model.5 min(J1, J3) =min{Ψ1J1 + Ψ2J3} (3.1)–(3.12), (3.13)–(3.17)
Model.6 min(J2, J3) =min{Ψ1J2 + Ψ2J3} (3.1)–(3.12), (3.13)–(3.17)
Model.7 min(J1, J2, J3) =min{Ψ1J1 + Ψ2J2 + Ψ3J3} (3.1)–(3.12), (3.13)–(3.17)

on the cement production requirements, various objective functions are obtained. Finally, G-
NLTV dynamic optimization models of cement raw material blending process are obtained
as

Model.1: min J1 = min
(
CTx

)

Model.2: min J2 = min
(
PTx
)

Model.3: min J3 = min
(
w1(Δα)2 +w2

(
Δβ
)2 +w3(ΔΩ)2

)

Model.4: min(J1, J2) = min{Ψ1J1 + Ψ2J2}
Model.5: min(J1, J3) = min{Ψ1J1 + Ψ2J3}
Model.6: min(J2, J3) = min{Ψ1J2 + Ψ2J3}
Model.7: min(J1, J2, J3) = min{Ψ1J1 + Ψ2J2 + Ψ3J3}

Subject to (s.t) (3.1)–(3.12), (3.13)–(3.17),

(3.21)

where Ψ1, Ψ2, and Ψ3 are the function weight. The G-NLTV dynamic optimization model
includes the single objective andmultiple objectives optimizationmodel. All the optimization
models contain algebraic constraints and dynamic constraints.

4. Analysis of Ingredient Ratio Optimization Problem and
Grid Interior Point Framework

The object functions J1, J2, and J3 in dynamic optimization models are the convex functions.
The Ψ1J1 + Ψ2J2,Ψ1J1 + Ψ2J3,Ψ1J2 + Ψ2J3, and the Ψ1J1 + Ψ2J2 + Ψ3J3 are also the convex
functions. As known, the convex optimization problems have good convergent properties.
The optimization problems are the convex optimization problem which is determined by
their objective function and constraints. We need to check the constraints of optimization
problems shown in Table 2. The constraints (3.1)–(3.12) are algebraic constraints and
constraints (3.13)–(3.17) are dynamic constraints. The algebraic constraints and dynamic
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constraints construct the feasible regions of the optimization problem. The feasible region
of constraint (3.12) and constraint (3.8) are obtained as

Fθ =
{
x | θ =

Ms

(0.85Mr1 + 1.29Mr2 − 1.119Mπ)
≤ δθ0

}
,

Fα,β,Ω =
{
x | α0− ≤ α ≤ α0+, β0− ≤ β ≤ β0+,Ω0− ≤ Ω ≤ Ω0+

}
,

(4.1)

where Fθ and Fα,β,Ω are the feasible regions constructed by constraints (3.12) and (3.8),
respectively. SAR θ is equivalently expressed as

θ =
(Ms/M)

((0.85Mr1 + 1.29Mr2 − 1.119Mπ)/M)

⇐⇒ θ =
ms

(0.85mr1 + 1.29mr2 − 1.119mπ)

⇐⇒ θ =
ms

((0.85ξ + 1.29)mr/(1 + ξ) − 1.119mπ)
.

(4.2)

Then, feasible region Fθ can be equivalently written as

Fθ =
{

x | ms

((0.85ξ + 1.29)mr/(1 + ξ) − 1.119mπ)
≤ δθ0

}
⇐⇒

Fθ = {x | (1 + ξ)ms ≤ ((0.85ξ + 1.29)mr − 1.119(1 + ξ)mπ)δθ0} ⇐⇒
Fθ = {x | (1 + ξ)ms + 1.119(1 + ξ)δθ0mπ − (0.85ξ + 1.29)δθ0mr ≤ 0}.

(4.3)

Likewise, critical cement craft parameters α, β, and Ω can be equivalently expressed as

α =

((
Mγ − 1.65Mη − 0.35Mρ

)
/M
)

((
2.8Mμ

)
/M
) ⇐⇒

α =

(
mγ − 1.65mη − 0.35mρ

)

(
2.8mμ

)

β =

(
Mμ/M

)

((
Mη +Mρ

)
/M
) ⇐⇒ β =

mμ
(
mη +mρ

)

Ω =

(
Mη/M

)

(
Mρ/M

) ⇐⇒ Ω =
mη

mρ
.

(4.4)
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Then, feasible region Fα,β,Ω can be equivalently written as

Fα,β,Ω =

{
x | (mγ − 1.65mη − 0.35mρ

)

(
2.8mμ

) ≥ α0−,

(
mγ − 1.65mη − 0.35mρ

)

(
2.8mμ

) ≤ α0+,

mμ
(
mη +mρ

) ≥ β0−,
mμ

(
mη +mρ

) ≤ β0+,
mη

mρ
≥ Ω0−,

mη

mρ
≤ Ω0+

}

⇐⇒

Fα,β,Ω =
{
x | mγ − 1.65mη − 0.35mρ − 2.8α0−mμ ≥ 0, mγ − 1.65mη − 0.35mρ − 2.8α0+mμ ≤ 0,

mμ − β0−
(
mη +mρ

) ≥ 0, mμ − β0+
(
mη +mρ

) ≤ 0,

mη −Ω0−mρ ≥ 0, mη −mρΩ0+ ≤ 0
}⇐⇒

Fα,β,Ω =
{
x | mγ − 1.65mη − 0.35mρ − 2.8α0−mμ ≥ 0, mμ − β0−

(
mη +mρ

) ≥ 0, mη −Ω0−mρ ≥ 0
}

∩ {x | mγ − 1.65mη − 0.35mρ − 2.8α0+mμ ≤ 0,

mμ − β0+
(
mη +mρ

) ≤ 0, mη −mρΩ0+ ≤ 0
}
.

