Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 407064, 13 pages
doi:10.1155/2012 /407064

Research Article

Two Quarantine Models on the Attack of Malicious
Objects in Computer Network

Bimal Kumar Mishra® and Aditya Kumar Singh?

! Department of Applied Mathematics, Birla Institute of Technology, Mesra, Ranchi 835215, India
2 Department of Applied Mathematics, Nilai Educational Trust’s Group of Institutions, Thakurgaon,
Ranchi 835205, India

Correspondence should be addressed to Bimal Kumar Mishra, drbimalmishra@gmail.com
Received 5 April 2011; Accepted 3 June 2011
Academic Editor: Zidong Wang

Copyright © 2012 B. K. Mishra and A. K. Singh. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

SEIQR (Susceptible, Exposed, Infectious, Quarantined, and Recovered) models for the trans-
mission of malicious objects with simple mass action incidence and standard incidence rate in
computer network are formulated. Threshold, equilibrium, and their stability are discussed for
the simple mass action incidence and standard incidence rate. Global stability and asymptotic
stability of endemic equilibrium for simple mass action incidence have been shown. With the
help of Poincare Bendixson Property, asymptotic stability of endemic equilibrium for standard
incidence rate has been shown. Numerical methods have been used to solve and simulate the
system of differential equations. The effect of quarantine on recovered nodes is analyzed. We have
also analyzed the behavior of the susceptible, exposed, infected, quarantine, and recovered nodes
in the computer network.

1. Introduction

It is a well-known fact that cyber world brought massive changes in the society. But nowadays
cyber world is being threatened by the attack of malicious objects. Electronic mails and
use of secondary devices are the major sources for the transmission of malicious objects
in the computer network these days [1]. In accordance with their propagating behavior
and characteristic, malicious objects spread in different way to each other. To curb the
spread and impact of these malicious objects, it is important to study about their feature
propagating methods, means, and limitation. Isolation may also be a very important and
easy way to curb the transmission of these malicious objects. The word quarantine has
evolved, meaning a forced isolation or stoppage of interactions with others. In biological
world, quarantine has been adopted to reduce the transmission of human diseases, such as
Leprosy, Plague, and Smallpox. Same concept has been adopted in the cyber world; the most
infected nodes are isolated from the computer network till they get recovered. Anderson
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and May [2, 3] discussed the spreading nature of biological viruses, parasite, and so forth.
leading to infectious diseases in human population through several epidemic models. The
action of malicious objects throughout a network can be studied by using epidemiological
models for disease propagation [4-9]. Richard and Mark [10] proposed an improved SEI
(Susceptible-Exposed-Infected) model to simulate virus propagation. However, they do
not show the length of latency and take into account the impact of antivirus software.
Mishra and Saini [11, 12] presented a SEIRS model with latent and temporary immune
periods to overcome limitation, which can reveal common worm propagation. Feng and
Thieme [13-15] considered very general endemic models that include SEIQR model, with
arbitrarily distributed periods of infection including quarantine and with a general form for
the incidence term that includes the three forms. Wa and Feng [16] showed that an epidemic
approximation near threshold number (R; = 1) can have a homoclinic bifurcation, so that
some perturbation of the original model might also have a homoclinic bifurcation. Several
authors studied the global stability of several epidemiological models [17-24]. Wang et al.
studied the robustness of filtering on nonlinearities in packet losses, sensors, and so forth,
[25-30].

In the SEIQR models for infection that confers immunity, susceptible nodes go to latent
period, that is, nodes become infected but not infectious called exposed nodes, thereafter
some nodes go to infectious class. Some infected nodes remain in the infected class while they
are infectious and then move to the recovered class after the run of antimalicious software.
Other most infected nodes are transferred into the quarantine class while they are infectious
and then move to the recovered class after their recovery. The models here have a variable
total population size, because they have recruitment into the susceptible class by inclusion of
some new nodes and they have both crashing of nodes due to reason other than the attack of
malicious codes and crashing of nodes due to the attack of malicious codes. We have devel-
oped two models and have taken simple mass action incidence and standard incidence rate,
because standard incidence rate is more realistic than the simple mass action incidence [31].

2. Model 1: Mathematical Formulation for the SEIQR Model with
Simple Mass Action Incidence

Let S(t) be the number of susceptible at time ¢, E(t) be the number of exposed, I(t) be the
number of infected nodes, Q(t) be the number of quarantined nodes, R(t) be the recovered
nodes after the run of antimalicious software, and N (t) be the total population size in time .
The schematic diagram for the flow of malicious objects is depicted in Figure 1.

