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This paper investigates impulsive synchronization of multilinks delayed coupled complex
networks with perturb effects. Based on the comparison theory of impulsive differential system, a
novel synchronization criterion is derived and an impulsive controller is designed simultaneously.
Finally, numerical simulations demonstrate the effectiveness of the proposed synchronization
criteria.

1. Introduction

In the past few decades, the problem of control and synchronization of complex dynamical
networks has been extensively investigated in various fields of science and engineering
due to its many potential practical applications [1–8]. One important consideration in
practical networks is the existence of time delays because obstructions to the transmission
of signals are inevitable in a biological neural network, in an epidemiological model,
in a communications network, or in an electrical power grid. Since recently, there are
many studies on dynamical networks with time delays [9–16]. Moreover, the multidelayed
coupling consists of providing more information about the dynamics in nodes to the other
nodes in the network, such as the transportation network; we all know that the transmission
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speed is different among highway network railway network, and airline network. So we can
use timedelay to describe these networks [17]. In [17], the authors studied synchronization
of a class of timedelayed complex dynamical networks with multilinks, and this model is
suitable to investigate and simulate more realistic complex networks, so we should pay
attention to this network with multilinks. Moreover, in [9–11, 17–20], the authors studied
synchronization of complex network with time-varying coupling delay by designing a
controller and adaptive updated laws. However, the controller designed for such an adaptive
synchronization is usually quite complex, it will be useful to find a simple structure to solve
this problem, the impulsive controller seems to have a simple structure, and impulsive control
is an artificial control strategy which is cheaper to operate compared with other control
strategy. Motivated by the above discussions, we investigate impulsive synchronization for
such a complex networks model in this paper, and the novel synchronization criterion is
derived.

The rest of this work is organized as follows. Section 2 gives the problem formulation.
Section 3 gives synchronization scheme. Section 4 gives illustrative example. Section 5 gives
the conclusion of the paper.

2. Problem Formulation

In [17], the authors achieve synchronization between two complex networks with multilinks
by designing effective controller. For simplicity, the complex network model is written in the
following form:

ẋi(t) = f
(
xi(t)

)
+

m−1∑
l=0

N∑
j=1

al
ijx

j(t − τl)

= f
(
xi(t)

)
+

N∑
j=1

a0
ijx

j(t) +
N∑
j=1

a1
ijx

j(t − τ1) + · · · +
N∑
j=1

am−1
ij xj(t − τm−1),

(2.1)

where xi = (x1, x2, . . . , xn)
T ∈ Rn, f : Rn → Rn standing for the activity of an individual

subsystem is a vector value function. Al = (al
ij)N×N ∈ RN×N(l = 0, 1, . . . , m − 1) is the lth

subnetwork’s topological structure. The definition of al
ij is that in the lth sub-network, if there

exists a link from node i to j (i /= j), then al
ij /= 0. Otherwise, al

ij = 0 · τl (l = 0, 1, . . . , m − 1) is
time-delay of the lth subnetwork compared to the zero subnetwork (τ0 = 0)which is without
time delayed.

Remark 2.1. In [17], al
ii = −∑N

j=1,i /= j a
l
ij is defined, we are not concerned whether the coupling

matrix Al satisfies al
ii = −∑N

j=1,i /= j a
l
ij in this paper.

In the paper, we have the following mathematical preliminaries.

Assumption 2.2. We assume that f(xi(t)) is Lipschitz continuous on xi(t), that is, there exists
a positive constant η > 0 such that

∣∣∣f
(
yi(t)

)
− f
(
xi(t)

)∣∣∣ ≤ ηei(t), ∀xi(t), yi(t) ∈ Rn. (2.2)
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Assumption 2.3. We also assume that σ(xi(t)) is Lipschitz continuous on xi(t), and one can
consider

σ
(
yi(t), t

)
− σ
(
xi(t), t

)
= M

(
xi(t), yi(t)

)
ei(t), (2.3)

where ‖M(xi(t), yi(t))‖ ≤ H, H > 0.