(4.5)

In the previous section, we know that the ms, mπ , mr , mγ , mη, mρ, and mμ are the linear
functions of the ingredient ratio (original cement materials mass percentage vector) x =
(x1, x2, . . . , xn)

T . Therefore, feasible region Fθ and Fα,β,Ω are the convex or semiconvex region.
Constraints (3.8) and (3.12) are nonlinear algebraic constraints, but their feasible regions are
also convex or semiconvex region. Hence, feasible regions constructed by constraints (3.1)–
(3.12) are obtained as

F =
{
x | Fθ ∩ Fα,β,Ω ∩ Fo.e

} ∈ Π, (4.6)

where F is the feasible region constructed by constraints (3.1)–(3.12), Fo.e is the feasible region
constructed by constraints (3.1)–(3.10), and Π is the convex and semiconvex regions set.
The constraints (3.1)–(3.10) are the linear algebraic constraints. Hence, the feasible region
Fo.e constructed by constraints (3.1)–(3.10) is the convex or semiconvex. Therefore, feasible
regions constructed by constraints (3.1)–(3.12) belong to convex or semiconvex region.

The constraints (3.13)–(3.17) are the time-varying differential equation constraints in
dynamic model. The constraints (3.13)–(3.17) can be equally written as the following vector
form:

dQ

dt
μTx +QxT dμ

dt
+QμT dx

dt
= Qinputμ

Tx −QμTΛμx, Λμ = diag
(
kμ,1, . . . , kμ,n

)
,

dQ

dt
ηTx +QxT dη

dt
+QηT dx

dt
= Qinputη

Tx −QηTΛηx, Λη = diag
(
kη,1, . . . , kη,n

)
,

dQ

dt
ρTx +QxT dρ

dt
+QρT

dx

dt
= Qinputρ

Tx −QρTΛρx, Λρ = diag
(
kρ,1, . . . , kρ,n

)
,

dQ

dt
γTx +QxT dγ

dt
+QγT

dx

dt
= Qinputγ

Tx −QγTΛγx, Λγ = diag
(
kγ,1, . . . , kγ,n

)
,
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dQ

dt
τTx +QxT dτ

dt
+QτT

dx

dt
= Qinputτ

Tx −QτTΛτx, Λτ = diag(kτ,1, . . . , kτ,n),

dQ

dt
rTx +QxT dr

dt
+QrT

dx

dt
= Qinputr

Tx −QrTΛrx, Λr = diag(kr,1, . . . , kr,n),

dQ

dt
sTx +QxT ds

dt
+QsT

dx

dt
= Qinputs

Tx −QsTΛsx, Λs = diag(ks,1, . . . , ks,n),

dQ

dt
λTx +QxT dλ

dt
+QλT

dx

dt
= Qinputλ

Tx −QλTΛλx, Λλ = diag(kλ,1, . . . , kλ,n),

dQ

dt
πTx +QxT dπ

dt
+QπT dx

dt
= Qinputπ

Tx −QπTΛπx, Λπ = diag(kπ,1, . . . , kπ,n),

dQ

dt
ωTx +QxT dω

dt
+QωT dx

dt
= Qinputω

Tx −QωTΛωx, Λω = diag(kω,1, . . . , kω,n),

dQ

dt
ϕTx +QxT dϕ

dt
+QϕT dx

dt
= Qinputϕ

Tx −QϕTΛϕx, Λϕ = diag
(
kϕ,1, . . . , kϕ,n

)
.

(4.7)

The constraints (3.13)–(3.17) in the dynamic optimization model reveal that fluctuations of
the cement material flow and chemical composition will have important effects on cement
raw material ingredient ratio. The derivative of ingredient ratio is affected by the chemical
composition and cement material flow. In practical cement production, chemical composition
is analyzed and updated by the X-ray analyzer in fixed sampling period which may be
quarter hour, half hour, one hour, and even longer. Therefore, it is hard to accurately solve
dynamic optimization problem (3.21) because chemical composition and cement material
flow could not be continuously and accurately obtained. To simplify the dynamic model, it is
assumed that the derivative of feed flow Q and ingredient ratio x are minor, and they can be
ignored. Then, the constraint (4.7) can be equivalently expressed as

QxT dμ

dt
∼= Qinputμ

Tx −QμTΛμx, QxT dη

dt
∼= Qinputη

Tx −QηTΛηx,

QxT dρ

dt
∼= Qinputρ

Tx −QρTΛρx, QxT dγ

dt
∼= Qinputγ

Tx −QγTΛγx,

QxT dτ

dt
∼= Qinputτ

Tx −QτTΛτx, QxT dr

dt
∼= Qinputr

Tx −QrTΛrx,

QxT ds

dt
∼= Qinputs

Tx −QsTΛsx, QxT dλ

dt
∼= Qinputλ

Tx −QλTΛλx,

QxT dπ

dt
∼= Qinputπ

Tx −QπTΛπx, QxT dω

dt
∼= Qinputω

Tx −QωTΛωx,

QxT dϕ

dt
∼= Qinputϕ

Tx −QϕTΛϕx,

(
dQ

dt
≈ 0,

dx

dt
≈ 0
)
.

(4.8)

The original cement materials chemical composition will fluctuate with time. To solve the
optimization problem (3.21), dynamic optimization models should be transformed into
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discrete form. Thus, dynamic constraint (4.8) in optimization model can be transformed into
the following discrete forms:

μ(k) = fμ
(
μ(k − 1), x), η(k) = fη

(
η(k − 1), x), ρ(k) = fρ

(
ρ(k − 1), x),

γ(k) = fγ
(
γ(k − 1), x), τ(k) = fτ(τ(k − 1), x), r(k) = fr(r(k − 1), x),

s(k) = fs(s(k − 1), x), λ(k) = fλ(τ(k − 1), x), π(k) = fπ(π(k − 1), x),
ω(k) = fω(ω(k − 1), x), ϕ(k) = fϕ

(
ϕ(k − 1), x).