As per our assumption, we have the following system of equations:

ds

= A-pSI-ds,

dE

E—ﬂSI—(Y+d>E,
%:yE—(d+a1+6+0'—11)1,
d

d—?:61—(d+a2+5)Q,

dR

— =eQ+0l -dR, (2.1)
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Figure 1: Schematic diagram for the flow of malicious objects in computer network.

where A is the recruitment rate of susceptible nodes, d is the per capita natural mortality rate,
a; the death rate in infective compartment due to malicious objects, and a, the death rate in
quarantine class due to malicious objects. The per capita contact rate f§ is average number
of effective contacts with other nodes per unit time, y» is the rate constant which leaves the
exposed compartment for infective class, 6 is the rate constant which leaves the infective class
for quarantine class, o is the rate by which the nodes go from quarantine class into recovered
class, and 7 is the rate of vertical transmission into the infective class.

Lemma 2.1. Consider the following two systems:

d da
T, Sl=g), (22)

where x, y belong to R*, f and g are continuous function which satisfy a local Lipschitz condition
in any compact set X which belongs to R", and f(t,x) — g(x) as t tends to infinity so that the
second system is the limit system. Let ¢(t,to, xo) and g (t,to, yo) be the solutions of these systems,
respectively. Suppose that e € X is a locally asymptotically stable equilibrium of the limit system and
its attractive region is

Wi(e) = {y € X/g(t, to, x0) — e,t — +oo}. (2.3)

Let Wy be the omega limit set of ¢(t, to, xo). If Wy "W (e) = ¢, then lim; _, . ¢p(t, to, x0) = 0.

Lipschitz’s condition

If for some function F(y), the following condition is satisfied:
|F(y2) =F(y)| < Klyz2 =] (24)

where y; and y, are any points in the domain and K is a constant, this condition is called the
Lipschitz’s condition.
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Now, the total population size N (t) satisfies the equation

dd—lj =A-dN -m ]l - 2Q. (2.5)
Whent — oo, then from the above equation N — A/d.

Let us define the solution region by D = {(S,E,I,Q,R)/S>0;E>0; I 20,Q >0;R >
0, S+E+I+Q+R<A/D}.

The system (2.1) always has the malicious oject-free equilibrium P, = (A/4,0,0,0,0).

Here the quarantine reproduction number is

p(A/d)

q:(}’+d)(d+a1+6+o—;1)' (2.6)

If R; > 1, then D also contains a unique positive, endemic equilibrium P* = (§*, E*, I*, Q*, R*).
Now from (2.1), on simplification, we have

A/d d
=22 o (Ry-1)%,
YRq ( qY )p
ARy -1) rRol e6(yRy —1)d . od(yRs 1) ._ (yRg-1)do
y(y+d)R,’ d| pd+ax+e¢) [i ! pd+ar+e)
2.7)

We have N* = §* + E* + I* + Q* + R*, Hence,

N*

_A/d A(YRy-1) 1[e6(Ryy-1)d . od(yRy;-1) } 28)

d
YRy Y(Y+d)Rq+3(R"Y_1)+3{ﬂ(d+az+€) p

Theorem 2.2. Consider the system (2.1). If R; < 1, then solution set D = {(S,E,I1,Q,R)/S >
0GE>20;I1>20,Q>20,R>20;S+E+1+Q+R<A/D} islocally asymptotically stable for disease-
free equilibrium Py. If Ry > 1, then the region D — {(S,E, I,Q, R) /1 = 0}, is an asymptotically stable
region for the endemic equilibrium P*.

Proof. For local stability, Jacobian of system (2.1) at equilibrium P, is

[—d 0 -B(A/d) 0 0]
0 ~(y+d) BA/d) 0 0
Joo=10 Y —(d+a+6+0-1) 0 0 (2.9)
0 Y 6 —(d+ay+¢e) 0
| 0 0 o € —d |

The eigenvalues of J,, are —-d; —(y +d); —(d+a1 +6+0—1);—(d +az +¢); —d. Since all the roots
are real and negative, system is locally asymptotically stable.
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In order to prove the global stability when R; < 1, consider the Liapunov function
V = I. Liapunov derivative dV/dt =yE-I(d + a1 + o + 6 —17):

av d
E=y(qu—1)E(d+a1+6+o—q),

ii—‘;:y{qu—l}%—(d+a1+6+0—11)1§0, (since Ry —1<0).

(2.10)
As we know the Liapunov Lasallel theorem [17] implies that solutions in D approach

the largest positively invariant subset of the set where dV/dt = 0, which is the set where
I=0.