3. Synchronization Scheme

In this section, we will investigate impulsive synchronization of the complex networks with
perturb functions. The multidelayed coupled complex network with perturb functions can
be described by

ẋi = f
(
xi(t)

)
+

N∑
j=1

a0
ijx

j(t) +
N∑
j=1

a1
ijx

j(t − τ1) + · · ·

+
N∑
j=1

am−1
ij xj(t − τm−1) + σ

(
xi(t), t

)
.

(3.1)

We take the network given by (3.1) as the driving network and a response network
with impulsive control scheme which is given by

ẏi = f
(
yi(t)

)
+

N∑
j=1

a0
ijy

j(t) +
N∑
j=1

a1
ijy

j(t − τ1) + · · ·

+
N∑
j=1

am−1
ij yj(t − τm−1) + σ

(
yi(t), t

)
, t /= tk,

(3.2)

Δyi = yi(t+k
) − yi(t−k

)
= Bik

(
yi − xi

)
, t = tk, (3.3)

where y = (y1, y2, . . . , yn)
T ∈ Rn.

Let ei(t) = yi(t) − xi(t), then we have the following error system:

ėi = f
(
yi(t)

)
− f
(
xi(t)

)
+

N∑
j=1

a0
ij

(
yj(t) − xj(t)

)
+

N∑
j=1

a1
ij

(
yj(t − τ1) − xj(t − τ1)

)
+ · · ·

+
N∑
j=1

am−1
ij

(
yj(t − τm−1) − xj(t − τm−1)

)
+M

(
xi(t), yi(t)

)
ei, t /= tk,

(3.4)

Δei = ei
(
t+k
) − ei

(
t−k
)
= Bikei, t = tk, (3.5)

where e(t+k) = limt→ t+
k
e(t), e(tk) = limt→ t−

k
e(t) = e(t−k).
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Theorem 3.1. Let Assumptions 2.2–2.3 hold, αr−1 = max(ar−1
ij )2, r = 1, 2, . . . , m. If there exists a

constant θ ≥ 1 such that

ln θρk + 2

((
η +

m∑
r=1

αr−1 +m +H

)
(tk+1 − tk)

)
≤ 0, (3.6)

then the driving network (3.1) and the response network (3.2) can realize impulsive synchronization.

Proof. We choose a nonnegative function as

V (t) =
1
2

N∑
i=1

(
ei(t)

)T
ei(t) +

N∑
i=1

∫ t

t−τ1
(ei(s))Tei(s)ds + · · ·

+
N∑
i=1

∫ t

t−τm−1
(ei(s))Tei(s)ds.

(3.7)

Then the differentiation of V along the trajectories of (3.4) is

V̇ (t) =
N∑
i=1

(
ei(t)

)T
⎡
⎣
(
f
(
yi(t)

)
− f
(
xi(t)

))
+

N∑
j=1

a0
ij

(
yj(t) − xj(t)

)

+
N∑
j=1

a1
ij

(
yj(t − τ1)−xj(t − τ1)

)
+· · · +

N∑
j=1

am−1
ij

(
yj(t − τm−1)−xj(t − τm−1)

)
⎤
⎦

+
N∑
i=1

[(
ei(t)

)T
ei(t) −

(
ei(t − τ1)

)T
ei(t − τ1)

]

+ · · · +
N∑
i=1

[(
ei(t)

)T
ei(t) −

(
ei(t − τm−1)

)T
ei(t − τm−1)

]

+
N∑
i=1

(
ei(t)

)T
M
(
xi(t), yi(t)

)
ei(t)

≤
N∑
i=1

η
(
ei(t)

)T
ei(t) +

N∑
i=1

N∑
j=1

a0
ij

(
ei(t)

)T
ej(t) +

N∑
i=1

N∑
j=1

a1
ij

(
ei(t)

)T
ej(t − τ1) + · · ·

+
N∑
i=1

N∑
j=1

am−1
ij

(
ei(t)

)T
ej(t − τm−1)

+
N∑
i=1

[(
ei(t)

)T
ei(t) −

(
ei(t − τ1)

)T
ei(t − τ1)

]
+ · · ·

+
N∑
i=1

[(
ei(t)

)T
ei(t) −

(
ei(t − τm−1)

)T
ei(t − τm−1)

]
+

N∑
i=1

H
(
ei(t)

)T
ei(t)
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≤
N∑
i=1

η
(
ei(t)