(4.9)

It is noted μ(k) = μ(kTs), . . . , ϕ(k) = ϕ(kTs), and x = x(k) in (4.9), and Ts is the sampling
period. Differential equation is transformed into difference equation. Constraints (3.1)–(3.12)
in dynamic optimization model are transformed into the following discrete forms:

h
(
μ(k), . . . , ϕ(k), x

)
= 0

g
(
μ(k), . . . , ϕ(k), x

) ≤ 0⇐⇒
h
(
fμ
(
μ(k − 1), x), . . . , fϕ

(
ϕ(k − 1), x), x) = 0

g
(
fμ
(
μ(k − 1), x), . . . , fϕ

(
ϕ(k − 1), x), x) ≤ 0,

(4.10)

where h(·) and g(·) are the discrete equality and inequality constraint vectors, respectively.
Hence, the continuous time dynamic model is transformed into the following discrete time
form:

Model.1: min J1 = min
(
CTx

)

Model.2: min J2 = min
(
PTx
)

Model.3: min J3(k, x) = min
(
w1(Δα(k, x))2 +w2

(
Δβ(k, x)

)2 +w3(ΔΩ(k, x))2
)

Δα(k, x) = Γα
(
γ(k), η(k), ρ(k), μ(k), x

)

Δβ(k, x) = Γβ
(
μ(k), η(k), ρ(k), x

)

ΔΩ(k, x) = ΓΩ
(
η(k), ρ(k), x

)

Model.4: min(J1, J2) = min{Ψ1J1 + Ψ2J2}
Model.5: min(J1, J3(k, x)) = min{Ψ1J1 + Ψ2J3(k, x)}
Model.6: min(J2, J3(k, x)) = min{Ψ1J2 + Ψ2J3(k, x)}
Model.7: min(J1, J2, J3(k, x)) = min{Ψ1J1 + Ψ2J2 + Ψ3J3(k, x)}

s.t: (4.9)-(4.10).

(4.11)
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It should be noted that (i) the continuous time dynamic optimization model
is transformed into discrete time rolling optimization model; (ii) chemical composition
and cement material flow cannot be obtained in a continuous and accurate way, thus it is
necessary to transform the continuous model into the discrete model; (iii) it is difficult
and complex to directly solve the continuous-time dynamic ingredient ratio model; (iv)
the dynamic model of discrete time form is equivalent to a static optimization problem
in a specific sampling time. Without losing the generality, the discrete time model can be
expressed as the general form in a specific sampling period as follows:

min f(x) s.t:h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b, (4.12)

where f(x):Rn → R, h(x):Rn → Rm, and g(x):Rn → Rq are the smooth and differentiable
functions, x is the decision variable, and n, m, and q denote the number of the decision
variables, equality constraints, and inequality constraints, respectively. The discrete model is
seen as a general linear or nonlinear static optimization problem in certain sampling period.
In recent years, various optimization algorithms and optimization toolboxes or softwares in
[35–53] are developed to solve optimization problems. The optimization methods in [35–
53] such as the Newton methods, conjugate gradient methods, steepest descent methods,
interior point methods, trust region methods, quadratic programming (QP) methods,
successive linear programming (SLP) methods, sequential quadratic programming (SQP)
methods, genetic algorithms, and particle swarm algorithms are well established to solve
constraint optimization problems. Based on interior point methods in [43–51], a framework
of grid interior point method is presented for dynamic cement ingredient ratio optimization
problem. The optimization problem (4.12) could be transformed into following form:

min f(x) − υ
q∑

i=1

ln δi

s.t: h(x) = 0, gε(x) + δ = 0

gε(x) =
(
g(x)T , (a − x)T , (x − b)T

)T
,

(4.13)

where υ > 0 is the barrier parameter, the slack vector δ = (δ1, δ2, . . . , δq)
T > 0 is set

to be positive, and gε(x) is an expanded inequality constraint. It introduces the Lagrange
multipliers y and z for barrier problem (4.13) as follows:

L
(
x, y, z, δ

)
= f(x) − υ

q∑

i=1

ln δi + yT(gε(x) + δ
)
+ zTh(x), (4.14)
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where L(x, y, z, δ) is Lagrange function, y = (y1, y2, . . . , yq)
T and z = (z1, z2, . . . , zm)

T are
Lagrange multipliers for constraints gε(x) + δ and h(x), respectively. Based on Karush-Kuhn-
Tucker (KKT) optimality conditions [41–43], optimality conditions for optimization problem
(4.13) can be expressed as

∇xL
(
x, y, z, δ

)
= ∇f(x) + (∇gε(x)

)T
y + (∇h(x))Tz = 0,

∇δL
(
x, y, z, δ

)
= −υS−1δ e + y = 0⇐⇒ −υe + SδYe = 0,

∇yL
(
x, y, z, δ

)
= gε(x) + δ = 0,

∇zL
(
x, y, z, δ

)
= h(x) = 0,

(4.15)

where Sδ = diag(δ1, δ2, . . . , δq) is the diagonal matrix and its elements are the components of
the vector δ, e is a vector of all ones,∇h(x) and∇gε(x) are the Jacobianmatrices of the vectors
h(x) and gε(x), respectively, ∇f(x) is the grand of function f(x), and Y = diag(y1, y2, . . . , yq)
is a diagonal matrix and its elements are the components of vector y. The system (4.15) is
KKT optimal condition of optimization problem (4.13). When in the search procedure, δ and
y should remain positive (δ > 0, y > 0). To obtain the iteration direction, we can make the
point (x + Δx, δ + Δδ, z + Δz, y + Δy) satisfy the KKT conditions (4.15), then the following
system will be obtained:

∇f(x + Δx) +
(∇gε(x + Δx)

)T(
y + Δy

)
+ (∇h(x + Δx))T (z + Δz) = 0

−υe + (Sδ + ΔSδ)(Y + ΔY )e = 0

gε(x + Δx) + (δ + Δδ) = 0, h(x + Δx) = 0 =⇒

(4.16)

(
∇2f(x) +∇2gε(x)Ty +∇2h(x)Tz

)
Δx +∇gε(x)TΔy

+∇h(x)TΔz +
(
∇f(x) +∇gε(x)Ty +∇h(x)Tz

)
= 0,

−υe + SδYe + SδΔy + YΔδ = 0,

gε(x) +∇gε(x)Δx + δ + Δδ = 0, ∇h(x)Δx + h(x) = 0.