In this set,
d
B (@rmroQ
Js (2.11)
i A-dS.
We have
= ! 2.12
Q= C@aar 212)
when
t — oo, (2.13)
then
Q—0,
< A (2.14)
— —.
d
We have from (2.1),
Z—f =eQ+ol -dR; (2.15)

this implies

R=e. (2.16)
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Thus,

R—0 (2.17)

when
t — oo. (2.18)
Thus, all solutions in the set I = 0 go to the disease, free equilibrium P,. By Lemma 2.1,

the system is globally asymptotically stable, when R, < 1.
From the fourth equation in system (2.1), we can solve to obtain

{QO 4 Lto 5I(T)E(d+az+s)(7—t0)dT}

QM) = o(erdraz) (-to) (2.19)
Now, lim;,0Q(t) = lim;_,0(61(t))/ (€ + d + a2). This implies Q* = 6I* /(¢ + d + a);
The similarly, solving for R by using, fifth equation in (2.1), we obtain
lim R(t) = lim SQ(t)dﬂ, — R* = %, (2.20)

An application of Lemma 2.1 shows that the endemic equilibrium P*of model (2.1) is globally
asymptotically stable in the region D — {(S,E,I,Q, R)/I = 0}. O

3. Model 2: The SEIQR Model with the Standard Incidence Rate

The flow chart for the SEIQR model will be the same as depicted in Figure 1, but instead
of simple mass action incidence SI, we take standard incidence rate fSI/N, where N =
S+E+1+Q+ R

The system of differential equations for this model is

98 _a-Pl_us
i—f=%-(¥+d)51
%:yE—(d+a1+6+a—q)L 3.1)
%zGl—(d+a2+s)Q,

dR
E-sQ+oI—dR,
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where the parameters are the same as in the previous model,

dd—]:] =A-dN - ol - [XZQ. (32)

Whent — oo then N — A/d. When there are malicious objects free equilibrium
Py=(A/d, 0,0, 0, 0). For this model basic reproduction number is

_ P
Rq_(y+d)(d+a1+6+o—11)' (33)

If R; > 1, then D also contains a unique positive, endemic equilibrium P* = (S*, E*, I*, Q*, R*)
where
S*=[1/{-(y+d)(d+a+e)p+yRy(y +d)p(d+ar +¢) +dp(d + ay + ¢)
+YRy(y+d)(az+e+d) +6yRyd(y +d) +eyRy(y + d)
+0yYRy(y +d)(d+ az + €) }]
x [BAd(d+ ay +€) + yRyd(y +d)(d + az + €)
+6yRGA(y +d)d + e6yR;A(y + d) + oyR;A(y + d) (d + az + €)],

1
E*=—"—(A-dS"),
(y +4)
o YRe(A-dS) a6 YR(A-dSY)
i ! (d+ay+e) i !
. _ e0YR,(A - dS™) . OYR,;(A - dS™)
pa(d+az +¢) pd '

(3.4)

Theorem 3.1. Consider the system (3.1). If R; < 1, then solution set D = {(S,E,1,Q,R)/S >
0bE>012>0 Q>0 R>0; S+E+I+Q+R < A/D)} is locally asymptotic stable for disease-
free equilibrium Py. If Ry > 1, then the region D—{(S,E, I,Q,R)/I = 0} is an asymptotically stable
region for the endemic equilibrium P*

Proof. For the local stability, Jacobian of the system (3.1) at equilibrium P is

[ _,(A/D) ]
d 0 ﬁAZ\[T; 0 0
0 —(d+y) p<L> 0 0
Jp, = N (3.5)
B 0 y -(d+a1+6+0-1) 0 0 :
0 0 6 —(d+ay+¢e) 0
| 0 0 o) € —d ]
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Table 1: Parametric values used in simulating the models.

Parameters Simple mass action Standard incidence rate
N 10,000 10,000
5(0) 9900 9900
E(0) 100 100
1(0) 0 0
Q(0) 0 0
R(0) 0 0

p 0.1 0.01
Y 0.09 0.09
%) 0.01 0.09
£ 0.07 0.07
o 0.09 0.03
A 0.01 0.01
d 0.01 0.01
a; 0.1 0.03
a 0.1 0.04
Vi 0.01 0.03

The eigenvalues of Jp are -d; —(d +y);, -(d+a1 +6+0—-1); (d+ay +¢); —d. Since all the
roots are real and negative, system is locally asymptotically stable.

With a view to prove the global stability when R, < 1, we use the Liapunov function
by putting V = I, we get the same equation as we have found in the model 1; therefore, the
proof will be analogous with the proofs in the previous section.

In order to prove the global stability when R, > 1 and a; = a; = 0, first we get AN/ dt =
A — Nd, this implies N — A/d when t tends to infinity.

The limit system for (3.1) is

ds ApsT
@ AT
dE  dpSI
E—T— +d)E,
%:yE—(d+a1+6+o—q), (3.6)
d
d—?=61—(d+a2+5)Q,
dR
E—sQ+oI—dR,

where N = A/d. The first three equations are independent of Q and R. In the three
dimensional S E I first octant region with S + E + I < A/d, the equilibrium (0, 0, 0) is
saddle, that is, attractive along I = 0 and has a repulsive direction into the region. The other
equilibrium (5%, I*) in the region is locally asymptotically stable.
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Figure 2: Time series of susceptible population S(t), E(t), I(t), Q(t), and R(t) of the system (2.1).