)T
ei(t) +

N∑
i=1

N∑
j=1

(
a0
ij

)2(
ei(t)

)T
ei(t) +

N∑
j=1

(
ej(t)

)T
ej(t)

+
N∑
i=1

N∑
j=1

(
a1
ij

)2(
ei(t)

)T
ei(t)

+
N∑
j=1

(
ej(t − τ1)

)T
ej(t − τ1) + · · · +

N∑
i=1

N∑
j=1

(
am−1
ij

)2(
ei(t)

)T
ei(t)

+
N∑
j=1

(
ej(t − τm−1)

)T
ej(t − τm−1) +

N∑
i=1

[(
ei(t)

)T
ei(t) −

(
ei(t − τ1)

)T
ei(t − τ1)

]
+ · · ·

+
N∑
i=1

[(
ei(t)

)T
ei(t) −

(
ei(t − τm−1)

)T
ei(t − τm−1)

]
+

N∑
i=1

H
(
ei(t)

)T
ei(t)

=
N∑
i=1

η
(
ei(t)

)T
ei(t) +

N∑
i=1

N∑
j=1

(
a0
ij

)(
ei(t)

)T
ei(t) +

N∑
j=1

(
ej(t)

)T
ej(t)

+
N∑
i=1

N∑
j=1

(
a1
ij

)2(
ei(t)

)T
ei(t) + · · ·

+
N∑
i=1

N∑
j=1

(
am−1
ij

)2(
ei(t)

)T
ei(t) +

N∑
i=1

(
ei(t)

)T
ei(t) + · · ·

+
N∑
i=1

(
ei(t)

)T
ei(t) +

N∑
i=1

H
(
ei(t)

)T
ei(t)

≤
N∑
i=1

η
(
ei(t)

)T
ei(t) +

N∑
i=1

N∑
j=1

(
a0
ij

)2(
ei(t)

)T
ei(t) +

N∑
j=1

(
ej(t)

)T
ej(t)

+
N∑
i=1

N∑
j=1

(
a1
ij

)2(
ei(t)

)T
ei(t) + · · ·

+
N∑
i=1

N∑
j=1

(
am−1
ij

)2(
ei(t)

)T
ei(t) +

N∑
i=1

(
ei(t)

)T
ei(t) + · · · +

N∑
i=1

(
ei(t)

)T
ei(t)

+
N∑
i=1

H
(
ei(t)

)T
ei(t) =

(
η +

m∑
r=1

αr−1 +m +H

)
N∑
i=1

(
ei(t)

)T
ei(t)

≤ 2

(
η +

m∑
r=1

αr−1 +m +H

){
1
2

N∑
i=1

(
ei(t)

)T
ei(t) +

N∑
i=1

∫ t

t−τ1
(ei(s))Tei(s)ds

+ · · · +
N∑
i=1

∫ t

t−τm−1
(ei(s))Tei(s)ds

}

= 2

(
η +

m∑
r=1

αr−1 +m +H

)
V (t).

(3.8)



6 Mathematical Problems in Engineering

This implies that

V (e(t)) ≤ V
(
e
(
t+k−1
))

exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t − tk−1)

)
, t ∈ (tk−1, tk], k = 1, 2, . . .

(3.9)

On the other hand, when t = tk, we have

V (e(t+)) =
1
2

N∑
i=1

(
ei(tk)

)T[
I + Bik

]T[
I + Bik

]
ei(tk) +

N∑
i=1

∫ t

t−τj
(ei(s))T

[
I + Bik

]T[
I + Bik

]
ei(s)ds

+
N∑
i=1

∫ t

t−dj

(ei(s))T
[
I + Bik

]T[
I + Bik

]
ei(s)ds

≤ λmax

[(
I + Bik

)T(
I + Bik

)]{1
2

N∑
i=1

(
ei(t)

)T
ei(t) +

N∑
i=1

∫ t

t−τ1
(ei(s))Tei(s)ds

+ · · · +
N∑
i=1

∫ t

t−τm−1
(ei(s))Tei(s)ds

}

≤ λmax

[(
I + Bik

)T
(I + B)ik

]{
1
2

N∑
i=1

(
ei(t)