(4.17)

The system (4.17) is obtained by ignoring the higher order incremental system (4.16), and
replacing nonlinear termswith linear approximation, system (4.17) is written in the following
matrix form:

⎛

⎜⎜
⎝

H
(
x, y, z

)
0 ∇h(x)T ∇gε(x)T

0 S−1
δ
Y 0 I

∇h(x) 0 0 0
∇gε(x) I 0 0

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

Δx
Δδ
Δy
Δz

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

−∇f(x) − ∇gε(x)Ty − ∇h(x)Tz
υS−1

δ
e − y

−h(x)
−gε(x) − δ

⎞

⎟⎟
⎠

(4.18)

H
(
x, y, z

)
= ∇2f(x) +∇2gε(x)Ty +∇2h(x)Tz, (4.19)
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(critical cement craft parameters )

Original cement material chemical
composition

Select optimization objective function

(single objective or multiple objectives )

Select optimization method
(grid interior point method, Newton

method, and so on )

Optimal ingredient ratio

Does the ingredient ratio satisfy
production requirements?

Adjust objective
No

End the kth batch cement blending
process

Yes

Update the (k + 1)th batch cement

production requirements and cement

Choose the initial iteration point

(x(0,i) , δ(0,i) , z(0,i) , y(0,i))

Construct the current iteration

(x(k,i) , δ(k,i) , z(k,i) , y(k,i))

y, z) at point (x(k,i) , δ(k,i) , z(k,i) ,
y(k.i))

Calculate the iteration direction
(∆x, ∆δ, ∆z, ∆y)

Update the iteration point

z(k,i) , y(k,i) + ζ1(∆x, ∆δ, ∆z, ∆y), k←k + 1
ζ1∈ [0, 1]

Output optimal ingredient ratio

or iteration end conditions?
(checking end conditions )

No

Yes

(x(k+1,i) , δ(k+1,i) , z(k+1,i) , y(k+1,i))← (x(k,i) , δ(k,i) ,

The kth batch cement production
requirements
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constraint

stuffs′ chemical composition

Calculate the Hessian matrix H(x,

Does the ingredient ratio
satisfy optimal conditions

Figure 2: Optimization algorithm structure diagram of cement raw material blending process.

whereH(x, y, z) is the Hessian matrix in system. Finally, the new iterate direction is obtained
via solving the system (4.18), which is the essential process of the interior point method.
Thus, the new iteration point can be obtained in the following iteration:

(
x, δ, z, y

)←− (x, δ, z, y) + ζ1
(
Δx,Δδ,Δz,Δy

)
, (4.20)

where ζ1 is the step size. Choosing the step size ζ1 holds the δ, y > 0 in search process. In this
paper, a framework of grid interior point method is presented for optimization problem of
ingredient ratio in raw material blending process. The grid interior point method framework
is depicted as follows.

4.1. Grid Interior Point Method Framework

The following steps are considered.
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(a) (b)

(c) (d)

Figure 3: Ingredient ratio software for cement raw material blending process.

Figure 4: Optimization results of ingredient ratio software for cement raw material blending process.

Step 1. The feasible region F = {x | h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b} is divided into N small
pieces of feasible region without any intersection (F = UFi), and Fi = {x | h(x) = 0, g(x) ≤
0, a + (i − 1) ×Θ ≤ x ≤ a + i ×Θ}, and Θ is the interval length (Θ = (b − a)/N; i = 1, 2, . . . ,N).

Step 2. For i = 1:N,each small feasible region will do the following steps.

Step 3. Choose an initial iteration point (x(0,i), δ(0,i), z(0,i), y(0,i)) in the feasible region set Fi =
{x | h(x) = 0, g(x) ≤ 0, a + (i − 1) ×Θ ≤ x ≤ a + i ×Θ}, and the δ(0) > 0, y(0) > 0, k = 0.

Step 4. Constructing current iterate, we have the current iterate value x(k,i), δ(k,i), z(k,i) and
y(k,i) of the primal variable x, the slack variable δ, and the multipliers y and z, respectively.
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Table 3: Chemical compositions of cement original materials in certain sampling period [1].

Material
type

SiO2
(%)

Al2O
(%)

Fe2O
(%)

CaO
(%)

Loss
(%)

Impurity
(%)

Power
(Kwh/ton)

Cost
(�/ton)

Limestone 4.50 0.99 0.24 45.00 40.56 2.91 12.45 25.00
Sandstone 65.00 5.76 1.61 0.52 2.62 8.90 12.94 15.00
Steel slag 17.50 6.90 29.00 31.49 0.30 13.45 19.89 68.00
Shale 45.31 23.30 6.10 8.63 10.34 6.32 28.60 20.00
Coal ash 59.26 24.55 8.07 3.73 8.32 6.07 28.60 20.00

Step 5. Calculate the Hessian matrix H(x, y, z) of the Lagrange system L(x, y, z, δ), and the
Jacobian matrix ∇h(x) and ∇g(x) are of the vectors h(x) and g(x) in the current iterate
(x(k,i), δ(k,i), z(k,i), y(k,i)).

Step 6. Solve the linear system (4.18) and construct the iterate direction (Δx,Δδ,Δz,Δy).
Solve the linear matrix equation (4.18), and then we can obtain the primal solution Δx,
multipliers solution Δz, Δy, and also the slack variable solution Δδ.

Step 7. Choosing the step size ζ1 holds the δ, y > 0 in the search process, ζ1 ∈
[0, 1]. Update the iterate values: (x(k+1,i), δ(k+1,i), z(k+1,i), y(k+1,i)) ← (x(k,i), δ(k,i), z(k,i), y(k,i)) +
ζ1(Δx,Δδ,Δz,Δy), k ← k + 1.