Using Dulac’s criteria with multiplier 1/1, we have

A dpS ds dpS E

as[____ ] 6E|___ d)] aI[__(d+“l+5+o ) o)

1 E
A i Y+d T—Yﬁ<0,

so that there are no periodic solutions in the region. Thus, by the Poincare-Bendixson theory,
all solutions starting in the first octant region with I >0and S + E + I < A/d approach
(S*,E*, I") as t tends infinity.

In this case, the differential equation for Q has the limiting equation

9 bl-drerm (3.8)
so that Q tends to Q* by Lemma 2.1.
Similarly, the differential equation for R has the limiting equation

dR * *
T eQ*+0ol" - dR, (3.9)

so that R tends to R* by Lemma 2.1. Thus P* is a globally asymptotically stable equilibrium
for the limit system (3.6). Hence, by Lemma 2.1, all solutions starting in the region D —
{(S, E, I, Q, R) /I =0} of the system (3.1) approach the endemic equilibrium P* as ¢ tends
to infinity.

O
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Figure 3: Effect of quarantine Q on recovered nodes R.
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Figure 4: Time series of susceptible population S(f), E(t), I(t), Q(t), and R(t) of the system (3.1).

4. Conclusion

Inspired by the biological compartmental epidemic model, we made an attempt to develop
two SEIQR models, one using simple mass action incidence and the other using standard
incidence rate. Vertical transmission has been included into infectious compartment. Runge
Kutta Fehlberg fourth-fifth order method is used to solve and simulate the system (2.1)
and (3.1) by using parametrical values mentioned in Table 1. The model has a constant
recruitment of the nodes and exponential natural and infection-related death (crashing) of
the nodes. Global stability of the unique endemic equilibrium for the epidemic model has
been established. We observe that the behavior of the Susceptible, Exposed, Infected, and
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Quarantined nodes with respect to time is asymptotically stable, which is depicted in Figures
2 and 4. The effect of Q on R is depicted in Figure 3. When the nodes are highly infected by
different kinds of malicious objects, quarantine is one of the remedy. We run antimalicious
software of latest signature against quarantined nodes, and these nodes are kept under
observation. The more we quarantine the most infected nodes, the more the recovery is;
the lesser we quarantine, the lesser the recovery is. Also at a very specific short interval
of time, the recovery of the nodes is constant when the quarantine node decreases. These
can be observed in Figure 3. Simulation result agrees with the real life situation. The basic
reproduction number R, is obtained and has been identified as a threshold parameter. If
R, <1, the disease-free equilibrium D is globally stable in the feasible region and the disease
always dies out. If R; > 1, a unique endemic equilibrium P* exists and is globally stable in
the interior of the feasible region, and once the disease appears, it eventually persists at the
unique endemic equilibrium level. Lyapunov function is used to prove the global stability
of D when R; < 1. In our model, the number of contacts is influenced by the size of the
quarantine class Q. The quarantine process is an alternative method for reducing the average
infectious period by isolating some infectives, so that they do not transmit the malicious
objects in the computer network. We have observed that both the effective infectious period
1/(d+ai + 6 +1n)(y +d) and R, decrease as the quarantine rate 6 increases.

The analysis of quarantine reproduction number R, by Feng and Thieme [14, 15]
andHethcote et al. [31] agrees with our model. Feng and Theieme [14, 15] in their SIQR model
observed that the quarantine reproduction number was independent of the mean residence
time in the quarantine class Q. Hethcote et al. [31] also had their same observation regarding
the independence of the mean residence time in the Q class for all of their endemic models.
We also have the same observation for our SEIQRS model. The mean residence time in the
class Q for our model SEIQRS is 1/¢. The expression for the threshold does not involve the
parameter ¢. This comes from our assumption that the nodes in the quarantine class Q do
not infect other nodes and nodes are not infectious when they move out of the quarantine
class. The quarantine reproduction number R,;, depends on parameter 6. For example, if
6 = no,n € Z¥, then transfer out of infectious class I to quarantine class Q is n times as
frequent as transfer to the removed class R. A positive rate constant 6 to transfer out of
infectious class I by quarantine does decrease the quarantine reproduction number R;, so
that it is less than its value without quarantine. Hence the use of quarantine to control a
disease not only decreases the endemic infective class size when R, remains above 1, but also
makes it easier to obtain R; < 1 leading to disease extinction.

The future work will involve in taking time delay constraints in various compartments
which may lead to more interesting result.
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