)T
e(t) +

N∑
i=1

∫ t

t−τ1
(ei(s))Tei(s)ds

+ · · · +
N∑
i=1

∫ t

t−τm−1
(ei(s))Tei(s)ds

}

= ρkV (e(tk)),
(3.10)

where ρk = λmax[(I + Bik)T (I + Bik)].
When t ∈ (t0, t1], V (e(t)) ≤ V (e(t+0 )) exp(2(η +

∑m
r=1 αr−1 +m +H)(t − t0)), then

V (e(t1)) ≤ V
(
e
(
t+0
))

exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t1 − t0)

)
. (3.11)

So,

V
(
e
(
t+1
)) ≤ ρ1V (e(t1)) ≤ ρ1V

(
e
(
t+0
))

exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t1 − t0)

)
. (3.12)
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In the same way, for t ∈ (t1, t2], we have

V (e(t)) ≤ V
(
e
(
t+1
))

exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t − t1)

)

≤ ρ1V
(
e
(
t+0
))

exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t − t0)

)
.

(3.13)

In general for any t ∈ (tk, tk+1], one finds that

V (e(t)) ≤ V
(
e
(
t+0
))
ρ1ρ2 · · · ρk exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t − t0)

)
(3.14)

Thus for all t ∈ (tk, tk+1], k = 1, 2, . . ., we have

V (e(t)) ≤ V
(
e
(
t+0
))
ρ1ρ2 · · · ρk exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t − t0)

)

≤ V
(
e
(
t+0
))
ρ1ρ2 · · · ρk exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(tk+1 − t0)

)

= V
(
e
(
t+0
))
ρ1 exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t2 − t1)

)
ρ2

× exp

(
2

(
η +

m∑
r=1

αr−1+m+H

)
(t3−t2)

)
· · · ρk exp

(
2

(
η+

m∑
r=1

αr−1+m +H

)
(tk+1− tk)

)

× exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(t − t0)

)
.

(3.15)

From the assumptions given in the theorem

ρk exp

(
2

(
η +

m∑
r=1

αr−1 +m +H

)
(tk+1 − tk)

)
≤ 1

θ
, k = 1, 2, . . . (3.16)

we have V (e(t)) ≤ V (e(t+0 ))(1/θ
k) exp(2(η +

∑m
r=1 αr−1 + m + H)(t − t0)). That is V (e(t)) ≤

V (e(t+0 ))(1/θ
k) exp(2(η +

∑m
r=1 αr−1 +m +H)(t − t0)), t ≥ t0.

When θ ≥ 1, from [21], this implies that the origin in system (3.4) is globally
asymptotically stable or the driving network is synchronized with the response network
asymptotically for any initial conditions. This completes the proof.
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Remark 3.2. Systems (3.1)-(3.2) are the time-invariant complex networks. As discussed in [22–
24], systems (3.1)-(3.2) are the time-varying complex networks, which is a more complicated
research issue.

Remark 3.3. Normally, it is difficult to control a complex networks by adding the controllers
to all nodes, so it would be much better to use the pinning control method since the most
complex networks have large number of nodes [25]. Regarding for the pinning control of the
network systems (3.1)-(3.2), are the next research topic for us.

Remark 3.4. For the transportation network, we all know that the transmission speed
is different among highway network, railway network and airline network. So we can
use multilinks delayed to describe these networks [17]. Also impulsive control is an
artificial control strategy which is cheaper to operate compared with other control strategy,
so impulsive control method of the network systems (3.1)-(3.2) should have potential
applications.

4. Illustrative Example

It is well known that the Lorenz system families are typical chaotic systems and the Lü chaotic
system is a member of the families which is known as [26]

ṡ =

⎛
⎝

−a a 0
0 c 0
0 0 −b

⎞
⎠
⎛
⎝

s1
s2
s3

⎞
⎠ +

⎛
⎝

0
−s1s3
s1s2

⎞
⎠

def

= Ps +W(s), (4.1)

when a = 36, c = 20, b = 3.
It is well known that the Lü attractor is bounded. Here we suppose that all nodes are

running in the given bounded region. Our numerical analyses show that there exist constants
M1 = 25,M2 = 30,M3 = 45.