Step 8. Check the ending conditions for region Fi. If it is not satisfied, go to Step 5, else the
minimum fmin,i of feasible region Fi is obtained, i← i + 1, go to Step 3.

Step 9. Compare the minimum fmin,i of feasible region Fi, output the minimum fmin =
min{fmin,i (i = 1, 2, . . . ,N)}, end.

Based on the grid interior point method framework, the algorithm structure diagram
of cement raw material blending process is shown in Figure 2. In this paper, we develop the
ingredient ratio software for cement raw material blending process based on the MATLAB-
GUI and grid interior point method. The ingredient ratio software interface is shown in
Figures 3 and 4. The ingredient ratio software has strong features which include single
objective optimization model, multiple objectives optimization model, and robust ingredient
ratio. The software achieves ingredient ratio for four, five, and six types of original cement
materials, of course the software can be further improved to achieve ingredient ratio for
more types of original cement materials. In practice, it does not exceed eight types of original
cement material.

5. Numerical Results for Blending Process

In production, many field operating engineers will give an ingredient ratio of original cement
materials based on critical cement crafts and their experiences. In this paper, a G-NLTVmodel
and ingredient ratio software are shown to provide optimal ingredient ratios for cement
raw material blending process under different production requirements. Three numerical
examples are shown to depict the proposed method. It does not consider the differential or
difference equation constraint because output mass coefficient and flow of original cement
materials are unknown. Tables 3–5 in the Appendix display only original cement materials
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Table 4: Chemical compositions of cement original materials in certain sampling period [2].

Material
type

Loss
(%)

SiO2
(%)

Al2O3
(%)

Fe2O3
(%)

CaO
(%)

MgO
(%)

SO3
(%)

K2O
(%)

Na2O
(%)

Cl
(%)

Limestone 40.09 8.52 1.23 1.31 46.05 2.49 0.02 0.21 0.07 0.0243
Clay 7.99 62.74 17.94 4.06 2.40 0.94 0.64 3.25 0.00 0.09
Iron 24.74 7.92 50.27 13.01 2.94 0.79 0.14 0.19 0.00 0.25
Correction 30.25 3.15 21.30 38.55 5.17 1.53 0.05 0.00 0.00 0.013
Coal ash 0.00 44.77 26.04 4.49 8.42 1.67 0.95 0.62 0.00 0.043
Assuming the cost and bond power index for the cement material in Table 4 are 24.00�/ton, 25.00�/ton, 50.00�/ton,
30.00�/ton, 28.70�/ton, 12.45Kwh/ton, 12.10Kwh/ton, 18.98Kwh/ton, 14.70Kwh/ton, and 15.66Kwh/ton, respectively.

chemical composition in a specific sampling period, wherein the chemical composition in
Table 3 [1] is used to produce cement raw materials by a cement enterprise in Shan Dong
province of China.

There are five types of original cement material in Table 3, and they are the limestone,
sandstone, steel slag, shale, and coal ash. The steel slag is the most expensive material, the
sandstone is the cheapest material, the limestone has the best grind ability, and the shale has
the poorest grind ability. The optimization models (discrete time) and optimal ingredient
ratios under different production requirements are presented in Table 6 and Figure 5.
Model.1 has the smallest cost with the optimal ingredient ratio x1 = 84.003%, x2 = 7.687%,
x3 = 3.203%, x4 = 0.010%, and x5 = 5.097%. Model.2 has the smallest power consumption
with the optimal ingredient ratio x1 = 84.145%, x2 = 8.021%, x3 = 3.795%, x4 = 0.010%, and
x5 = 4.029%. Model.3 has the smallest critical cement craft deviation with optimal ingredient
ratio x1 = 84.046%, x2 = 7.335%, x3 = 3.587%, x4 = 0.010%, and x5 = 5.021%. Model.4, Model.5,
Model.6, and Model.7 are the multiple objectives optimization model which could be
equivalently transformed into single objective optimization model via introducing weight
Ψ1, Ψ2, and Ψ3. Model.4 makes balance between material cost and power consumption with
optimal ingredient ratio x1 = 84.658%, x2 = 7.349%, x3 = 3.122%, x4 = 0.010%, and x5 = 4.681%.
Model.5, Model.6, and Model.7 have the same optimal ingredient ratio with Model.1,
Model.2, and Model.4, respectively because the objective function J3 is far less than the
objective function J1 and J2. In addition, the weight of objective function J3 is not far
larger than the weight of objective function J1 and J2, therefore they have the same optimal
ingredient ratio.

There are five types of original cement materials in Table 4, and they are the
limestone, clay, iron, correction, and coal ash. The iron is the most expensive material, the
limestone is the cheapest material, the clay has the best grind ability, and the iron has the
poorest grind ability. The optimization models (discrete time) and optimal ingredient ratios
under different production requirements are presented in Table 7 and Figure 6. Model.1
has the smallest material cost with the optimal ingredient ratio x1 = 88.257%, x2 = 7.503%,
x3 = 0.010%, x4 = 3.731%, and x5 = 0.499%. Model.2 has the smallest power consumption
with the optimal ingredient ratio x1 = 87.565%, x2 = 8.480%, x3 = 0.040%, x4 = 3.905%, and
x5 = 0.010%. Model.3 has the smallest critical cement craft deviation with optimal ingredient
ratio x1 = 87.805%, x2 = 7.791%, x3 = 0.878%, x4 = 3.516%, and x5 = 0.010%. Model.4 makes
balance between material cost and power consumption with optimal ingredient ratio
x1 = 87.555%, x2 = 8.414%, x3 = 0.010%, x4 = 3.912%, and x5 = 0.109%. Model.5, Model.6, and
Model.7 have the same optimal ingredient ratio with Model.1, Model.2, and Model.4,
respectively.
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Table 5: Chemical compositions of cement original materials in certain sampling period [3].

Material type Loss (%) SiO2 (%) Al2O3 (%) Fe2O3 (%) CaO (%) MgO (%)
Carbide slag 24.65 1.02 1.29 0.00 69.26 0.00
Clay 5.83 69.56 16.42 3.35 0.00 0.00
Sulfuric acid residue 1.06 11.05 2.22 77.85 2.45 2.71
Cinder 0.00 56.39 22.77 10.18 1.13 2.16
Assuming the cost and bond power index for the cement material in Table 5 are 18.00�/ton, 25.00�/ton, 48.00�/ton,
9.00�/ton, 11.24Kwh/ton, 12.50Kwh/ton, 19.86Kwh/ton, and 13.80Kwh/ton, respectively.

Table 6: Optimization models and results for cement materials in Table 3.

Optimization Models
Model.1: J1 = 25x1 + 15x2 + 68x3 + 20x4 + 20x5

Model.2: J2 = 12.45x1 + 12.94x2 + 19.89x3 + 28.6x4 + 28.6x5

Model.3: J3 = w1(1.00 − α)2 +w2(2.70 − β)2 +w3(1.55 −Ω)2

(w1 = 0.5, w2 = 0.3, w3 = 0.2, αd0 = 1.00, βd0 = 2.70,Ωd0 = 1.55)
Model.4: min(J1, J2) = min(Ψ1J1 + Ψ2J2)
Model.5: min(J1, J3) = min(Ψ1J1 + Ψ2J3)
Model.6: min(J2, J3) = min(Ψ1J2 + Ψ2J3)
Model.7: min(J1, J2, J3) = min(Ψ1J1 + Ψ2J2 + Ψ3J3)

Subject to (3.1)–(3.4)
(1) Mμ = 4.5x1 + 65x2 + 17.5x3 + 45.31x4 + 59.26x5

Mη = 0.99x1 + 5.76x2 + 6.9x3 + 23.3x4 + 24.55x5

Mρ = 0.24x1 + 1.61x2 + 29.0x3 + 6.1x4 + 8.07x5

Mγ = 45.0x1 + 0.52x2 + 31.49x3 + 8.63x4 + 3.73x5

x1 + x2 + x3 + x4 + x5 = 1.00
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ ε, x5 ≥ 0, (ε = 0.0001)

(2) α = (Mγ − 1.65Mη − 0.35Mρ)/(2.8Mμ)
β = Mμ/(Mη +Mρ),Ω = Mη/Mρ

(3) Mϕ = 40.56x1 + 2.62x2 + 0.3x3 + 10.34x4 + 8.32x5 ≤ 38.00
Mω = 2.91x1 + 8.9x2 + 13.45x3 + 6.32x4 + 6.07x5 ≤ 7.00

(4) 0.98 ≤ α ≤ 1.02, 2.60 ≤ β ≤ 2.80, 1.45 ≤ Ω ≤ 1.65
Models Optimal ingredient ratio Notes

Model.1 x∗1 = 84.003%; x∗2 = 7.687%; x∗3 = 3.203%;
x∗4 = 0.010%; x∗5 = 5.097%; J∗1 = 25.35308;

Model.2 x∗1 = 84.145%; x∗2 = 8.021%; x∗3 = 3.795%;
x∗4 = 0.010%; x∗5 = 4.029%; J∗2 = 13.42398;

Model.3 x∗1 = 84.046%; x∗2 = 7.335%; x∗3 = 3.587%;
x∗4 = 0.010%; x∗5 = 5.021%; J∗3 = 0.000;

Model.4 x∗1 = 84.658%; x∗2 = 7.349%; x∗3 = 3.122%;
x∗4 = 0.010%; x∗5 = 4.681%; J∗1 + J∗2 = 38.86875;

Ψ1 = Ψ2 = 1.0
J∗1 = 25.36388

Model.5 x∗1 = 84.003%; x∗2 = 7.687%; x∗3 = 3.203%;
x∗4 = 0.010%; x∗5 = 5.097%; J∗1 + J∗3 = 25.35828;

Ψ1 = Ψ2 = 1.0
J∗1 = 25.35308

Model.6 x∗1 = 84.145%; x∗2 = 8.021%; x∗3 = 3.795%;
x∗4 = 0.010%; x∗5 = 4.029%; J∗2 + J∗3 = 13.42918;

Ψ1 = Ψ2 = 1.0
J∗2 = 13.42398

Model.7 x∗1 = 84.658%; x∗2 = 7.349%; x∗3 = 3.122%;
x∗4 = 0.010%; x∗5 = 4.681%; J∗1 + J∗2 + J∗3 = 38.87395.

Ψ1 = Ψ2 = Ψ3 = 1.0
J∗1 = 25.36388
J∗2 = 13.50487

Where x1, x2, x3, x4, and x5 are ingredient ratio of the limestone, sandstone, steel slag, shale, and coal ash, respectively.
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Figure 5: Optimal ingredient ratio for cement materials in Table 3.

0 2 4 6
0

50

100

0 2 4 6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

50

100

Model.1 Model.2 Model.3

Model.4 Model.5 Model.6

Model.7

Original material type

0

50

100

0

50

100

0 2 4 6

0 2 4 6 0 2 4 6 0 2 4 6
0

50

100

0

50

100

0

50

100

O
ri

gi
na

l m
at

er
ia

l(
%
)

Figure 6: Optimal ingredient ratio for cement materials in Table 4.

There are four types of original cement materials in Table 5, and they are the
carbide slag, clay, sulfuric acid residue, and cinder. The sulfuric acid residue is the most
expensive material, the cinder is the cheapest material, the carbide slag has the best grind
ability, and the sulfuric acid residue has the poorest grind ability. The optimization models
(discrete time) and optimal ingredient ratios under different production requirements are
presented in Table 8 and Figure 7. Model.1 has the smallest material cost with the optimal
ingredient ration x1 = 75.007%, x2 = 14.973%, x3 = 3.620%, and x4 = 6.400%. Model.2 has the
smallest power consumption with the optimal ingredient ratio x1 = 76.090%, x2 = 19.530%,
x3 = 3.624%, and x4 = 0.755%. Model.3 has the smallest critical cement craft deviation with
optimal ingredient ratio x1 = 75.442%, x2 = 19.623%, x3 = 4.257%, and x4 = 0.678%. Model.4
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Table 7: Optimization models and results for cement materials in Table 4.