Satisfying ‖yp‖, ‖zp‖ ≤ Mp for 1 ≤ p ≤ 3. Therefore, one has

∥∥W(y) −W(z)
∥∥ ≤
√(−y3

(
y1 − z1

) − z1
(
y3 − z3

))2 + (y2
(
y1 − z1

)
+ z1
(
y2 − z2

))2

≤
√
2M2

1 +M2
2 +M2

3

∥∥y − z
∥∥ ≈ 64.6142

∥∥y − z
∥∥.

(4.2)

Obviously, ‖P‖ ≈ 52.9843. Thus the Lü system satisfies Assumption 2.2, η = 117.5985. In
the same way, it can be seen that the Chen system, the Lorenz system, the unified chaotic
system and the Lorenz system families also satisfy Assumption 2.2. So, in the simulations,
we select the Lü chaotic system as an example to show the effectiveness of the proposed
method [27, 28].
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−4
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−2

−1

0

1

2

0 0.1 0.2 0.3 0.4 0.5
t

ei 1,
(i
=
1,
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3,
4)

×10−4

(a)

−4

−3

−2

−1

0

1

0 0.1 0.2 0.3 0.4 0.5
t

ei 2,
(i
=
1,
2,
3,
4)

×10−3

(b)

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

2

3

4

t

ei 3,
(i
=
1,
2,
3,
4)

×10−3

(c)

0 0.1 0.2 0.3 0.4 0.5
t

0

2

4

6

8
×10−4

(d)

Figure 1: Synchronization errors with time t.

According to Section 3, we show that the network with 4 nodes described by

ẋi(t) = f
(
xi(t)

)
+

4∑
j=1

a0
ijx

j(t) +
4∑

j=1

a1
ijx

j(t − τ1) +
4∑

j=1

a2
ijx

j(t − τ2) + 0.1xi(t),

ẏi(t) = f
(
yi(t)

)
+

4∑
j=1

a0
ijy

j(t) +
4∑

j=1

a1
ijy

j(t − τ1) +
4∑

j=1

a2
ijy

j(t − τ2) + 0.1yi(t), t /= tk,

Δyi = yi(t+k
) − yi(t−k

)
= Bik

(
yi − xi

)
, t = tk.

(4.3)

In numerical simulation, let

A0 =

⎛
⎜⎜⎝

5 −4 −2 0
4 −4 3 −1
2 3 −4 0
0 −1 3 −1

⎞
⎟⎟⎠, A1 =

⎛
⎜⎜⎝

−3 3 −1 0
1 −4 5 −1
2 1 −2 0
0 −3 0 2

⎞
⎟⎟⎠, A2 =

⎛
⎜⎜⎝

−1 3 −1 0
2 −4 5 −1
1 1 −2 0
0 −3 0 2

⎞
⎟⎟⎠, (4.4)
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we choose τ1 = 0.1, τ2 = 0.2, and the gain matrixes Bik(k = 1, 2, . . .) as a constant matrix,
Bik = B = diag(−0.7,−0.8,−0.9), then ρk = 0.09. Let θ = 1.1, from ln θρk + 2(η +

∑m
r=1 αr−1 +m +

H)(tk+1−tk) ≤ 0, then tk+1−tk ≤ 0.0085, we let tk+1−tk = 0.008. All initial values are xi
1 = 1+0.5i,

xi
2 = 2+0.7i, xi

3 = 2+0.8i, yi
1 = 1−0.6i, yi

2 = 2−0.8i, yi
3 = 3−0.8i. Figure 1 shows the variance of

the synchronization errors. We introduce the quantity E(t) =
√∑N

i=1 ‖yi(t) − xi(t)‖2/N [29]
which is used to measure the quality of the control process. It is obvious that when E(t) no
longer increases, two networks achieve synchronization.

5. Conclusion

This paper deals with the problem of impulsive synchronization of multilinks delayed
coupled complex networks with perturb effects. On the basis of the comparison theory
of impulsive differential system, the novel synchronization criteriion is derived and an
impulsive controller is designed simultaneously. Finally, numerical simulations are presented
to verify the effectiveness of the proposed synchronization criteria.
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