Optimization Models
Model.1: J1 = 24x1 + 25x2 + 50x3 + 30x4 + 28.7x5

Model.2: J2 = 12.45x1 + 12.10x2 + 18.98x3 + 14.70x4 + 15.66x5

Model.3: J3 = w1(0.96 − α)2 +w2(1.90 − β)2 +w3(1.25 −Ω)2

(αd0 = 0.96, βd0 = 1.90,Ωd0 = 1.25, w1 = 0.5, w2 = 0.3, w3 = 0.2)
Model.4: min(J1, J2) = min(Ψ1J1 + Ψ2J2)
Model.5: min(J1, J3) = min(Ψ1J1 + Ψ2J3)
Model.6: min(J2, J3) = min(Ψ1J2 + Ψ2J3)
Model.7: min(J1, J2, J3) = min(Ψ1J1 + Ψ2J2 + Ψ3J3)

Subject to (3.1)–(3.5)
(1) Mμ = 8.52x1 + 62.74x2 + 7.92x3 + 3.15x4 + 44.77x5

Mη = 1.23x1 + 17.94x2 + 50.27x3 + 21.3x4 + 26.04x5

Mρ = 1.31x1 + 4.06x2 + 13.01x3 + 38.55x4 + 4.49x5

Mγ = 46.05x1 + 2.40x2 + 2.94x3 + 5.17x4 + 8.42x5

x1 + x2 + x3 + x4 + x5 = 1.0, x1 ≥ 0, x2 ≥ 0, x3 ≥ ε, x4 ≥ 0, x5 ≥ ε, (ε = 0.0001)
(2) α = (Mγ − 1.65Mη − 0.35Mρ)/(2.8Mμ)

β = Mμ/(Mη +Mρ), Ω = Mη/Mρ

(3) Mϕ = 40.09x1 + 7.99x2 + 24.74x3 + 30.25x4 ≤ 39.00
Mτ = 2.49x1 + 0.94x2 + 0.79x3 + 1.53x4 + 1.67x5 ≤ 3.00
Ms = 0.02x1 + 0.64x2 + 0.14x3 + 0.05x4 + 0.95x5 ≤ 0.8
Mr = 0.28x1 + 3.25x2 + 0.19x3 + 0.62x5 ≤ 0.9
Mr1 = 0.21x1 + 3.25x2 + 0.19x3 + 0.62x5 ≤ 0.8,Mr2 = 0.07x1 ≤ 0.1
Mπ = 0.0243x1 + 0.09x2 + 0.25x3 + 0.013x4 + 0.043x5 ≤ 0.2

(4) θ = Ms/(0.85Mr1 + 1.29Mr2 − 1.119Mπ) ≤ 0.7
(5) 0.94 ≤ α ≤ 0.98; 1.80 ≤ β ≤ 2.00; 1.15 ≤ Ω ≤ 1.35
Models Optimal ingredient ratio Notes

Model.1 x∗1 = 88.257%;x∗2 = 7.503%;x∗3 = 0.010%;
x∗4 = 3.731%;x∗5 = 0.499%; J∗1 = 24.32497;

Model.2 x∗1 = 87.565%;x∗2 = 8.480%;x∗3 = 0.040%;
x∗4 = 3.905%;x∗5 = 0.010%; J∗2 = 12.51115;

Model.3 x∗1 = 87.805%;x∗2 = 7.791%;x∗3 = 0.878%;
x∗4 = 3.516%;x∗5 = 0.010%; J∗3 = 0.000;

Model.4 x∗1 = 87.555%;x∗2 = 8.414%;x∗3 = 0.010%;
x∗4 = 3.912%;x∗5 = 0.109%; J∗1 + J∗2 = 36.83931;

Ψ1 = Ψ2 = 1
J∗1 = 24.32659

Model.5 x∗1 = 88.257%;x∗2 = 7.503%;x∗3 = 0.010%;
x∗4 = 3.731%;x∗5 = 0.499%; J∗1 + J∗3 = 24.33017;

Ψ1 = Ψ2 = 1
J∗1 = 24.32497

Model.6 x∗1 = 87.565%;x∗2 = 8.480%;x∗3 = 0.040%;
x∗4 = 3.905%;x∗5 = 0.010%; J∗2 + J∗3 = 12.51635;

Ψ1 = Ψ2 = 1
J∗2 = 12.51115

Model.7 x∗1 = 87.555%;x∗2 = 8.414%;x∗3 = 0.010%;
x∗4 = 3.912%;x∗5 = 0.109%; J∗1 + J∗2 + J∗3 = 36.84451.

Ψ1 = Ψ2 = Ψ3 = 1
J∗1 = 24.32659
J∗2 = 12.51273

Where x1, x2, x3, x4, and x5 are ingredient ratio of the limestone, clay, iron, correction materials, and coal ash, respectively.

makes balance between material cost and power consumption with optimal ingredient ratio
x1 = 75.654%, x2 = 14.798%, x3 = 3.562%, and x4 = 5.985%.Model.5, Model.6, andModel.7 have
the same optimal ingredient ratio with Model.1, Model.2, and Model.4, respectively.
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Figure 7: Optimal ingredient ratio for cement materials in Table 5.

Overall, numerical examples are presented to demonstrate various optimization
problems in the blending process. The dynamic optimal ingredient ratio could be obtained
in the blending process and can help to promote the cement quality if raw material chemical
composition is updated with time.

6. Conclusions

This paper focuses on modelling and solving the ingredient ratio optimization problem
in cement raw material blending process. A general nonlinear time-varying (G-NLTV)
model of the raw material blending process is established by taking raw material chemical
composition fluctuations, feed flow fluctuations, various craft constraints, and various
production requirements into account. Various objective functions are presented to obtain
optimal ingredient ratios under different cement production requirements. To simplify G-
NLTV model and solve the optimization problem with conveniences, the optimal ingredient
ratio problem is transformed into discrete time single objective rolling or multiple objectives
rolling optimization problem. A framework of grid interior point method is proposed to solve
the rolling optimization problem. Based on MATLAB-GUI, the corresponding ingredient
ratio software is developed to achieve the optimal ingredient ratio for the cement blending
process. Finally, numerical examples are shown to study and solve the ingredient ratio
optimization problems in cement raw material blending process.

Appendix

See Tables 3, 4, and 5.



Mathematical Problems in Engineering 27

Table 8: Optimization models and results for cement materials in Table 5.

Optimization Models
Model.1: J1 = 18x1 + 25x2 + 48x3 + 9x4

Model.2: J2 = 11.24x1 + 12.50x2 + 19.86x3 + 13.80x4

Model.3: J3 = w1(1.02 − α)2 +w2(1.80 − β)2 +w3(1.10 −Ω)2

(w1 = 0.5, w2 = 0.3, w3 = 0.2, αd0 = 1.02, βd0 = 1.80,Ωd0 = 1.10)
Model.4: min(J1, J2) = min(Ψ1J1 + Ψ2J2)
Model.5: min(J1, J3) = min(Ψ1J1 + Ψ2J3)
Model.6: min(J2, J3) = min(Ψ1J2 + Ψ2J3)
Model.7: min(J1, J2, J3) = min(Ψ1J1 + Ψ2J2 + Ψ3J3)

Subject to (3.1)–(3.4)
(1) Mμ = 1.02x1 + 69.56x2 + 11.05x3 + 56.39x4

Mη = 1.29x1 + 16.42x2 + 2.22x3 + 22.77x4

Mρ = 3.35x2 + 77.85x3 + 10.18x4

Mγ = 69.26x1 + 2.45x3 + 1.13x4

x1 + x2 + x3 + x4 + x5 = 1.00, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
(2) α = (Mγ − 1.65Mη − 0.35Mρ)/(2.8Mμ)

β = Mμ/(Mη +Mρ), Ω = Mη/Mρ

(3) Mϕ = 24.65x1 + 5.83x2 + 1.06x3 ≤ 30.00
Mτ = 2.71x3 + 2.16x4 ≤ 1.50

(4) 1.00 ≤ α ≤ 1.04, 1.70 ≤ β ≤ 1.90, 0.95 ≤ Ω ≤ 1.25
Models Optimal ingredient ratio Notes

Model.1 x∗1 = 75.007%;x∗2 = 14.973%;x∗3 = 3.620%;
x∗4 = 6.400%; J∗1 = 19.55801;

Model.2 x∗1 = 76.090%;x∗2 = 19.530%;x∗3 = 3.624%;
x∗4 = 0.755%; J∗2 = 11.81783;

Model.3 x∗1 = 75.442%;x∗2 = 19.623%;x∗3 = 4.257%;
x∗4 = 0.678%; J∗3 = 0.00000;

Model.4 x∗1 = 75.654%;x∗2 = 14.798%;x∗3 = 3.562%;
x∗4 = 5.985%; J∗1 + J∗2 = 31.45261;

Ψ1 = Ψ2 = 1.0
J∗1 = 19.56587

Model.5 x∗1 = 75.007%;x∗2 = 14.973%;x∗3 = 3.620%;
x∗4 = 6.400%; J∗1 + J∗3 = 19.56571;

Ψ1 = Ψ2 = 1.0
J∗1 = 19.55801

Model.6 x∗1 = 76.090%;x∗2 = 19.530%;x∗3 = 3.624%;
x∗4 = 0.755%; J∗2 + J∗3 = 11.82553;

Ψ1 = Ψ2 = 1.0
J∗2 = 11.81783

Model.7 x∗1 = 75.654%;x∗2 = 14.798%;x∗3 = 3.562%;
x∗4 = 5.985%; J∗1 + J∗2 + J∗3 = 31.46031.

Ψ1 = Ψ2 = Ψ3 = 1.0
J∗1 = 19.56587
J∗2 = 11.88674

Where x1, x2, x3, and x4 are ingredient ratio of the carbide slag, clay, sulfuric acid residue, and cinder, respectively.

Nomenclature

μi: SiO2 mass percentage of original cement material-i
ηi: Al2O3 mass percentage of original cement material-i
ρi: Fe2O3 mass percentage of original cement material-i
γi: CaO mass percentage of original cement material-i
τi: MgO mass percentage of original cement material-i
ri: R2O mass percentage of original cement material-i
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si: SO3 mass percentage of original cement material-i
λi: TiO2 mass percentage of original cement material-i
πi: Cl mass percentage of original cement material-i
ωi: Impurity mass percentage in original cement material-i
ϕi: Mass loss percentage of original cement material-i in the cement kiln burning process
Mi: Original cement material-i mass
Mμ: SiO2 total mass of original cement material
Mη: Al2O3 total mass of original cement material
Mρ: Fe2O3 total mass of original cement material
Mγ : CaO total mass of original cement material
Mτ : MgO total mass of original cement material
Mr : R2O total mass of original cement material
Ms: SO3 total mass of original cement material
Mλ: TiO2 total mass of original cement material
Mπ : Cl total mass of original cement material
Mω: Impurity total mass of original cement material
Mϕ: Total mass loss of original cement material in cement kiln burning process
mμ: SiO2 total mass percentage of original cement material
mη: Al2O3 total mass percentage of original cement material
mρ: Fe2O3 total mass percentage of original cement material
mγ : CaO total mass percentage of original cement material
mτ : MgO total mass of original cement material
mr : R2O total mass percentage of original cement material
ms: SO3 total mass percentage of original cement material
mλ: TiO2 total mass percentage of original cement material
mπ : Cl total mass percentage of original cement material
mω: Impurity total mass percentage of original cement material
mϕ: Total mass loss percentage of original cement material in cement kiln burning

process.
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